
IBM Security Web Gateway Appliance
Version 7.0

Configuration Guide for Web Reverse
Proxy

SC22-5433-01

���

IBM Security Web Gateway Appliance
Version 7.0

Configuration Guide for Web Reverse
Proxy

SC22-5433-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 677.

Edition notice

Note: This edition applies to version 7, release 0, modification 0 of IBM Security Access Manager (product
number 5724-C87) and to all subsequent releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2002, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xiii

Tables xv

About this publication xvii
Intended audience xvii
Access to publications and terminology xviii

Related publications xx
Accessibility. xxii
Technical training xxii
Support information xxii

Part 1. Administration 1

Chapter 1. IBM Security Access Manager
for Web WebSEAL overview 3
Introduction 3
WebSEAL introduction 4
IBM Security Web Gateway Appliance 5
WebSEAL functionality on the appliance 5
Security model 6

Security model concepts 6
The protected object space 7
Access control lists (ACLs) and protected object
policies (POPs) 8
Access control list (ACL) policies 8
Protected object policies (POPs) 9
Explicit and inherited policy. 10
Policy administration: The Web Portal Manager 10

Web space protection 10
Security policy planning and implementation . . . 12

Content types and levels of protection 12
WebSEAL authentication 13
Standard WebSEAL junctions 14
Web space scalability 15

Replicated front-end WebSEAL servers 16
Junctioned back-end servers 16
Replicated back-end servers 17

Chapter 2. Server administration . . . 19
WebSEAL instance management 19
Synchronization of WebSEAL data across multiple
servers 20

Automating synchronization. 21
Auditing and logging of resources for WebSEAL . . 23

Error message logging 23
WebSEAL server activity auditing 23
Traditional auditing and logging of HTTP events 24

Problem determination resources for WebSEAL . . 24
Configuration data log file 25
Statistics 26
Trace utility 27

Part 2. Configuration. 29

Chapter 3. Web server configuration . . 31
WebSEAL server and host name specification . . . 31

WebSEAL server name in the configuration file 31
WebSEAL server name in "pdadmin server list" 32
WebSEAL server name in the protected object
space 32
Specifying the WebSEAL host (machine) name. . 32

WebSEAL configuration file 33
Configuration file organization 33
Configuration file name and location 34
Modifying configuration file settings 34

Directory indexing 35
Configuring directory indexing 35
Configuration of graphical icons for file types . . 35

Content caching 36
Content caching concepts 36
Configuration of content caching 36
Impact of HTTP headers on WebSEAL content
caching 37
Flushing all caches 39
Cache control for specific documents 40

Communication protocol configuration 40
WebSEAL configuration for HTTP requests . . . 41
WebSEAL configuration for HTTPS requests . . 41
Restrictions on connections from specific SSL
versions 42
Persistent HTTP connections. 42
WebSEAL configuration for handling HTTPOnly
cookies 43
Timeout settings for HTTP and HTTPS
communication 43
Additional WebSEAL server timeout settings . . 45
Support for WebDAV 46
Support for Microsoft RPC over HTTP 47
Support for chunked transfer coding 48

Internet Protocol version 6 (IPv6) support 48
IPv4 and IPv6 overview 48
Configuring IPv6 and IPv4 support 49
IPv6: Compatibility support 49
IPv6: Upgrade notes 50
IP levels for credential attributes 50

LDAP directory server configuration 50
Worker thread allocation 51

WebSEAL worker thread configuration 51
Allocation of worker threads for junctions
(junction fairness) 52

HTTP data compression 54
Compression based on MIME-type 54
Compression based on user agent type 55
Compression policy in POPs. 56
Data compression limitation 57
Configuring data compression policy 57

Multi-locale support with UTF-8 57

© Copyright IBM Corp. 2002, 2013 iii

Multi-locale support concepts 57
Configuration of multi-locale support. 61

Validation of character encoding in request data . . 66
Supported wildcard pattern matching characters . . 67
Setting system environment variables. 67

Chapter 4. Web server response
configuration 69
Static HTML server response pages 69
HTML server response page locations 74

Management Root 74
Account management page location 74
Error message page location 75
Junction-specific static server response pages . . 75

HTML server response page modification 75
Guidelines for customizing HTML response
pages 76
Macro resources for customizing HTML response
pages 76
Macros embedded in a template 78
Adding an image to a custom login form . . . 81

Account management page configuration 82
Configuration file stanza entries and values . . 82
Configuration of the account expiration error
message 82
Configuration of the password policy options . . 83

Error message page configuration 84
Enabling the time of day error page 84
Creating new HTML error message pages . . . 85
Compatibility with previous versions of
WebSEAL 85

Multi-locale support for server responses 86
The accept-language HTTP header. 86
Process flow for multi-locale support 87
Conditions affecting multi-locale support on
WebSEAL 87

Handling the favicon.ico file with Mozilla Firefox . 87
Adding custom headers to server response pages. . 88
Configuring the location URL format in redirect
responses 89
Local response redirection 90

Local response redirection overview 90
Local response redirection process flow 91
Enabling and disabling local response redirection 91
Contents of a redirected response 92
URI for local response redirection 92
Operation for local response redirection 93
Macro support for local response redirection . . 94
Local response redirection configuration example 98
Technical notes for local response redirection . . 99
Remote response handling with local
authentication 99

HTML redirection 100
Enabling HTML redirection. 101
Preserving HTML fragments on redirection . . 101

Chapter 5. Web server security
configuration 103
Configuring WebSEAL to support only Suite B
ciphers 103

Prevention of vulnerability caused by cross-site
scripting 104
Prevention of Cross-site Request Forgery (CSRF)
attacks. 105

Secret token validation 105
Referrer validation 106
Reject unsolicited authentication requests . . . 107

Suppression of WebSEAL and back-end server
identity 107

Suppressing WebSEAL server identity 107
Suppressing back-end application server
identity 108

Disabling HTTP methods 108
Platform for Privacy Preferences (P3P) 109

Compact policy overview 109
Compact policy declaration. 110
Junction header preservation 111
Default compact policy in the P3P header . . . 112
Configuring the P3P header 113
Specifying a custom P3P compact policy . . . 119
P3P configuration troubleshooting 119

Chapter 6. Runtime security services
external authorization service 121
About the runtime security services external
authorization service 121
Configuring the runtime security services external
authorization service in WebSEAL 122
Sample configuration data for runtime security
services external authorization service 124

Part 3. Authentication 127

Chapter 7. Authentication overview 129
Definition and purpose of authentication 129
Information in a user request 129
Client identities and credentials 130
Authentication process flow 130
Authenticated and unauthenticated access to
resources 131

Request process for authenticated users . . . 132
Request process for unauthenticated users. . . 132
Access conditions over SSL 132
Forcing user login 133
Use of unauthenticated HTTPS 133

Supported authentication methods 133
Authentication challenge based on user agent . . 134

Chapter 8. Authentication methods 137
Authentication terminology 137
Logout and password change operations 137

Logging out: pkmslogout 138
Controlling custom response pages for
pkmslogout 138
Changing passwords: pkmspasswd 139
Password change issue with Active Directory on
Windows 139

Basic authentication 139
Enabling and disabling basic authentication . . 140

iv IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Setting the realm name 140
Forms authentication 140

Enabling and disabling forms authentication 141
Customizing HTML response forms 141
Submitting login form data directly to WebSEAL 142

Client-side certificate authentication 143
Client-side certificate authentication modes . . 143
Certificate authentication configuration task
summary 146
Enabling certificate authentication 146
Configuration of the certificate authentication
mechanism 147
Certificate login error page 149
Certificate login form. 150
Disabling SSL session IDs for session tracking 150
Enabling and configuring the Certificate SSL ID
cache 150
Setting the timeout for Certificate SSL ID cache 151
Error page for incorrect protocol 151
Disabling certificate authentication 152
Disabling the Certificate SSL ID cache 152
Technical notes for certificate authentication . . 152

Kerberos authentication 153
Configuring Kerberos authentication 153
Limitations 154

LTPA authentication 155
LTPA authentication overview 155
Enabling LTPA authentication 155
Key file information 156
Specifying the cookie name for clients 156
Specifying the cookie name for junctions . . . 156
Controlling the lifetime of the LTPA Token . . 157
Disabling LTPA authentication. 157

Chapter 9. Advanced authentication
methods 159
Multiplexing proxy agents 159

Multiplexing proxy agents overview. 159
Valid session data types and authentication
methods 160
Authentication process flow for MPA and
multiple clients 161
Enabling and disabling MPA authentication . . 162
Creation of a user account for the MPA . . . 162
Addition of the MPA account to the
webseal-mpa-servers group. 162
MPA authentication limitations 162

Switch user authentication 162
Overview of the switch user function 162
Configuration of switch user authentication . . 165
Using switch user 168
Additional switch user feature support 168

Reauthentication 169
Reauthentication concepts 170
Reauthentication based on security policy . . . 171
Reauthentication POP: creating and applying 171
Reauthentication based on session inactivity . . 171
Enabling of reauthentication based on session
inactivity 172
Resetting of the session cache entry lifetime
value 172

Extension of the session cache entry lifetime
value 172
Prevention of session removal when the session
lifetime expires 173
Removal of a user session at login failure policy
limit 174
Customization of login forms for
reauthentication 175

Authentication strength policy (step-up) 176
Authentication strength concepts 176
Authentication strength configuration task
summary 177
Establishing an authentication strength policy 178
Specifying authentication levels 178
Specifying the authentication strength login
form 180
Creating a protected object policy 181
Specifying network-based access restrictions . . 182
Attaching a protected object policy to a
protected resource 184
Enforcing user identity match across
authentication levels 185
Controlling the login response for
unauthenticated users 185
Stepping up authentication at higher levels . . 186

External authentication interface 186
Client Certificate User Mapping 187

Introduction 187
User mapping rules evaluator 191
How to manage the CDAS 194
Configuring WebSEAL to use the certificate
mapping module 196

Chapter 10. Post-authentication
processing 201
Automatic redirection after authentication 201

Overview of automatic redirection 201
Enabling automatic redirection 202
Disabling automatic redirection 202
Limitations 203
Macro support for automatic redirection . . . 203

Server-side request caching 205
Server-side request caching concepts 205
Process flow for server-side request caching . . 205
Configuration of server-side caching. 206

Chapter 11. Password processing . . 209
Login failure policy ("three strikes" login policy) 209

Login failure policy concepts 209
Setting the login failure policy. 210
Setting the account disable time interval . . . 210
Configuring the account disable notification
response 211
Login failure policy with replicated WebSEAL
servers 212

Password strength policy 213
Password strength policy concepts 213
Password strength policies 213
Syntax for password strength policy commands 213
Default password strength policy values . . . 215

Contents v

Valid and not valid password examples . . . 215
Specifying user and global settings 215

Chapter 12. Credential processing 217
Extended attributes for credentials 217

Mechanisms for adding registry attributes to a
credential. 217
Configure a registry attribute entitlement service 218
Junction handling of extended credential
attributes 219

Credential refresh 221
Credential refresh concepts 221
Configure credential refresh 225
Credential refresh usage 227

Chapter 13. External authentication
interface 229
External authentication interface overview. . . . 229
External authentication interface process flow . . 229
External authentication interface configuration . . 232

Enabling the external authentication interface 232
Initiating the authentication process 233
Configuration of the external authentication
interface trigger URL 234
HTTP header names for authentication data . . 234
Extracting authentication data from special
HTTP headers 236
How to generate the credential 236
External authentication interface credential
replacement 237
Validating the user identity. 238
How to write an external authentication
application 238

External authentication interface HTTP header
reference 240
Use of external authentication interface with
existing WebSEAL features 241

Request caching with external authentication
interface 241
Post-authentication redirection with external
authentication interface 242
Session handling with external authentication
interface 242
Authentication strength level with external
authentication interface 242
Reauthentication with external authentication
interface 243
Login page and macro support with external
authentication interface 243
Setting a client-specific session cache entry
lifetime value 244
Setting a client-specific session cache entry
inactivity timeout value 246

Part 4. Session State 249

Chapter 14. Session state overview 251
Session state concepts 251
Supported session ID data types 251

Information retrieved from a client request . . . 252
WebSEAL session cache structure. 252
Deployment considerations for clustered
environments 253

Consistent configuration on all WebSEAL replica
servers 254
Client-to-server session affinity at the load
balancer 254
Failover to a new master 254
Failover from one WebSEAL server to another 254

Options for handling failover in clustered
environments 254

Option 1: No WebSEAL handling of failover
events 255
Option 2: Authentication data included in each
request 255
Option 3: Failover cookies 255
Option 4: The Session Management Server . . 256
Option 5: LTPA cookie 256

Chapter 15. Session cache
configuration 259
Session cache configuration overview 259
SSL session ID cache configuration 260

Cache entry timeout value 260
Maximum concurrent SSL sessions value . . . 260

WebSEAL session cache configuration 260
Maximum session cache entries value 261
Cache entry lifetime timeout value 261
Setting a client-specific session cache entry
lifetime value 262
Cache entry inactivity timeout value 264
Concurrent session limits 265
Session cache limitation 266

Chapter 16. Failover solutions 267
Failover authentication concepts 267

The failover environment 267
Failover cookie 268
Failover authentication process flow. 269
Example failover configuration 269
Addition of data to a failover cookie 270
Extraction of data from a failover cookie . . . 272
Domain-wide failover authentication 273

Failover authentication configuration 274
Configuring failover authentication 274
Protocol for failover cookies 275
Generating a key pair to encrypt and decrypt
cookie data 275
Specifying the failover cookie lifetime 276
Specifying UTF-8 encoding on cookie strings 276
Adding the authentication strength level . . . 277
Reissue of missing failover cookies 277
Addition of session lifetime timestamp 277
Adding the session activity timestamp 278
Addition of an interval for updating the activity
timestamp 279
Addition of extended attributes 279
Attributes for extraction 280
Enabling domain-wide failover cookies 280

vi IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Validation of a lifetime timestamp 281
Validation of an activity timestamp 281

Failover for non-sticky failover environments. . . 282
Non-sticky failover concepts 282
Configuring the non-sticky failover solution . . 283
Use of failover cookies with existing WebSEAL
features 284

Change password operation in a failover
environment. 284

Chapter 17. Session state in
non-clustered environments 287
Maintain session state in non-clustered
environments 287

Control on session state information over SSL 287
Use of the same session key over different
transports 288
Valid session key data types 288
Effective session timeout value 290
Netscape 4.7x limitation for use-same-session 290

Session cookies 291
Session cookies concepts. 291
Conditions for using session cookies 291
Customization of the session cookie name . . . 292
Sending session cookies with each request. . . 292

Customized responses for old session cookies . . 293
Session removal and old session cookie concepts 293
Enabling customized responses for old session
cookies 294

Maintain session state with HTTP headers. . . . 295
HTTP header session key concepts 295
Configuring HTTP headers to maintain session
state 295
Setup for requiring requests from an MPA. . . 297

Share sessions with Microsoft Office applications 297
Overview of session sharing with Microsoft
Office applications. 298
Configure the temporary session cache 298
Configure shared sessions with Microsoft Office
applications 300

Part 5. Session Management
Server 305

Chapter 18. Session management
server (SMS) overview 307
The failover environment 307
The session management server (SMS) 308
Server clusters, replica sets, and session realms . . 308
SMS process flow 309
Sharing sessions across multiple DNS domains . . 310

Chapter 19. Quickstart guide for
WebSEAL using SMS 313
Configuration summary for WebSEAL using SMS 313

1. Information gathering. 313
2. WebSEAL configuration file settings 314
3. Import the Security Access Manager CA
Certificate 314

4. Restart the WebSEAL server. 315
5. Create junctions for virtual hosts 315
6. Junction the session management server . . 315
7. Set the maximum concurrent sessions policy 316
8. Test the configuration 316

Chapter 20. Configuration for
WebSEAL using SMS 319
SMS configuration for WebSEAL 319

Configuring the session management server
(SMS) 319
Enabling and disabling SMS for WebSEAL . . 319
Specifying session management server cluster
and location 320
Retrieving the maximum concurrent sessions
policy value 320

Replica set configuration 321
Configuring WebSEAL to participate in multiple
replica sets 321
Assigning standard junctions to a replica set 321
Virtual hosts assigned to a replica set 322
Example replica set configuration. 322

Adjustment of the last access time update
frequency for SMS. 325
SMS communication timeout configuration . . . 325

Configuring SMS response timeout 325
Configuring connection timeout for broadcast
events 326

SMS performance configuration 326
Maximum pre-allocated session IDs 326
Configuration of the handle pool size 327

SMS Authentication 327
SSL configuration for WebSEAL and SMS 327

Configuring the WebSEAL key database . . . 328
Specifying the SSL certificate distinguished
name (DN) 328
GSKit configuration for SMS connections . . . 329

Maximum concurrent sessions policy 330
Setting the maximum concurrent sessions policy 330
Enforcing the maximum concurrent sessions
policy 333
Switch user and maximum concurrent sessions
policy 334

Single signon within a session realm 334
Session realm and session sharing concepts . . 334
Configuring session sharing 335

Configuring login history 337
Enabling login failure notification 338
Creating a junction to the session management
server 338
Allowing access to the login history JSP . . . 339
Customizing the JSP to display login history 339

Part 6. Authorization 341

Chapter 21. Configuration for
authorization 343
WebSEAL-specific ACL policies 343

/WebSEAL/host-instance_name 343
/WebSEAL/host-instance_name/file 343

Contents vii

WebSEAL ACL permissions 343
Default /WebSEAL ACL policy 344
Valid characters for ACL names 344
Quality of protection POP 344
Configuration of authorization database updates
and polling 345
Configuring quality of protection levels . . . 346
Authorization decision information 348
Support for OAuth authorization decisions . . 348

Chapter 22. Key management 353
Key management overview. 353
Key management in the Local Management
Interface 354
Client-side and server-side certificate concepts . . 354
Configuration of the WebSEAL key database file 355

WebSEAL key database file 355
Key database file password. 356
WebSEAL test certificate 356
Server Name Indication 357
Inter-server SSL communication for Security
Access Manager 358

Certificate revocation in WebSEAL 358
Certificate revocation list (CRL) 358
Configuration of CRL checking 359

Certificate distribution points 359
Configuration of the CRL cache 359

Set the maximum number of cache entries. . . 360
Set the GSKit cache lifetime timeout value. . . 360
Enable the CRL cache 360

Use of the WebSEAL test certificate for SSL
connections 361

Part 7. Standard WebSEAL
Junctions 363

Chapter 23. Standard WebSEAL
junctions 365
WebSEAL junctions overview 365

Junction types 365
Applying coarse-grained access control:
summary 366
Applying fine-grained access control: summary 366
Additional references for WebSEAL junctions 366

Management of junctions with Web Portal Manager 367
Creating a junction using Web Portal Manager 367
Listing junctions using Web Portal Manager . . 367
Deleting junctions using Web Portal Manager 368

Junction management in the Local Management
Interface 368
Managing junctions with the pdadmin utility. . . 368

Import and export of junction databases . . . 369
Standard WebSEAL junction configuration. . . . 369

The pdadmin server task create command. . . 370
Creating TCP type standard junctions 370
Creating SSL type standard junctions 371
Creating mutual junctions 371
SSL-based standard junctions 372

Adding multiple back-end servers to a standard
junction 373
Local type standard junction 373
Disable local junctions 373

Transparent path junctions 373
Filtering concepts in standard WebSEAL
junctions 374
Transparent path junction concepts 374
Configuring transparent path junctions 375
Example transparent path junction 376

Technical notes for using WebSEAL junctions. . . 376
Guidelines for creating WebSEAL junctions . . 377
Adding multiple back-end servers to the same
junction 377
Exceptions to enforcing permissions across
junctions 378
Certificate authentication across junctions . . . 378
Handling domain cookies 378
Supported HTTP versions for requests and
responses. 379
Junctioned application with Web Portal
Manager 379

How to generate a back-end server Web space
(query_contents) 379

query_contents overview 380
query_contents components 381
Installing and configuring query_contents on
UNIX-based Web servers 382
Installing and configuring query_contents on
Windows-based Web servers 383
General process flow for query_contents . . . 384
Securing the query_contents program 385

Chapter 24. Advanced junction
configuration 387
Mutually authenticated SSL junctions 387

Mutually authenticated SSL junctions process
summary 387
Validation of the back-end server certificate . . 388
Matching the distinguished name (DN). . . . 388
Authentication with a client certificate 389
Authentication with a BA header 389

TCP and SSL proxy junctions 390
WebSEAL-to-WebSEAL junctions over SSL . . . 390
Stateful junctions 392

Stateful junction concepts 392
Configuration of stateful junctions 392
Specifying back-end server UUIDs for stateful
junctions 393
Handling an unavailable stateful server . . . 395

Forcing a new junction 396
Use of /pkmslogout with virtual host junctions 397
Junction throttling 397

Junction throttling concepts. 397
Placing a junctioned server in a throttled state 398
Junctioned server in an offline state 400
Junctioned server in an online state 402
Junction throttle messages 403
Use of junction throttling with existing
WebSEAL features 404

Management of cookies 405

viii IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Passing of session cookies to junctioned portal
servers 406
Support for URLs as not case-sensitive 408
Junctions to Windows file systems 409

Example 409
ACLs and POPs must attach to lower-case
object names 410

Standard junctions to virtual hosts 410
UTF-8 encoding for HTTP header data 411
Bypassing buffering on a per-resource basis . . . 412
Single sign-on solutions across junctions 413

Chapter 25. Modification of URLs to
junctioned resources 415
URL modification concepts 415
Path types used in URLs 416
Special characters in URLs 417
Modification of URLs in responses 417

Filtering of tag-based static URLs. 417
Modifying absolute URLs with script filtering 426
Configuring the rewrite-absolute-with-absolute
option 427
Filtering changes the Content-Length header 427
Limitation with unfiltered server-relative links 428

Modification of URLs in requests 429
Modification of server-relative URLs with
junction mapping 429
Modification of server-relative URLs with
junction cookies 431
Control on the junction cookie JavaScript block 432
Modification of server-relative URLs using the
HTTP Referer header 435
Controlling server-relative URL processing in
requests 436

Handling cookies from servers across multiple -j
junctions 438

Cookie handling: -j modifies Set-Cookie path
attribute 438
Cookie handling: -j modifies Set-Cookie name
attribute 439
Preservation of cookie names 439
Cookie handling: -I ensures unique Set-Cookie
name attribute 440

Chapter 26. HTTP transformations 443
HTTP transformation rules 443

Extensible Stylesheet Language Transformation
(XSLT). 444
HTTP request objects 444
HTTP response objects 444
Replacing the HTTP response 445
XSL transformation rules 445
Reprocessing considerations 447
XSLT templates. 447

Configuration 447
Configuration file updates 447
Protected Object Policy (POP) 448

Example HTTP transformation scenarios 448
Scenario 1: Modifying the URI, headers, and
cookies (HTTPRequest) 448

Scenario 2: Modifying the headers only
(HTTPResponse) 451
Scenario 3: Modifying the ResponseLine/
StatusCode only (HTTPResponse) 453
Scenario 4: Modifying cookies only
(HTTPResponse) 454
Scenario 5: Providing a response to a known
HTTP request 457

Transformation errors 458

Chapter 27. Microsoft RPC over HTTP 461
RPC over HTTP support in WebSEAL 461
Junction configuration 462
POP configuration 463
Authentication limitations 463
Timeout considerations 463
WebSEAL server log errors 464
Worker thread consideration 464

Chapter 28. Command option
summary: standard junctions 465
Using pdadmin server task to create junctions . . 465
Server task commands for junctions 466
Creation of a junction for an initial server 467
Addition of server to an existing junction 473

Part 8. Virtual Hosting 477

Chapter 29. Virtual host junctions . . 479
Virtual host junction concepts 479

Standard WebSEAL junctions 479
Challenges of URL filtering. 480
Virtual hosting 480
Virtual host junction solution 480
Stanzas and stanza entries ignored by virtual
host junctions 482
Virtual hosts represented in the object space . . 482

Configuration of a virtual host junction 483
Creation of a remote type virtual host junction 483
Creation of a local type virtual host junction 485

Scenario 1: Remote virtual host junctions 486
Definition of interfaces for virtual host junctions 487

Default interface specification 488
Defining additional interfaces 488

Scenario 2: Virtual host junctions with interfaces 490
Use of virtual hosts with existing WebSEAL
features 492

E-community single signon with virtual hosts 492
Cross-domain single signon with virtual hosts 494
Dynamic URLs with virtual host junctions. . . 494
Using domain session cookies for virtual host
single sign-on 495
Junction throttling 496

Scenario 3: Advanced virtual host configuration 496
Virtual host junction limitations 498

SSL session IDs not usable by virtual hosts . . 498

Contents ix

Chapter 30. Command option
summary: Virtual host junctions . . . 499
Using pdadmin server task to create virtual host
junctions 499
Server task commands for virtual host junctions 500
Creation of a virtual host junction 501
Addition of a server to a virtual host junction . . 506

Part 9. Single Signon Solutions 509

Chapter 31. Single signon solutions
across junctions 511
Single signon using Tivoli Federated Identity
Manager 511

GSKit configuration for connections with Tivoli
Federated Identity Manager 513
Use of Kerberos credentials. 513

Single sign-on using HTTP BA headers 514
Single signon (SSO) concepts 514
Client identity in HTTP BA headers 515
Client identity and generic password 515
Forwarding of original client BA header
information 516
Removal of client BA header information . . . 517
User names and passwords from GSO 518
Client identity information across junctions . . 518

Identity information supplied in HTTP headers . . 519
Client identity in HTTP headers (–c). 519
Client IP addresses in HTTP headers (–r) . . . 521
Limiting the size of WebSEAL-generated HTTP
headers 522

Global signon (GSO) 523
Global sign-on overview. 523
Authentication information mapping 524
Configuring a GSO-enabled WebSEAL junction 525
Configuration of the GSO cache 525

Single signon to IBM WebSphere (LTPA) 526
LTPA overview 526
Configuration of an LTPA junction 527
Configuration of the LTPA cache 528
Technical notes for LTPA single sign-on. . . . 528

Forms single signon authentication 529
Forms single signon concepts 529
Forms single signon process flow. 530
Requirements for application support 531
Creation of the configuration file for forms
single signon 531
How to enable forms single signon 535
Forms single sign-on example 535

Chapter 32. Cross-domain single
sign-on 537
Cross-domain single signon concepts 537

Cross-domain single signon overview 537
Default and custom authentication tokens . . . 538
Extended user attributes and identity mapping 538
CDSSO process flow with attribute transfer and
user mapping 538

Configuration of cross-domain single signon . . . 540

CDSSO configuration summary 540
CDSSO conditions and requirements 541
Enabling and disabling CDSSO authentication 542
Encrypting the authentication token data . . . 542
Configuring the token time stamp 543
Configuring the token label name 544
Creating the CDSSO HTML link 544
Handling errors from CDMF during token
creation 545
Protection of the authentication token 545
Use of cross-domain single signon with virtual
hosts 545

Extended attributes for CDSSO 546
Extended attributes to add to token 546
Extended attributes to extract from a token . . 547

UTF-8 encoding of tokens for cross domain single
signon. 548

Chapter 33. LTPA single signon . . . 549
LTPA single sign-on overview 549
Configuring LTPA single signon 549
Technical notes for LTPA single sign-on. 550

Chapter 34. E-community single
signon 551
E-community single signon concepts 551

E-community overview 551
E-community features and requirements . . . 553
E-community process flow 553
The e-community cookie 557
The vouch-for request and reply 558
The vouch-for token 559

Configuration of e-community single sign-on. . . 559
E-community configuration summary 560
E-community conditions and requirements . . 561
Enabling and disabling e-community
authentication 562
Specifying an e-community name 562
Encrypting the vouch-for token 562
Configuring the vouch-for token label name . . 563
Specifying the master authentication server
(MAS) 564
Specifying the vouch-for URL 565
Configure token and ec-cookie lifetime values 565
Handling errors from CDMF during token
creation 566
Enabling unauthenticated access 566
Limiting the ability to generate vouch-for tokens 567
Configuration of the behavior for authentication
failure 567
Logout using pkmslogout-nomas 567
Use of e-community with virtual hosts 568

Extended attributes for ECSSO 568
Extended attributes to add to token 568
Extended attributes to extract from token . . . 569

UTF-8 encoding of tokens for e-community single
signon. 570

Chapter 35. Single sign-off 571
Overview of the single sign-off functionality . . . 571

x IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Configuring single signoff 571
Specifications for single sign-off requests and
responses. 572

Part 10. Deployment 573

Chapter 36. WebSEAL instance
deployment 575
WebSEAL instance configuration overview . . . 575

WebSEAL instance configuration planning. . . 575
Example WebSEAL instance configuration
values 577
Unique configuration file for each WebSEAL
instance 577

WebSEAL instance configuration tasks 577
Adding a WebSEAL instance 578
Removing a WebSEAL instance 578

Load balancing environments 579
Replicating front-end WebSEAL servers . . . 579
Controlling the login_success response 580

Chapter 37. Application integration 583
Support for back-end server-side applications . . 583
Best practices for standard junction usage 583

Complete Host header information with -v . . 584
Standard absolute URL filtering 584

Custom personalization service 585
Personalization service concepts 585
Configuring WebSEAL for a personalization
service. 586
Personalization service example 586

User session management for back-end servers . . 586
User session management concepts 587
Enabling user session ID management 588
Inserting user session data into HTTP headers 588
Terminating user sessions 590
User event correlation for back-end servers . . 593

Chapter 38. Dynamic URLs 595
Access control for dynamic URLs. 595

Dynamic URL components 595
Access control for dynamic URLs: dynurl.conf 595
Conversion of POST body dynamic data to
query string format 596
Mapping ACL and POP objects to dynamic
URLs 597
Character encoding and query string validation 598
Updating WebSEAL for dynamic URLs 598
Resolve dynamic URLs in the object space. . . 598
Configuration of limitations on POST requests 599
Dynamic URLs summary and technical notes 600

Dynamic URL example: The Travel Kingdom. . . 601
The application. 601
The interface 602
The security policy 602
Secure clients 603
Access control 603
Conclusion 604

Chapter 39. Internet Content
Adaptation Protocol (ICAP) Support . 605
ICAP integration with WebSEAL - Workflow . . . 606
Scope of functionality 606
Configuration of ICAP support within WebSEAL 607

Part 11. Appendixes 609

Appendix A. Guidelines for changing
configuration files 611
General guidelines. 611
Default values 611
Strings 612
Defined strings 612
File names 612
Integers 612
Boolean values 613

Appendix B. Command reference . . . 615
Reading syntax statements 616
help 616
server list. 618
server task add 618
server task cache flush all 621
server task cluster restart 623
server task create 624
server task delete 631
server task dynurl update 632
server task help 633
server task jmt 635
server task list 636
server task offline 638
server task online 639
server task refresh all_sessions 641
server task reload 642
server task remove 644
server task server restart 645
server task show 646
server task server sync 647
server task terminate all_sessions 648
server task terminate session 649
server task throttle 651
server task virtualhost add 653
server task virtualhost create 655
server task virtualhost delete 662
server task virtualhost list 663
server task virtualhost offline 664
server task virtualhost online 667
server task virtualhost remove. 669
server task virtualhost show 671
server task virtualhost throttle 673

Notices 677

Index 681

Contents xi

xii IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Figures

1. Protecting resources with WebSEAL 4
2. Protected object space 8
3. ACL policy 9
4. Explicit and inherited policies 10
5. Web space protection 11
6. Junctions connect WebSEAL with back-end

resources 14
7. WebSEAL junction results in a unified Web

space. 15
8. Junctioned back-end servers 16
9. Unified Web space 17

10. Replicated back-end servers 18
11. Cluster Support 22
12. Timeout settings for HTTP and HTTPS

communication 45
13. Authentication process flow. 131
14. External Kerberos authentication 153
15. Communication over an MPA Gateway 160
16. Swapping administrator and user cache data

during switch user 164
17. Example WebSEAL request caching process

flow 206
18. External authentication interface process flow 230
19. WebSEAL session cache 253
20. Session cache configuration file entries 259
21. Failover for replicated WebSEAL servers 268
22. Sharing WebSEAL sessions with Microsoft

SharePoint server 301
23. Failover for replicated WebSEAL servers 307
24. WebSEAL/SMS process flow 309
25. Junction configuration for a single WebSEAL

server 323
26. Replica set configuration 324
27. Logical flow of the OAuth EAS 349
28. Keyfile management configuration 353
29. Non-secure TCP (HTTP) junction 370
30. Secure SSL (HTTPS) junction 371

31. Example proxy junction 390
32. WebSEAL-to-WebSEAL junction scenario 391
33. Stateful junctions use back-end server UUIDs 393
34. Dissimilar UUIDs 394
35. Specifying back-end server UUIDs for stateful

junctions 394
36. Configuring virtual hosts 411
37. Summary: Modifying URLs to back-end

resources 416
38. Filtering absolute URLs 427
39. Processing server-relative URLs with junction

cookies. 432
40. WebSEAL RPC over HTTP 461
41. Virtual host junction scenario 1 487
42. Virtual host junction scenario 2 491
43. Virtual host junction scenario 3 497
44. Multiple logins 514
45. Supplying authentication information to

back-end application servers 515
46. BA Header contains identity and "dummy"

password 516
47. WebSEAL forwards original client identity

information 517
48. Removing client BA header information 517
49. Global sign-on mechanism 523
50. Forms single signon process flow 530
51. Cross-domain single signon process with

CDMF 540
52. The e-community model 552
53. Example configuration for e-community

process flow 554
54. Session management 587
55. Terminate all userA sessions 592
56. Passing data in the query string of a request

URL 595
57. Authorization on a dynamic URL 597

© Copyright IBM Corp. 2002, 2013 xiii

xiv IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Tables

1. WebSEAL features that the appliance does not
support 5

2. WebSEAL instance management 19
3. Supported wildcard matching characters 67
4. Characters encoded in URL and non-URL

macros 79
5. Macros for defining custom headers 88
6. P3P default header values 112
7. Supported values for the access entry 113
8. Supported values for the categories entry 114
9. Supported values for the disputes entry 115

10. Supported values for the remedies entry 115
11. Supported values for the non-identifiable

entry 116
12. Supported values for the purpose entry 116
13. Supported values for the opt-in or opt-out

policy 117
14. Supported values for the recipient entry 117
15. Opt-in policy values 118
16. Supported values for the retention entry 118
17. Runtime security services EAS access

decisions 121
18. Configuring basic authentication 140
19. Configuring forms authentication 141
20. Configuring certificate authentication 147
21. Configuring LTPA authentication 156
22. Authentication methods supported for

authentication strength 178
23. Example integer values for authentication

strength levels 182

24. Using netmask to specify a network range
(IPv4) 183

25. Using netmask to specify a network range
(IPv6) 183

26. Configuring the external authentication
interface 233

27. Examples of authentication requests to an
external authentication application: 234

28. Supplemental credential data provided by
WebSEAL 236

29. PAC headers 240
30. User identity headers 240
31. Session identifier headers 241
32. Common headers 241
33. Supported protocols for failover cookies 275
34. Local type junction options 373
35. Return codes. 381
36. Filtered encoding types 420
37. Base elements 446
38. XSLT Template files 447
39. Remote type virtual host junction options 483
40. Local type virtual host junction options 485
41. Valid properties and values for additional

interface definitions 488
42. Configuration requirements for a Tivoli

Federated Identity Manager trust chain . . . 511
43. Worksheet for adding a WebSEAL instance 578

© Copyright IBM Corp. 2002, 2013 xv

xvi IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

About this publication

Welcome to the IBM Security Web Gateway Appliance: Configuration Guide for Web
Reverse Proxy.

IBM Security Access Manager for Web, formerly called IBM Tivoli Access Manager
for e-business, is a user authentication, authorization, and web single sign-on
solution for enforcing security policies over a wide range of web and application
resources.

The IBM Security Web Gateway Appliance includes Security Access Manager. The
appliance uses a Web Reverse Proxy to provide user access and authentication
management for web application sessions. This guide uses the term WebSEAL to
reference this proxy.

IBM Security Access Manager for Web WebSEAL is the resource manager for
web-based resources in a Security Access Manager secure domain. WebSEAL is a
high performance, multi-threaded web server that applies fine-grained security
policy to the protected web object space. WebSEAL can provide single signon
solutions and incorporate back-end web application server resources into its
security policy.

This configuration guide provides a comprehensive set of procedures and reference
information for managing the resources of your secure web domain. This guide
also provides you with valuable background and concept information for the wide
range of WebSEAL functionality. For the complete stanza reference for WebSEAL
configuration, see the IBM Security Web Gateway Appliance: Web Reverse Proxy Stanza
Reference.

Intended audience
This guide is for system administrators responsible for configuring and
maintaining a Security Access Manager WebSEAL environment.

Readers should be familiar with the following:
v PC and UNIX or Linux operating systems
v Database architecture and concepts
v Security management
v Internet protocols, including HTTP, TCP/IP, File Transfer Protocol (FTP), and

Telnet
v Lightweight Directory Access Protocol (LDAP) and directory services
v A supported user registry
v WebSphere® Application Server administration
v Authentication and authorization

If you are enabling Secure Sockets Layer (SSL) communication, you also should be
familiar with SSL protocol, key exchange (public and private), digital signatures,
cryptographic algorithms, and certificate authorities.

© Copyright IBM Corp. 2002, 2013 xvii

Access to publications and terminology
This section provides:
v A list of publications in the “IBM Security Access Manager for Web library.”
v Links to “Online publications” on page xx.
v A link to the “IBM Terminology website” on page xx.

IBM Security Access Manager for Web library

The following documents are in the IBM Security Access Manager for Web library:
v IBM Security Access Manager for Web Quick Start Guide, GI11-9333-01

Provides steps that summarize major installation and configuration tasks.
v IBM Security Web Gateway Appliance Quick Start Guide – Hardware Offering

Guides users through the process of connecting and completing the initial
configuration of the WebSEAL Hardware Appliance, SC22-5434-00

v IBM Security Web Gateway Appliance Quick Start Guide – Virtual Offering
Guides users through the process of connecting and completing the initial
configuration of the WebSEAL Virtual Appliance.

v IBM Security Access Manager for Web Installation Guide, GC23-6502-02
Explains how to install and configure Security Access Manager.

v IBM Security Access Manager for Web Upgrade Guide, SC23-6503-02
Provides information for users to upgrade from version 6.0, or 6.1.x to version
7.0.

v IBM Security Access Manager for Web Administration Guide, SC23-6504-02
Describes the concepts and procedures for using Security Access Manager.
Provides instructions for performing tasks from the Web Portal Manager
interface and by using the pdadmin utility.

v IBM Security Access Manager for Web WebSEAL Administration Guide, SC23-6505-02
Provides background material, administrative procedures, and reference
information for using WebSEAL to manage the resources of your secure Web
domain.

v IBM Security Access Manager for Web Plug-in for Web Servers Administration Guide,
SC23-6507-02
Provides procedures and reference information for securing your Web domain
by using a Web server plug-in.

v IBM Security Access Manager for Web Shared Session Management Administration
Guide, SC23-6509-02
Provides administrative considerations and operational instructions for the
session management server.

v IBM Security Access Manager for Web Shared Session Management Deployment Guide,
SC22-5431-00
Provides deployment considerations for the session management server.

v IBM Security Web Gateway Appliance Administration Guide, SC22-5432-00
Provides administrative procedures and technical reference information for the
WebSEAL Appliance.

v IBM Security Web Gateway Appliance Configuration Guide for Web Reverse Proxy,
SC22-5433-00

xviii IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Provides configuration procedures and technical reference information for the
WebSEAL Appliance.

v IBM Security Web Gateway Appliance Web Reverse Proxy Stanza Reference,
SC27-4442-00
Provides a complete stanza reference for the IBM® Security Web Gateway
Appliance Web Reverse Proxy.

v IBM Security Access Manager for Web WebSEAL Configuration Stanza Reference,
SC27-4443-00
Provides a complete stanza reference for the WebSEAL Appliance.

v IBM Global Security Kit: CapiCmd Users Guide, SC22-5459-00
Provides instructions on creating key databases, public-private key pairs, and
certificate requests.

v IBM Security Access Manager for Web Auditing Guide, SC23-6511-02
Provides information about configuring and managing audit events by using the
native Security Access Manager approach and the Common Auditing and
Reporting Service. You can also find information about installing and
configuring the Common Auditing and Reporting Service. Use this service for
generating and viewing operational reports.

v IBM Security Access Manager for Web Command Reference, SC23-6512-02
Provides reference information about the commands, utilities, and scripts that
are provided with Security Access Manager.

v IBM Security Access Manager for Web Administration C API Developer Reference,
SC23-6513-02
Provides reference information about using the C language implementation of
the administration API to enable an application to perform Security Access
Manager administration tasks.

v IBM Security Access Manager for Web Administration Java Classes Developer
Reference, SC23-6514-02
Provides reference information about using the Java™ language implementation
of the administration API to enable an application to perform Security Access
Manager administration tasks.

v IBM Security Access Manager for Web Authorization C API Developer Reference,
SC23-6515-02
Provides reference information about using the C language implementation of
the authorization API to enable an application to use Security Access Manager
security.

v IBM Security Access Manager for Web Authorization Java Classes Developer Reference,
SC23-6516-02
Provides reference information about using the Java language implementation of
the authorization API to enable an application to use Security Access Manager
security.

v IBM Security Access Manager for Web Web Security Developer Reference,
SC23-6517-02
Provides programming and reference information for developing authentication
modules.

v IBM Security Access Manager for Web Error Message Reference, GI11-8157-02
Provides explanations and corrective actions for the messages and return code.

v IBM Security Access Manager for Web Troubleshooting Guide, GC27-2717-01
Provides problem determination information.

v IBM Security Access Manager for Web Performance Tuning Guide, SC23-6518-02

About this publication xix

Provides performance tuning information for an environment that consists of
Security Access Manager with the IBM Tivoli Directory Server as the user
registry.

Online publications

IBM posts product publications when the product is released and when the
publications are updated at the following locations:

IBM Security Access Manager for Web Information Center
The http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.isam.doc_70/welcome.html site displays the information center
welcome page for this product.

IBM Publications Center
The http://www-05.ibm.com/e-business/linkweb/publications/servlet/
pbi.wss site offers customized search functions to help you find all the IBM
publications that you need.

IBM Terminology website

The IBM Terminology website consolidates terminology for product libraries in one
location. You can access the Terminology website at http://www.ibm.com/
software/globalization/terminology.

Related publications
This section lists the IBM products that are related to and included with the
Security Access Manager solution.

Note: The following middleware products are not packaged with IBM Security
Web Gateway Appliance.

IBM Global Security Kit

Security Access Manager provides data encryption by using Global Security Kit
(GSKit) version 8.0.x. GSKit is included on the IBM Security Access Manager for Web
Version 7.0 product image or DVD for your particular platform.

GSKit version 8 includes the command-line tool for key management,
GSKCapiCmd (gsk8capicmd_64).

GSKit version 8 no longer includes the key management utility, iKeyman
(gskikm.jar). iKeyman is packaged with IBM Java version 6 or later and is now a
pure Java application with no dependency on the native GSKit runtime. Do not
move or remove the bundled java/jre/lib/gskikm.jar library.

The IBM Developer Kit and Runtime Environment, Java Technology Edition, Version 6
and 7, iKeyman User's Guide for version 8.0 is available on the Security Access
Manager Information Center. You can also find this document directly at:

http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/
60/iKeyman.8.User.Guide.pdf

Note:

xx IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www-05.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/60/iKeyman.8.User.Guide.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/jdk/security/60/iKeyman.8.User.Guide.pdf

GSKit version 8 includes important changes made to the implementation of
Transport Layer Security required to remediate security issues.

The GSKit version 8 changes comply with the Internet Engineering Task Force
(IETF) Request for Comments (RFC) requirements. However, it is not compatible
with earlier versions of GSKit. Any component that communicates with Security
Access Manager that uses GSKit must be upgraded to use GSKit version 7.0.4.42,
or 8.0.14.26 or later. Otherwise, communication problems might occur.

IBM Tivoli Directory Server

IBM Tivoli Directory Server version 6.3 FP17 (6.3.0.17-ISS-ITDS-FP0017) is included
on the IBM Security Access Manager for Web Version 7.0 product image or DVD for
your particular platform.

You can find more information about Tivoli Directory Server at:

http://www.ibm.com/software/tivoli/products/directory-server/

IBM Tivoli Directory Integrator

IBM Tivoli Directory Integrator version 7.1.1 is included on the IBM Tivoli Directory
Integrator Identity Edition V 7.1.1 for Multiplatform product image or DVD for your
particular platform.

You can find more information about IBM Tivoli Directory Integrator at:

http://www.ibm.com/software/tivoli/products/directory-integrator/

IBM DB2 Universal Database™

IBM DB2 Universal Database Enterprise Server Edition, version 9.7 FP4 is provided
on the IBM Security Access Manager for Web Version 7.0 product image or DVD for
your particular platform. You can install DB2® with the Tivoli Directory Server
software, or as a stand-alone product. DB2 is required when you use Tivoli
Directory Server or z/OS® LDAP servers as the user registry for Security Access
Manager. For z/OS LDAP servers, you must separately purchase DB2.

You can find more information about DB2 at:

http://www.ibm.com/software/data/db2

IBM WebSphere products

The installation packages for WebSphere Application Server Network Deployment,
version 8.0, and WebSphere eXtreme Scale, version 8.5.0.1, are included with
Security Access Manager version 7.0. WebSphere eXtreme Scale is required only
when you use the Session Management Server (SMS) component.

WebSphere Application Server enables the support of the following applications:
v Web Portal Manager interface, which administers Security Access Manager.
v Web Administration Tool, which administers Tivoli Directory Server.
v Common Auditing and Reporting Service, which processes and reports on audit

events.

About this publication xxi

http://www.ibm.com/software/tivoli/products/directory-server
http://www.ibm.com/software/tivoli/products/directory-integrator/
http://www.ibm.com/software/data/db2

v Session Management Server, which manages shared session in a Web security
server environment.

v Attribute Retrieval Service.

You can find more information about WebSphere Application Server at:

http://www.ibm.com/software/webservers/appserv/was/library/

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

Visit the IBM Accessibility Center for more information about IBM's commitment
to accessibility.

Technical training
For technical training information, see the following IBM Education website at
http://www.ibm.com/software/tivoli/education.

Support information
IBM Support provides assistance with code-related problems and routine, short
duration installation or usage questions. You can directly access the IBM Software
Support site at http://www.ibm.com/software/support/probsub.html.

The IBM Security Access Manager for Web Troubleshooting Guide provides details
about:
v What information to collect before you contact IBM Support.
v The various methods for contacting IBM Support.
v How to use IBM Support Assistant.
v Instructions and problem-determination resources to isolate and fix the problem

yourself.

Note: The Community and Support tab on the product information center can
provide more support resources.

xxii IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

http://www.ibm.com/software/webservers/appserv/was/library/
http://www-03.ibm.com/able/
http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html

Part 1. Administration

© Copyright IBM Corp. 2002, 2013 1

2 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 1. IBM Security Access Manager for Web WebSEAL
overview

IBM Security Access Manager for Web (Security Access Manager) is a robust and
secure centralized policy management solution for distributed applications.

IBM Security Access Manager for Web WebSEAL is a high performance,
multi-threaded Web server that applies fine-grained security policy to the Security
Access Manager protected Web object space. WebSEAL can provide single signon
solutions and incorporate back-end Web application server resources into its
security policy.

This overview chapter introduces you to the main capabilities of the WebSEAL
server.

Topic Index:
v “Introduction”
v “WebSEAL introduction” on page 4
v “IBM Security Web Gateway Appliance” on page 5
v “WebSEAL functionality on the appliance” on page 5
v “Security model” on page 6
v “Web space protection” on page 10
v “Security policy planning and implementation” on page 12
v “WebSEAL authentication” on page 13
v “Standard WebSEAL junctions” on page 14
v “Web space scalability” on page 15

Introduction

IBM Security Access Manager for Web is a complete authorization and network
security policy management solution that provides end-to-end protection of
resources over geographically dispersed intranets and extranets.

In addition to its state-of-the-art security policy management feature, IBM Security
Access Manager for Web provides authentication, authorization, data security, and
centralized resource management capabilities. You use Security Access Manager in
conjunction with standard Internet-based applications to build highly secure and
well-managed intranets.

At its core, Security Access Manager provides:
v Authentication framework

Security Access Manager provides a wide range of built-in authenticators and
supports external authenticators.

v Authorization framework
The Security Access Manager authorization service, accessed through the
Security Access Manager authorization API, provides permit and deny decisions
on requests for protected resources located in the secure domain.

© Copyright IBM Corp. 2002, 2013 3

With Security Access Manager, businesses can securely manage access to private
internal network-based resources while leveraging the public Internet's broad
connectivity and ease of use. Security Access Manager, in combination with a
corporate firewall system, can fully protect the Enterprise intranet from
unauthorized access and intrusion.

WebSEAL introduction

IBM Security Access Manager for Web WebSEAL is the resource manager
responsible for managing and protecting Web-based information and resources.

WebSEAL is a high performance, multi-threaded Web server that applies
fine-grained security policy to resources in the Security Access Manager protected
Web object space. WebSEAL can provide single signon solutions and incorporate
back-end Web application server resources into its security policy.

WebSEAL normally acts as a reverse Web proxy by receiving HTTP/HTTPS
requests from a Web browser and delivering content from its own Web server or
from junctioned back-end Web application servers. Requests passing through
WebSEAL are evaluated by the Security Access Manager authorization service to
determine whether the user is authorized to access the requested resource.

WebSEAL provides the following features:
v Supports multiple authentication methods.

Both built-in and plug-in architectures allow flexibility in supporting a variety of
authentication mechanisms.

v Integrates Security Access Manager authorization service.
v Accepts HTTP and HTTPS requests.
v Integrates and protects back-end server resources through WebSEAL junction

technology.
Provides unified view of combined protected object space.

v Manages fine-grained access control for the local and back-end server resources.
Supported resources include URLs, URL-based regular expressions, CGI
programs, HTML files, Java servlets, and Java class files.

v Performs as a reverse Web proxy.
WebSEAL appears as a Web server to clients and appears as a Web browser to
the junctioned back-end servers it is protecting.

v Provides single signon capabilities.

Client

WebSEAL

request

Web
application

server

/

unified protected
object space

junction

firewall
DMZ

Figure 1. Protecting resources with WebSEAL

4 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

IBM Security Web Gateway Appliance
The IBM Security Web Gateway Appliance provides access and authentication
management for user to web application sessions and helps protect applications
from threats.

The appliance uses WebSEAL to enable scalability and protection of the
applications from invalid access and threats. WebSEAL is located between the users
and the back-end application servers.

There are IBM Security Web Gateway Appliance offerings:
v Virtual offering
v Hardware offering

The appliance has a Local Management Interface (LMI) for administrative
purposes. You can use the LMI to manage the WebSEAL instances in your
environment. For more information about using the LMI, see the IBM Security Web
Gateway Appliance: Administration Guide.

WebSEAL functionality on the appliance
The IBM Security Web Gateway Appliance Web Reverse Proxy includes most of
the features offered by a standard software installation of WebSEAL. However,
there are some differences, as detailed in this section.

Table 1. WebSEAL features that the appliance does not support

Feature Description

Custom libraries, including CDAS and EAS The appliance does not support custom
CDAS modules. As a result, the appliance
does not support the following
authentication mechanisms:

v IP address

v HTTP header

v Post password change

WebSEAL does not provide CDAS modules
for these mechanisms.
Note: The appliance does support the IBM
Security Identity Manager Password
Synchronization Plug-in. For more
information, see the [itim] stanza in the
IBM Security Web Gateway Appliance: Web
Reverse Proxy Stanza Reference.

RSA token By default, the appliance does not support
RSA token authentication. However, you can
implement an External Authentication
Interface (EAI) for token authentication. For
more information, see Chapter 13, “External
authentication interface,” on page 229.

Kerberos (Windows Desktop Single Signon) The appliance does not internally support
Kerberos authentication. However, you can
configure an EAI to handle Kerberos
authentication. For more information, see
“Kerberos authentication” on page 153.

Chapter 1. WebSEAL overview 5

Table 1. WebSEAL features that the appliance does not support (continued)

Feature Description

Local junctions The following limitations apply to local
junction support on the appliance:

v The appliance can support a single fixed
file system path for the local junction of a
WebSEAL instance.

v Local junctions on the appliance cannot
run any CGI scripts.

Hardware Based Cryptography The appliance does not support any
hardware-based cryptography. However, the
hardware appliance does include AES-NI
support in the i7-2600 processor, which can
handle cryptographic operations.

Application Response Measurement (ARM) WebSEAL software includes ARM to
monitor transactions throughout the request
and response processing stream. The
appliance does not include ARM.

Tivoli® Common Directory Logging The Tivoli Common Directory Logging
feature stores all log files for IBM Security
software applications in a common file
system directory. The appliance does not
support this common logging. Logging for
the appliance is managed through the LMI.

Auditing to a pipe or CARS The appliance cannot send audit records
directly to a pipe or a CARS server. It can
however, use an intermediate ISAM
authorization server to indirectly send audit
records to the destinations. The appliance
can also send audit data to remote syslog.

ARS (web service) The IBM Security Access Manager for Web
ARS web service can send request
information to an external ARS server for
authorization. ARS is not available on the
appliance.

Security model

This section contains the following topics:
v “Security model concepts”
v “The protected object space” on page 7
v “Access control lists (ACLs) and protected object policies (POPs)” on page 8
v “Access control list (ACL) policies” on page 8
v “Protected object policies (POPs)” on page 9
v “Explicit and inherited policy” on page 10
v “Policy administration: The Web Portal Manager” on page 10

Security model concepts

There are two key security structures that govern and maintain the security policy
for an Security Access Manager secure domain:

6 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v User registry

The user registry (such as IBM Tivoli Directory Server or Microsoft Active
Directory) contains all users and groups who can participate in the Security
Access Manager environment. This environment is known as the secure domain.

v Master authorization (policy) database

The authorization database contains a representation of all resources in the
domain (the protected object space). The security administrator can dictate any
level of security by applying rules to the resources that require protection. These
rules are known as access control list (ACL) policies and protected object policies
(POPs).

The process of authentication proves the identity of a user to WebSEAL. A user can
participate in the secure domain as authenticated or unauthenticated.
Authenticated users must have an account in the user registry. Using ACLs and
POPs, the security administrator can make:
v Certain resources publicly available to unauthenticated users, and
v Other resources available only to certain authenticated users.

When a user successfully authenticates, WebSEAL creates a set of identification
information known as a credential. The credential contains the user identity, any
group memberships, and any special ("extended") security attributes.

A user requires a credential to fully participate in the secure domain. The Security
Access Manager authorization service enforces security policies by comparing a
user's authentication credentials with the policy permissions assigned to the
requested resource. The authorization service passes the resulting recommendation
to the resource manager (for example, WebSEAL), which completes the response to
the original request.

The protected object space

The protected object space is a hierarchical representation of resources belonging to
a Security Access Manager secure domain. The virtual objects that appear in the
object space represent the actual physical network resources, as specified below:
v System resource – the actual physical file or application.
v Protected object – the logical representation of an actual system resource used

by the authorization service, the Web Portal Manager, and other Security Access
Manager management utilities.

Policies can be attached to objects in the object space to provide protection of the
resource. The authorization service makes authorization decisions based these
policies.

The combined installation of Security Access Manager base and Security Access
Manager WebSEAL provides the following object space categories:
v Web objects

Web objects represent any resource that can be addressed by an HTTP URL. This
includes static Web pages and dynamic URLs that are converted to database
queries or some other type of application. The WebSEAL server is responsible
for protecting Web objects.

v Security Access Manager management objects

Management objects represent the management activities that can be performed
through the Web Portal Manager. The objects represent the tasks necessary to

Chapter 1. WebSEAL overview 7

define users and set security policy. Security Access Manager supports
delegation of management activities and can restrict an administrator's ability to
set security policy to a subset of the object space.

v User-defined objects

User-defined objects represent customer-defined tasks or network resources
protected by applications that access the authorization service through the
Security Access Manager authorization API.

v Authorization rules

Access control lists (ACLs) and protected object policies
(POPs)

Security administrators protect Security Access Manager system resources by
defining rules, known as ACL and POP policies, and applying these policies to the
object representations of those resources in the protected object space.

The Security Access Manager authorization service performs authorization
decisions based on the policies applied to these objects. When a requested
operation on a protected object is permitted, the application responsible for the
resource implements this operation.

One policy can dictate the protection parameters of many objects. Any change to
the rule affects all objects to which the ACL or POP is attached.

Access control list (ACL) policies

An access control list policy, or ACL policy, is the set of rules (permissions) that
specifies the conditions necessary to perform certain operations on that resource.
ACL policy definitions are important components of the security policy established
for the secure domain. ACL policies, like all policies, are used to stamp an
organization's security requirements onto the resources represented in the protected
object space.

An ACL policy specifically controls:
1. What operations can be performed on the resource
2. Who can perform these operations

Management
Objects

Web
Objects

User-Defined
Objects

Figure 2. Protected object space

8 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

An ACL policy is made up of one or more entries that include user and group
designations and their specific permissions or rights. An ACL can also contain
rules that apply to unauthenticated users.

Protected object policies (POPs)

ACL policies provide the authorization service with information to make a "yes" or
"no" answer on a request to access a protected object and perform some operation
on that object.

Protected object policies (POPs) contain additional conditions on the request that
are passed back to Security Access Manager and the resource manager (such as
WebSEAL) along with the "yes" ACL policy decision from the authorization
service. It is the responsibility of Security Access Manager and the resource
manager to enforce the POP conditions.

The following tables list the available attributes for a POP:

Enforced by Security Access Manager

POP Attribute Description

Name Name of the policy. This becomes the <pop-name>
argument in the pdadmin pop commands.

Description Descriptive text for the policy. This attribute appears in
the pop show command.

Warning Mode Provides administrators a means to test ACL and POP
policies.

Audit Level Specifies the type of auditing: all, none, successful access,
denied access, errors.

Time-of-Day Access Day and time restrictions for successful access to the
protected object.

Enforced by Resource Manager (such as WebSEAL)

POP Attribute Description

Quality of Protection Specifies the degree of data protection: none, integrity,
privacy.

IP Endpoint Authentication
Method Policy

Specifies the authentication requirements for access from
members of external networks.

Document Cache Control Specifies the caching instructions for the handling of
specific documents.

user peter ---------T---rx

group engineering ---------T---rx

user michael ---------T---rx

unauthenticated ---------------

ACL
(containing multiple

entries)

Figure 3. ACL policy

Chapter 1. WebSEAL overview 9

Explicit and inherited policy

Policy can be explicitly applied or inherited. The Security Access Manager
protected object space supports inheritance of ACL and POP attributes. Inheritance
is an important management feature for the security administrator. The
administrator needs to apply explicit policies only at points in the hierarchy where
the rules must change.

Policy administration: The Web Portal Manager

The Web Portal Manager is a Web-based graphical application used to manage
security policy in a Security Access Manager secure domain. The pdadmin
command line utility provides the same administration capabilities as the Web
Portal Manager, plus some commands not supported by the Web Portal Manager.

From the Web Portal Manager (or pdadmin), you can manage the user registry, the
master authorization policy database, and the Security Access Manager servers.
You can also add and delete users and groups and apply ACLs and POPs to
network objects.

Web space protection

When WebSEAL enforces security in a secure domain, each user must provide
proof of its identity. In turn, Security Access Manager security policy determines
whether that user is permitted to perform an operation on a requested resource.
Because access to every Web resource in a secure domain is controlled by
WebSEAL, WebSEAL's requirements for authentication and authorization can
provide comprehensive network security.

In security systems, authorization is distinct from authentication. Authorization
determines whether an authenticated user has the right to perform an operation on
a specific resource in a secure domain. Authentication can validate the identity of a
user, but says nothing about the user's right to perform operations on a protected
resource.

In the Security Access Manager authorization model, authorization policy is
implemented independently of the mechanism used for user authentication. Users
can authenticate their identity using either public and private key, secret key, or
customer-defined mechanisms.

Explicit Rule
Inherited

Rule

Management
Objects

Web
Objects

User-Defined
Objects

Figure 4. Explicit and inherited policies

10 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Part of the authentication process involves the creation of a credential that
describes the identity of the user. Authorization decisions made by an
authorization service are based on user credentials.

The resources in a secure domain receive a level of protection as dictated by the
security policy for the domain. The security policy defines the legitimate
participants of the secure domain and the degree of protection surrounding each
resource that is being protected.

The authorization process consists of the following basic components:
v A resource manager is responsible for implementing the requested operation

when authorization is granted. WebSEAL is a resource manager.
A component of the resource manager is a policy enforcer that directs the
request to the authorization service for processing.

Note: Traditional applications bundle the policy enforcer and resource manager
into one process. Examples of this structure include WebSEAL and third-party
applications.

v An authorization service performs the decision-making action on the request.

The following diagram illustrates the complete authorization process:

1. A request for a resource from an authenticated user is directed to the resource
manager and intercepted by the policy enforcer process.
The resource manager can be WebSEAL (for HTTP, HTTPS access) or a
third-party application.

2. The policy enforcer process uses the Security Access Manager authorization API
to call the authorization service for an authorization decision.

3. The authorization service performs an authorization check on the resource,
represented as an object in the protected object space.
a. Security Access Manager POPs are checked first.
b. Next the ACL policy attached to the object is checked against the client's

credentials.

Client

authorization
service

Secure Domain

authorization
policy

protected object
space

2. Request for
authorization

(authAPI)

5. Authorized
operation

1. Request

6. Response

3. Authorization
check

4. Authorization
decision

(authAPI)

resources

/

resource
manager

policy
enforcer

Figure 5. Web space protection

Chapter 1. WebSEAL overview 11

c. Finally, POPs enforced by the resource manager are checked.
4. The decision to accept or deny the request is returned as a recommendation to

the resource manager (through the policy enforcer).
5. If the request is finally approved, the resource manager passes the request on to

the application responsible for the resource.
6. The user receives the results of the requested operation.

Security policy planning and implementation

A corporate security policy for Web resources identifies:
v The Web resources requiring protection.
v The level of protection.

Security Access Manager uses a virtual representation of these Web resources,
called the protected object space. The protected object space contains objects that
represent actual physical resources in your network.

You implement security policy by applying the appropriate security mechanisms to
the objects requiring protection.

Security mechanisms include:
v Access control list (ACL) policies

ACL policies identify user types that can be considered for access and specify
the operations permitted on the object.

v Protected object policies (POPs)

A POP specifies additional conditions governing the access to the protected
object, such as privacy, integrity, auditing, and time-of-day access.

v Extended attributes

Extended attributes are additional values placed on an object, ACL, or POP that
can be read and interpreted by third-party applications (such as an external
authorization service).

The core component of Security Access Manager is the Security Access Manager
authorization service. This service permits or denies access to protected objects
(resources) based on the user's credentials and the access controls placed on the
objects.

To successfully implement the security policy, you must logically organize the
different content types (as described in “Content types and levels of protection”)
and apply the appropriate ACL and POP policies. Access control management can
be very complex and is made much easier by careful categorization of the content
types.

Content types and levels of protection

As the security administrator of your Web space, you must correctly identify the
types of content available to a variety of user types. Some content must be highly
protected and available only to specific users; other content is for general public
view. Each security scenario demands different protection requirements and an
associated WebSEAL configuration.

It is your responsibility to:

12 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v Know your Web content
v Identify the types of users requiring access to this content
v Understand the strengths and weaknesses of the available WebSEAL

configuration options for securing this content

Protection of Web content falls into three broad categories:
1. Public content – access requires no protection

v Unauthenticated users can access resources using HTTP.
v An unauthenticated credential is used for access control to resources.
v Basic WebSEAL configuration requirements provide protection.

2. Public content – access requires privacy (encryption)
v Unauthenticated users can access resources using HTTPS.
v Encryption, required by the application server, is used to protect sensitive

data (such as credit card numbers and user account information).
v An unauthenticated credential is used for access control to resources.
v WebSEAL configuration needs to stipulate privacy.

3. Private content – access requires authentication
v Authenticated clients can access resources using HTTP or HTTPS.
v The administrator determines the need for encryption.
v An authenticated credential is used for access control to resources; each user

must have an account defined in the Security Access Manager user registry.
v WebSEAL configuration is complex and all options must be considered

carefully to determine the impact of the security policy.

WebSEAL authentication

Authentication is the method of identifying an individual process or entity that is
attempting to log in to a secure domain. WebSEAL can enforce a high degree of
security in a secure domain by requiring each user to provide proof of its identity.

The following conditions apply to the WebSEAL authentication process:
v WebSEAL supports several authentication methods by default and can be

customized to use other methods.
v When both server and client require authentication, the exchange is known as

mutual authentication.
v The WebSEAL server process is independent of the authentication method.
v The result of successful authentication to WebSEAL is a Security Access Manager

user identity.
v WebSEAL uses this identity to build a credential for that user.
v The authorization service uses this credential to permit or deny access to protected

objects after evaluating the ACL permissions and POP conditions governing the
policy for each requested resource.

This flexible approach to authentication allows security policy to be based on
business requirements and not physical network topology.

For a complete overview of WebSEAL authentication concepts, see Chapter 7,
“Authentication overview,” on page 129.

Chapter 1. WebSEAL overview 13

Standard WebSEAL junctions

Security Access Manager provides authentication, authorization, and management
services for a network. In a Web-based network, these services are best provided
by one or more front-end WebSEAL servers that integrate and protect Web
resources and applications located on back-end Web servers.

The connection between a WebSEAL server and a back-end Web application server
is known as a standard WebSEAL junction. A WebSEAL junction is a TCP/IP
connection between a front-end WebSEAL server and a back-end server.

Note: WebSEAL also supports virtual hosting through another form of junctions
called virtual host junctions.

The back-end server can be another WebSEAL server or, more commonly, a
third-party Web application server. The back-end server Web space is "connected"
to the WebSEAL server at a specially designated junction (mount) point in the
WebSEAL Web space.

A junction allows WebSEAL to provide protective services on behalf of the
back-end server. WebSEAL can perform authentication and authorization checks on
all requests before passing those requests on to the back-end server. If the back-end
server requires fine-grained access control on its objects, you must perform
additional configuration steps (using the query_contents CGI program) to describe
the third-party Web space to the Security Access Manager security service.

Junctions provide a scalable, secure environment that allows load balancing, high
availability, and state management capabilities—all performed transparently to
clients. As an administrator, you can benefit from this centralized management of
the Web space.

WebSEAL junctions provide the added value of logically combining the Web space
of a back-end server with the Web space of the WebSEAL server. Junctions between
cooperating servers result in a single, unified, distributed Web space that is
seamless and transparent to users.

The client never needs to know the physical location of a Web resource. WebSEAL
translates logical URL addresses into the physical addresses that a back-end server
expects. Web objects can be moved from server to server without affecting the way
the client accesses those objects.

Client

Web
Application

Server
junction

TCP or SSL

WebSEAL

/

/mnt

Secure Domain

Figure 6. Junctions connect WebSEAL with back-end resources

14 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

A unified Web space simplifies the management of all resources for the system
administrator. Additional administrative benefits include scalability, load balancing,
and high availability.

Most commercial Web servers do not have the ability to define a logical Web object
space. Instead, their access control is connected to the physical file and directory
structure. WebSEAL junctions can transparently define an object space that reflects
organizational structure rather than the physical machine and directory structure
commonly encountered on standard Web servers.

WebSEAL junctions also allow you to create single signon solutions. A single
signon configuration allows a user to access a resource, regardless of the resource's
location, using only one initial login. Any further login requirements from
back-end servers are handled transparently to the user.

WebSEAL junctions are an important tool for making your Web site scalable.
Junctions allow you to respond to increasing demands on a Web site by attaching
additional servers.

Web space scalability

WebSEAL junctions are used to create a scalable Web space. As the demands on
the Web space grow, more servers can easily be added to expand the capabilities of
the site.

Additional servers can be added for the following reasons:
v To extend the Web space with additional content.

/

WebSEAL Web space

Combined Web space:
WebSEAL plus junctioned server resources

/junction-point

Figure 7. WebSEAL junction results in a unified Web space

Chapter 1. WebSEAL overview 15

v To duplicate existing content for load balancing, failover capability, and high
availability.

Replicated front-end WebSEAL servers

Junction support for back-end servers starts with at least one front-end WebSEAL
server. Replicated front-end WebSEAL servers provide the site with load balancing
during periods of heavy demand. The load balancing process is handled by a
third-party device such as Cisco Local Director.

Front-end replication also provides the site with fail-over capability—if a server
fails for some reason, the remaining replica servers will continue to provide access
to the site. Successful load balancing and failover capability results in high
availability for users of the site.

When you replicate front-end WebSEAL servers, each server must contain an exact
copy of the Web space and the junction database.

Account information for authentication is located in a user registry that is
independent of the front-end servers.

Junctioned back-end servers
Web site content can be served by the WebSEAL server itself, back-end servers, or
a combination of both. WebSEAL junction support for back-end servers allows you
to scale the website through additional content and resources.

Each unique back-end server must be junctioned to a separate junction mount
point. As the demand for additional content grows, more servers can be added
through junctions. This scenario provides a solution for networks that have a large
existing investment in third-party Web servers.

WebSEAL Server
Primary

WebSEAL Server
Replica

Back-end Server 1
/engineering

Back-end Server 2
/sales

Load-balancer

Client

Figure 8. Junctioned back-end servers

16 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The combined Web spaces of the two back-end servers is transparent to the user
and allows for centralized management.

Replicated back-end servers

To extend scalability features to a back-end server configuration, you can replicate
the back-end servers. As is the case with replicated front-end servers, replicated
back-end servers must contain Web spaces that are mirror images of each other.

WebSEAL balances loads across the replicated servers using a "least-busy"
scheduling algorithm. This algorithm directs each new request to the server with
the fewest connections already in progress.

WebSEAL also correctly fails over when a server is down and starts reusing that
server after it has been restarted.

If the back-end application requires its state to be maintained over several pages,
stateful junctions can be used to ensure that each session returns to the same
back-end server.

Web Object Space

/
Engineering Junction Sales Junction

Figure 9. Unified Web space

Chapter 1. WebSEAL overview 17

Replicated
Engineering Servers

Replicated
Sales Servers

WebSEAL Server
Primary

WebSEAL Server
Replica

Load-balancer

Client

Figure 10. Replicated back-end servers

18 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 2. Server administration

This chapter describes administration tasks you can perform to manage the
WebSEAL server.

Topic Index:
v “WebSEAL instance management”
v “Synchronization of WebSEAL data across multiple servers” on page 20
v “Auditing and logging of resources for WebSEAL” on page 23
v “Problem determination resources for WebSEAL” on page 24

WebSEAL instance management
You can use the Reverse Proxy management page of the LMI to manage the
WebSEAL instances on the appliance.

From the LMI top menu, select Secure Reverse Proxy Settings > Manage >
Reverse Proxy. The Reverse Proxy management page displays.

You can use this page to manage each WebSEAL instance. Select the WebSEAL
instance that you want to manage from the list of available instances. The available
options for managing the WebSEAL instances are detailed in the following table:

Table 2. WebSEAL instance management

Option Description

New Create a WebSEAL instance.

Edit Complete basic configuration.

Delete Delete a WebSEAL instance.

Start Start a WebSEAL instance.

Stop Stop a WebSEAL instance.

Restart Restart a WebSEAL instance.

Refresh Refresh the list of WebSEAL instances and the associated details.

Manage Select from the following menu of management options:

Configuration
Provides advanced configuration options. You can modify the
WebSEAL configuration file directly from this menu.

Troubleshooting
Includes troubleshooting resources such as trace and statistics.

Management Root
Provides access to the WebSEAL root files.

Junction Management
Includes junction creation and management.

Logging
Provides access to the WebSEAL log files.

© Copyright IBM Corp. 2002, 2013 19

Synchronization of WebSEAL data across multiple servers
You can use the WebSEAL server sync command to synchronize the configuration
of one WebSEAL server with another.

The server sync command completes this task by running other server task
commands: synchronizing WebSEAL configuration data with the cfgdb export and
cfgdb import commands, and synchronizing the junction database with the jdb
import and jdb export commands.

Note: You can synchronize servers of the same type only. The WebSEAL server
type is either a:
v WebSEAL running on a Web Gateway appliance.
v WebSEAL running on a standard operating system.

You can use the following list of server task commands for various tasks,
including:
v Synchronizing one replicated WebSEAL server with another of the same type.
v Migrating one WebSEAL environment to another (for example, from test to

production).

server sync
Used to synchronize the configuration of the supplied WebSEAL server to
the current WebSEAL server. The server sync command invokes the other
commands on this list for a complete synchronization operation. The data
that can be synchronized includes configuration entries, the junction
database, and selected data files, but not the object space or policy.
Configuration entries and data files to be synchronized can be customized
in the WebSEAL configuration file. For details, see “server task server
sync” on page 647.

server restart
Used to restart the WebSEAL instance. For details, see “server task server
restart” on page 645.

The following list describes the flow of communication for the server sync
command:
1. The server sync command is issued from the administration console.
2. The request for data is issued from the WebSEAL server as a new server task

command.
3. The source WebSEAL server gathers the data for synchronization and sends it

to the target WebSEAL server.
4. The target WebSEAL server applies the data retrieved.

The request for data is issued from the WebSEAL server that is processing the
server sync task. Data is pulled from one WebSEAL server to another with
authorization automatically applied by the Security Access Manager server task
framework. By using an existing communication channel, there is no need to open
up more ports for the WebSEAL server.

Multiple requests might be made for various pieces of information. For example, to
synchronize a junction database, you can use the jdb export and file cat
commands to export the junction database to a single file on the WebSEAL server,
then retrieve the data contained in the exported file.

20 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The configuration entries and files replicated between servers are defined by
entries in the underlying stanzas. For details, see the [cfg-db-cmd:entries] and
[cfg-db-cmd:files] stanzas in the IBM Security Web Gateway Appliance: Web Reverse
Proxy Stanza Reference.

Mapping rules for the jdb import command are defined in the [jdb-cmd:replace]
stanza. These mapping rules are applied to each attribute within the junction
archive file before importing the new junction database. For details, see
“[jdb-cmd:replace] stanza” on page 834.

Attention: Default entries in the [cfg-db-cmd:entries] and [cfg-db-cmd:files]
stanzas are designed for replicating between UNIX and UNIX platforms, or
between Windows and Windows. Replicating between Windows and UNIX
platforms requires careful consideration as to the configuration entries and files to
replicate.

Automating synchronization

You can configure more than one WebSEAL server in your environment. The term
cluster refers to a group of WebSEAL servers that are configured to work together.
You can use WebSEAL clusters to automate the synchronization of configuration
information between different WebSEAL servers. Clustering can also improve
system availability and performance.

Note: All cluster members must be the same server type. The WebSEAL server
type for the cluster is either a:
v WebSEAL running on Web Gateway appliances.
v WebSEAL running on standard operating systems.

In a clustered environment, you must nominate a master server that is responsible
for all cluster configuration changes. The remaining servers in the cluster are
designated as slaves.

Whenever a slave is restarted, it checks the configuration information about the
cluster master. If the slave's internal configuration information is not up to date
then the slave automatically synchronizes with the master. You can synchronize all
servers in the cluster by using the cluster restart server task command.

Cluster restart

About this task

To synchronize the various WebSEAL servers you first need to select a master
server.

For example, default-webseald-master.ibm.com that will house the generic
configuration. Any configuration changes you want made available to all servers
must first be manually changed for the master server including:
v Configuration files.
v Junction definitions.

It is important that you only modify configuration information on the master. If
you modify the configuration on a slave then you risk losing information during
the next restart of the server when the slave synchronizes its configuration
information with the master.

Chapter 2. Server administration 21

When you have configured a WebSEAL cluster in your environment, you can issue
a cluster restart server task command from the master server to apply any
configuration changes and restart the updated servers. You can use the -ripple
option to specify whether to restart the clustered WebSEAL servers in parallel or in
sequence. There is also a -status option that you can use to monitor the progress of
a cluster restart. See “server task cluster restart” on page 623.

Figure 11 shows the cluster restart process which involves the following high level
steps:

Procedure
1. Run the cluster restart server task command on the master server to initiate the

restart.
2. The master issues a server restart command on each of the slaves in the cluster.

Note: This is either done in parallel or in sequence depending on whether the
-ripple option was used in the cluster restart command.

3. The slave retrieves the timestamp that indicates when the master configuration
information was last modified.

4. If the configuration data stored locally on the slave is not up to date then the
slave synchronizes with the master configuration data.

5. If the slave configuration data was updated in step 4 then the slave server
restarts. If the local configuration database on the slave did not need updating
then the slave does not restart.

6. The slave notifies the master that its operation is complete.
7. Once all slaves have been updated and restarted where required, the master

server restarts.

Configure WebSEAL for cluster support

You can use the [cluster] configuration stanza entries to configure each of the
WebSEAL servers in your clustered environment. For details on these entries, see
the [cluster] stanza in the IBM Security Web Gateway Appliance: Web Reverse Proxy
Stanza Reference.

You must identify one server to be the master of the WebSEAL cluster. The
is-master configuration entry is set to yes for the master server. You can also
configure a max-wait-time on the master that represents the maximum number of
seconds that the master server waits for each slave server to be restarted.

Figure 11. Cluster Support

22 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

All other servers in the cluster must have the is-master configuration entry set to
no. These servers are the slaves in the cluster. You must configure an additional
configuration entry called master-name on each of the slaves. The master-name
configuration entry specifies the authorization server name of the master server.
For example, default-webseald-master.ibm.com.

Note: For failover considerations in a clustered environment, see “Failover to a
new master” on page 254.

Auditing and logging of resources for WebSEAL

This section contains information about the following auditing and logging
resources for WebSEAL:
v “Error message logging”
v “WebSEAL server activity auditing”
v “Traditional auditing and logging of HTTP events” on page 24

Error message logging

WebSEAL server error messages are formatted using a standard format. WebSEAL
uses a routing file to control the display of error messages and the logging of
message data. By default, WebSEAL uses a single log file to record server error
message data.

The WebSEAL routing file controls default message routing. The routing file can be
modified for customized message logging.

Complete information about the WebSEAL routing file and error message logging
can be found in the IBM Security Access Manager for Web: Troubleshooting Guide.

WebSEAL server activity auditing

The Security Access Manager event logging mechanism can capture common
events and activity generated by WebSEAL. Event logging provides a structured
hierarchy for capturing information for auditing purposes. Event logging also
supports the use of alternate destinations for logging output, such as files and
remote servers.

To implement event logging, you use the logcfg event logging stanza entry to
define one or more log agents (loggers) that gather a specific category of audit
information from the event pool and direct this information to a destination.

The logcfg stanza entries are entered in the [pdaudit-filter] stanza of the
pdaudit.conf configuration file. The pdaudit.conf configuration file is a
component of the Common Auditing and Reporting Service (CARS).

WebSEAL still supports event logging configuration through the
[aznapi-configuration] stanza in the WebSEAL configuration file. The format of the
logcfg event logging stanza entries remains the same whether entered in the
[pdaudit-filter] stanza of the pdaudit.conf configuration file or the
[aznapi-configuration] stanza of the WebSEAL configuration file.

Complete information about the event logging mechanism can be found in the IBM
Security Access Manager for Web: Auditing Guide.

Chapter 2. Server administration 23

See also “Traditional auditing mechanism.”

Note: WebSEAL also supports traditional auditing and logging of HTTP events.
Use this traditional mechanism only for situations requiring compatibility with
older installations of Security Access Manager. See “Traditional auditing and
logging of HTTP events.”

Traditional auditing mechanism

Traditional auditing is configured by supplying a value for each the following
stanza entries in the [aznapi-configuration] stanza of the WebSEAL configuration
file:
[aznapi-configuration]
logaudit
auditlog
auditcfg
logsize
logflush

Use of this method is comparable to the event logging method, when directing
output to a file. Note, however, that the event logging method provides additional
control over buffer size and event queues. Also, traditional auditing does not
support output to consoles, pipes, or remote servers.

For more complete information on traditional auditing configuration settings for
authentication, authorization, and HTTP events, see the IBM Security Access
Manager for Web: Auditing Guide.

Traditional auditing and logging of HTTP events

WebSEAL maintains three traditional HTTP log files that record HTTP activity:
v request.log

v agent.log

v referer.log

The request log can be customized by adding a request-log-format entry to the
[logging] stanza. For more information, including complete information about
customized logging and traditional auditing and logging of HTTP events, see the
IBM Security Access Manager for Web: Auditing Guide.

HTTP resource access audit events can be filtered by document MIME-types and
response codes by using the following stanza entries in the [logging] stanza of the
WebSEAL configuration file:
[logging]
audit-mime-types
audit-response-codes

Problem determination resources for WebSEAL

This section contains information about the following problem determination
resources for WebSEAL:
v “Configuration data log file” on page 25
v “Statistics” on page 26
v “Trace utility” on page 27

24 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Configuration data log file

Each WebSEAL instance records the complete contents of its configuration file in a
log file every time that instance is started. This configuration data can be used to
troubleshoot problems with WebSEAL installation and operation. Many WebSEAL
problems are often the result of incorrect or incomplete configuration file settings.
The logged configuration data provides an accurate snapshot of the current
configuration settings for any given WebSEAL instance.

When asked to troubleshoot a WebSEAL-related problem, IBM Support can rely on
the information contained in this logged configuration data. The accuracy and
completeness of this information increases the efficiency of the troubleshooting
process. Alternatively, you can use this logged configuration data to perform your
own diagnosis of a WebSEAL problem.

Configuration data log file location

You can use the IBM Security Web Gateway Appliance LMI to access the
configuration data log files. On the Reverse Proxy Management page, select the
appropriate WebSEAL instance and then click Manage > Logging. The Manage
Reverse Proxy Log Files management page for the selected instance displays.

Notes on configuration data log file growth
v Only one log file is created when a WebSEAL instance is started for the first

time.
v Data from the complete WebSEAL configuration file is recorded in the log file

each time that WebSEAL instance is started.
v The configuration file data for each subsequent startup is appended to the same

log file.
v Each entry in the log file begins with a timestamp. The timestamp entry

distinguishes each data entry from the others.
v The log file continues to grow in size with each new entry. You can use the LMI

to control the size of this file.

Configuration data log file format

In the WebSEAL configuration file, a default value for a stanza entry is a value
provided by WebSEAL during initial installation and configuration. If an
administrator later modifies a value in the configuration file, that custom value
becomes non-default.

In the configuration data log file, a special marker ([default]) identifies any stanza
entry value that is default. Non-default values do not contain this marker. For
example:
...
https = yes
https-port = [default] 443
http = yes
http-port = [default] 80
...

The information in the configuration data log file is grouped according to the same
stanzas that occur in the actual WebSEAL configuration file. The following partial
view of a configuration data log file shows stanza entries and values grouped by
stanzas. This example also includes a sample timestamp line:

Chapter 2. Server administration 25

==
Configuration Data Logged: Fri Jul 23 15:37:02 2004
...
[gso-cache]
gso-cache-enabled = [default] no
gso-cache-size = [default] 1024
gso-cache-entry-lifetime = [default] 900
gso-cache-entry-idle-timeout = [default] 120

[ltpa-cache]
ltpa-cache-enabled = [default] yes
ltpa-cache-size = [default] 4096
ltpa-cache-entry-lifetime = [default] 3600
ltpa-cache-entry-idle-timeout = [default] 600

[ba]
ba-auth = [default] https

[forms]
forms-auth = [default] none

[certificate]
accept-client-certs = [default] never
cert-cache-max-entries = [default] 1024
cert-cache-timeout = [default] 120

...

Messages relating to the configuration data log file

When a configuration data log file is created, a serviceability message is entered in
the WebSEAL log file that specifies the location of the log file:
"The configuration data for this WebSEAL instance has been logged in %s"

The %s macro is replaced by the string containing the full path to the log file (as
specified by the config-data-log stanza entry).

If for any reason the configuration file data cannot be logged during a WebSEAL
startup, the WebSEAL startup proceeds without interruption and an error message
is recorded in the WebSEAL log file:
"An error occurred trying to log the WebSEAL configuration data at startup."

Statistics

WebSEAL provides a series of built-in software modules to monitor specific server
activity and collect information about those activities. At any time, you can view
the statistics from any active module. In addition, you can direct the statistics
information to log files.

Each active module captures statistics information. You can configure WebSEAL to
capture statistics at regular intervals and view a snapshot of this information at
any time.

The IBM Security Web Gateway Appliance collects flow data. Flow data provides
performance and throughput statistics for WebSEAL. The appliance records the
statistics in a separate database for each WebSEAL instance. You can use the Local
Management Interface (LMI) to retrieve these statistics.

26 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Use the [flow-data] and [user-agent] stanzas to configure the flow data statistics
for the appliance. For more information, see the IBM Security Web Gateway
Appliance: Administration Guide.

Trace utility

The trace utility captures information about error conditions and program control
flow in Security Access Manager, WebSEAL, and Plug-in for Web Servers. This
information is stored in a file and used for debugging and problem determination
purposes.

The trace utility is provided primarily to assist support personnel in diagnosing
problems that occur with the functions of the Security Access Manager software.
As a user, you might find some of the Security Access Manager, WebSEAL, and
Plug-in for Web Servers tracing components useful. However, the majority of the
components are of little benefit unless you are diagnosing complex problems with
the assistance of technical support personnel.

Trace data is intended primarily for use by IBM Tivoli Software Support personnel
and might be requested as part of diagnosing a reported problem. However,
experienced product administrators can also use trace data to diagnose and correct
problems in the Security Access Manager environment.

You can use the IBM Security Web Gateway Appliance LMI to access the trace
files. On the Reverse Proxy Management page, select the appropriate WebSEAL
instance and then click Manage > Troubleshooting > Tracing. The Manage Reverse
Proxy Tracing management page for the selected instance displays.

Chapter 2. Server administration 27

28 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Part 2. Configuration

© Copyright IBM Corp. 2002, 2013 29

30 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 3. Web server configuration

This chapter contains information about configuring the Web server functions of
WebSEAL.

Topic Index:
v “WebSEAL server and host name specification”
v “WebSEAL configuration file” on page 33
v “Directory indexing” on page 35
v “Content caching” on page 36
v “Communication protocol configuration” on page 40
v “Internet Protocol version 6 (IPv6) support” on page 48
v “LDAP directory server configuration” on page 50
v “Worker thread allocation” on page 51
v “HTTP data compression” on page 54
v “Multi-locale support with UTF-8” on page 57
v “Validation of character encoding in request data” on page 66
v “Supported wildcard pattern matching characters” on page 67
v “Setting system environment variables” on page 67

WebSEAL server and host name specification

This section contains the following topics:
v “WebSEAL server name in the configuration file”
v “WebSEAL server name in "pdadmin server list"” on page 32
v “WebSEAL server name in the protected object space” on page 32
v “Specifying the WebSEAL host (machine) name” on page 32

WebSEAL server name in the configuration file

The WebSEAL server name uniquely identifies a WebSEAL server process. Multiple
WebSEAL servers can be installed and configured on one computer system.
Therefore, each WebSEAL server process must have a unique name. Each
WebSEAL server process is known as an instance.

Each WebSEAL instance has its own configuration file. The server-name stanza
entry in the [server] stanza of the configuration file for each WebSEAL instance
specifies the unique name for that WebSEAL instance.

The server-name stanza entry consists of a combination of the host name of the
physical machine where WebSEAL is installed, plus the WebSEAL instance name.
Both names are specified during WebSEAL configuration.
[server]
server-name = host_name-instance_name

© Copyright IBM Corp. 2002, 2013 31

A machine host name always has a fully qualified name (for example,
abc.ibm.com) and can additionally have a short name (for example, abc). When
asked for the host name during WebSEAL configuration, you can specify either the
fully qualified name or the short name.

In the following example, the WebSEAL instance name web1 is located on a
machine with a fully qualified host name of abc.ibm.com (as specified during
WebSEAL configuration):
[server]
server-name = abc.ibm.com-web1

The initial WebSEAL server is automatically assigned an instance name of default,
unless you modify this name during WebSEAL configuration. For example:
[server]
server-name = abc.ibm.com-default

WebSEAL server name in "pdadmin server list"

The instance name also affects how the WebSEAL server is listed during a
pdadmin server list command. Because the pdadmin command serves the entire
Security Access Manager family, a product component name is required in the
command syntax. The component name for WebSEAL is webseald. For the
pdadmin server list command, the WebSEAL server name has the following
format:
instance_name-webseald-host_name

For example, the output from pdadmin server list for the instance web1 installed
on the host abc.ibm.com appears as follows:
web1-webseald-abc.ibm.com

The following pdadmin server list command output displays an initial default
WebSEAL server, plus a second WebSEAL instance named web1:
pdadmin> server list
web1-webseald-abc.ibm.com
default-webseald-abc.ibm.com

WebSEAL server name in the protected object space

Each WebSEAL instance is represented as a member of the /WebSEAL container
object in the protected object space.

Two WebSEAL instances (default and web1), located on the host abc.ibm.com,
appear in the protected object space in the following format:
/WebSEAL/abc.ibm.com-web1
/WebSEAL/abc.ibm.com-default

Specifying the WebSEAL host (machine) name

About this task

Normally, the name of the WebSEAL host machine is automatically determined,
when this information is required. However, there are situations, such as with
virtual host junctions, where the WebSEAL host can use several names. On systems
with many host names, interfaces, or WebSEAL instances, the automatic
determination might not always result in the correct value for a specific situation.

32 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The web-host-name stanza entry in the [server] stanza of the WebSEAL
configuation file allows you to manually specify the host (machine) name of the
WebSEAL server. The value should be the fully qualified name. This manual
setting resolves any conflicts in determining the host name used, for example, by
WebSEAL HTTP/HTTPS responses and authentication mechanisms in a traditional
junction environment.

By default, web-host-name is not enabled and has no value. When required,
WebSEAL attempts to automatically determine the host name.

To specify a value for the host name and override the automatic determination,
follow the procedure.

Procedure
1. Stop the WebSEAL server process.
2. Manually edit the WebSEAL configuration file to provide a value for the stanza

entry.
3. Uncomment the line.
4. Restart WebSEAL.

Results

For example:
[server]
web-host-name = abc.ibm.com

Note the difference in syntax between the server-name and the web-host-name
values. For example:
[server]
server-name = abc.ibm.com-default
web-host-name = abc.ibm.com

WebSEAL configuration file

The operation of the WebSEAL server is controlled through the use of the
WebSEAL configuration file and a corresponding obfuscate file used for sensitive
data.

For details on the stanza entries that you can use in the WebSEAL configuration
file, see the IBM Security Web Gateway Appliance: Web Reverse Proxy Stanza Reference.

Configuration file organization

The configuration file contains sections that control specific portions of WebSEAL
functionality. Each section contains further divisions called stanzas.

Stanza labels appear within brackets, such as:
[stanza_name]

For example, the [ssl] stanza defines the SSL configuration settings for use by the
WebSEAL server.

Chapter 3. Web server configuration 33

Each stanza in a Security Access Manager configuration file contains one or more
stanza entries. A stanza entry consists of a key value pair, which contains information
that is expressed as a paired set of stanza entries. Each stanza entry has the
following format:

key = value

The initial installation of WebSEAL establishes many of the default values. Some
values are static and never change; other values can be modified to customize
server functionality and performance.

The ASCII-based text file can be edited with a common text editor.

Configuration file name and location
A unique WebSEAL configuration file is created for each WebSEAL instance. The
name of the configuration file includes the instance name.

The format is:
webseald-instance_name.conf

The administrator can use the Local Management Interface (LMI) to configure
additional WebSEAL instances and specify each new instance_name.

The configuration utility uses the specified instance_name to name the new
WebSEAL configuration file. For example, if you name the new WebSEAL instance
webseal2, the following configuration file is created:
webseald-webseal2.conf

For more information about WebSEAL instance configuration, see Chapter 36,
“WebSEAL instance deployment,” on page 575.

Modifying configuration file settings

About this task

To change a configuration setting, complete the following steps:

Procedure
1. Use the LMI to open the configuration file. On the Reverse Proxy Management

page, select the appropriate WebSEAL instance and then click Manage >
Configuration > Edit Configuration File to open the Advanced Configuration
File Editor.

Note: To complete basic configuration file updates, you can alternatively use
the Reverse Proxy Basic Configuration page. To access this page for the selected
WebSEAL instance, click Edit on the Reverse Proxy Management page.

2. Make the required changes to the configuration.
3. Save your changes. The LMI displays a warning message stating that there is

an undeployed change.
4. To deploy the changes, click the link that states Click here to review the

changes or apply them to the system. Review the change and click Deploy. A
System Warning displays to indicate that the deployment is complete and a
restart is required.

34 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

5. Restart the WebSEAL instance from the Reverse Proxy Management page for
these changes to take effect.

Directory indexing

This section contains the following topics:
v “Configuring directory indexing”
v “Configuration of graphical icons for file types”

Configuring directory indexing

You can specify the name of the default file returned by WebSEAL when the URL
expression of a request ends with a directory name. If this default file exists,
WebSEAL returns the file to the client. If the file does not exist, WebSEAL
dynamically generates a directory index and returns the list to the client.

The directory-index stanza entry, used to configure the directory index file, is
located in the [content] stanza of the WebSEAL configuration file. The default
value for the index file is:
[content]
directory-index = index.html

You can change this file name if your site uses a different convention. For example:
[content]
directory-index = homepage.html

WebSEAL dynamically generates a directory index if the directory in the request
does not contain the index file defined by the directory-index stanza entry. The
generated index contains a list of the directory contents, with links to each entry in
the directory. The index is generated only if the client requesting access to the
directory has the "list" (l) permission on the ACL for that directory.

Configuration of graphical icons for file types

You can configure the specific graphical icons used by WebSEAL for each file type
listed in a generated index. The [content-index-icons] stanza of the WebSEAL
configuration file contains a list of the document MIME types and the associated
.gif files that are displayed:
[content-index-icons]
image/*= /icons/image2.gif
video/* = /icons/movie.gif
audio/* = /icons/sound2.gif
text/html = /icons/generic.gif
text/* = /icons/text.gif
application/x-tar = /icons/tar.gif
application/* = /icons/binary.gif

You can configure this list to specify other icons for each MIME type. Icons can
also be located remotely. For example:
application/* = http://www.example.com/icons/binary.gif

You can also configure these additional icon values:
v Icon used to represent subdirectories:

[icons]
diricon = /icons/folder2.gif

Chapter 3. Web server configuration 35

v Icon used to represent the parent directory:
[icons]
backicon = /icons/back.gif

v Icon used to represent unknown file types:
[icons]
unknownicon = /icons/unknown.gif

Note: The supplied icons are in GIF format, but this format is not required.

Content caching

This section contains the following topics:
v “Content caching concepts”
v “Configuration of content caching”
v “Impact of HTTP headers on WebSEAL content caching” on page 37
v “Flushing all caches” on page 39
v “Cache control for specific documents” on page 40

Content caching concepts

Users can often experience extended network access time and file downloading
time due to poor Web document retrieval performance. Poor performance can
occur because the WebSEAL server is waiting for documents retrieved from
junctioned back-end servers.

Caching of Web content gives you the flexibility of serving documents locally from
WebSEAL rather than from a back-end server across a junction. The content
caching feature allows you to store commonly accessed Web document types in the
WebSEAL server's memory. Clients can experience much faster response to
follow-up requests for documents that have been cached in the WebSEAL server.

Cached content can include static text documents and graphic images. Dynamically
generated documents, such as database query results, cannot be cached.

Caching is performed on the basis of MIME type. When you configure WebSEAL
for content caching, you identify the following three settings:
v Document MIME type
v Type of storage medium
v Size of storage medium
v Maximum age if expiry information is missing from the original response

Configuration of content caching

You configure content caching in the [content-cache] stanza of the WebSEAL
configuration file. The following syntax applies:
<mime-type> = <cache-type>:<cache-size>

36 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Variable Description

mime-type Represents any valid MIME type conveyed in an HTTP
"Content-Type:" response header. This value can contain an asterisk
(*). A value of */* represents a default object cache that will hold any
object that does not correspond to an explicitly configured cache.
Note that the asterisk here is a wildcard only for a MIME-type
directory, and its contents. The asterisk is not a wildcard for regular
expression matching.

cache-type Specifies the type of storage medium to use for the cache. This release
of Security Access Manager supports only "memory" caches.

cache-size Specifies the maximum size (in kilobytes) to which the given cache
can grow before objects are removed according to a "Least Recently
Used" algorithm.

def-max-age Specifies the maximum age (in seconds) if expiry information is
missing from the original response. If no value is provided, a default
maximum age of 3600 (one hour) will be applied.

Example:
[content-cache]
text/html = memory:2000
image/* = memory:5000
/ = memory:1000

Conditions affecting content caching configuration

The content caching mechanism observes the following conditions:
v Content caching occurs only when a cache is defined in the WebSEAL

configuration file.
v By default, no content caches are defined at installation.
v If you do not specify a default content cache, documents that do not match any

explicit cache are not cached.
v Authorization is still performed on all requests for cached information.
v The content caching mechanism does not cache responses to requests containing

query strings.
v The content caching mechanism does not cache responses to requests over

junctions configured with the –c and –C options.

Impact of HTTP headers on WebSEAL content caching

This section contains the following topics:
v “Impact of Response headers on WebSEAL content caching”
v “Impact of Request headers on WebSEAL content caching” on page 38
v “Other conditions affecting WebSEAL content caching” on page 39

Impact of Response headers on WebSEAL content caching

The following table describes how specific HTTP Response headers (from the
junction) affect whether or not WebSEAL allows caching of the resource:

Chapter 3. Web server configuration 37

Response Header Impact on Content Caching

Cache-control
The presence of this header in the response, with a value of
"no-cache", "no-store", or "private", stops the resource from being
stored in the content cache.

Cache-control
The presence of this header in the response, with a value of "public",
allows the resource to be stored in the content cache, even if user
identifying data is passed to the junction.

Content-range
The presence of this header in the response stops the resource from
being stored in the content cache.

Expires
The presence of this header in the response allows the resource to be
stored in the content cache, even if user identifying data is passed to
the junction.

Pragma
The presence of this header in the response, with a value of
"non-cache", stops the resource from being stored in the content cache.

Transfer-encoding
WebSEAL strips the TE: header from the request being sent to the
junction, so it does not expect a Transfer-Encoding: header to be sent
back. However if a Transfer-Encoding: header is sent back, WebSEAL
stops the resource from being stored in the content cache.

Vary
The presence of this header in the response stops the resource from
being stored in the content cache.

Other conditions:
v The Age, Date, Last-Modified, and Expires headers are used to calculate whether

data in the cache is fresh enough to use.
v If the value of the Date: header is greater than the value of the Expires: header,

the resource is not stored in the cache. This complies with HTTP/1.0
specification.

v WebSEAL does not process <meta> tags with http-equiv attributes.

Impact of Request headers on WebSEAL content caching
HTTP Request headers from the client affect how WebSEAL uses the cache to
produce the requested resource.

The following table describes how specific HTTP Request headers (from the client)
affect whether or not WebSEAL uses the cache to produce the requested resource,
or send the request to the destination server:

Request Header Impact on Content Caching

Accept-encoding:
The presence of this header in the request allows the response to come
from the cache if the value matches the cached encoding type.

Authorization:
If the POP value DocumentCacheControl=public is not set, the
presence of this header in the request stops the response coming from
the cache, unless the junction has the -b filter set.

See “Cache control for specific documents” on page 40.

38 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Request Header Impact on Content Caching

Cache-control:
The presence of this header in the request, with a value of "no-cache",
stops the response coming from the cache.

Cache-control:
The presence of this header in the request, with a value of "no-store",
stops the response coming from the cache and the response from being
stored in the cache.

Cache-control:
The values "max-age", "max-stale", or "min-fresh" are used to
determine if the cache is used for the response.

Pragma:
The presence of this header in the request, with a value of "non-cache",
stops the response coming from the cache.

Range:
The presence of this header in the request stops the response coming
from the cache and the response from being stored in the cache.

Other conditions affecting WebSEAL content caching
There are other conditions which affects the WebSEAL content caching.

Other conditions affecting WebSEAL content caching include the following:
v WebSEAL does not cache content if the response from the junction does not have

the status "200 OK".
v WebSEAL does not cache content if the request URL contains a query string.
v WebSEAL flushes a cache entry if a PUT, POST, or DELETE is used in the URL.
v WebSEAL only returns values from the cache for HEAD and GET requests.
v WebSEAL does not cache the response from junctions to HEAD requests.
v WebSEAL does not cache the response if the junction has -b gso, -b supply, -C,

or -c set, unless (any one of the following):
– There is a POP on the object with value DocumentCacheControl=public. See

“Cache control for specific documents” on page 40.
– The response has an Expires: header.
– The response has Cache-Control: public set.

v WebSEAL does not cache the response if there is a POP on the object with the
value DocumentCacheControl=no-cache. See “Cache control for specific
documents” on page 40.

v You cannot override the calculations based on date headers (Date, Age,
Last-modified, Expires, and the related Cache-control header values.

v You cannot override all other headers.

Flushing all caches

About this task

You can use the pdadmin utility to flush all configured content caches. The utility
does not allow you to flush individual caches.

Note: You must login to the secure domain as the Security Access Manager
administrator sec_master before you can use pdadmin.

To flush all content caches, use the following pdadmin command:

Chapter 3. Web server configuration 39

pdadmin> server task instance_name-webseald-host_name cache flush all

Cache control for specific documents

You can control caching for specific documents by attaching a special protected
object policy (POP) to those objects. This POP must contain an extended attribute
called document-cache-control.

The document-cache-control extended attribute recognizes the following two
values:

Value Description

no-cache The no-cache value instructs WebSEAL not to cache this document.
Remember that all children of the object with the POP also inherit the
POP conditions.

public The public value allows WebSEAL to cache the document by ignoring
the fact that the junction was created with a –c or –C option. In
addition, this value also allows caching of this document when the
request is sent with an authorization header (such as Basic
Authentication). This condition also includes a request where
WebSEAL inserts BA information on behalf of the client (such as with
GSO or –b supply junctions). Normally, proxy servers do not cache the
response documents to requests that include authorization headers.

Use the pdadmin pop create, pdadmin pop modify, and pdadmin pop attach
commands to set a POP on a protected object.

The following example illustrates creating a POP called "doc-cache" (with the
document-cache-control extended attribute) and attaching it to an object
(budget.html):
pdadmin> pop create doc-cache
pdadmin> pop modify doc-cache set attribute document-cache-control no-cache
pdadmin> pop attach /WebSEAL/hostA/junction/budget.html doc-cache

The budget.html document is never cached by WebSEAL. Each request for this
document must be made directly to the back-end server where it is located.

Details about the pdadmin command line utility can be found in the IBM Security
Access Manager for Web: Command Reference.

Communication protocol configuration

You can configure the WebSEAL communication protocols to control how
WebSEAL handles requests and creates connections. There are many stanza entries
available to configure the communication protocols, as detailed in these sections:
v “WebSEAL configuration for HTTP requests” on page 41
v “WebSEAL configuration for HTTPS requests” on page 41
v “Restrictions on connections from specific SSL versions” on page 42
v “Persistent HTTP connections” on page 42
v “Timeout settings for HTTP and HTTPS communication” on page 43
v “Additional WebSEAL server timeout settings” on page 45
v “Support for WebDAV” on page 46
v “Support for Microsoft RPC over HTTP” on page 47

40 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v “Support for chunked transfer coding” on page 48

WebSEAL configuration for HTTP requests
WebSEAL typically handles many HTTP requests from unauthenticated users. For
example, it is common to allow anonymous users read-only access to selected
documents on the public section of your Web site.

Stanza entries for handling HTTP requests over TCP are located in the [server]
stanza of the WebSEAL configuration file.

Enabling or disabling HTTP access

About this task

IBM HTTP Server, WebSphere Application Server (which installs IBM HTTP
Server), and WebSEAL all use port 80 as the default port. If you install WebSEAL
on the same system as IBM HTTP Server, ensure that you change the default port
to one of these servers. Edit the httpd.conf configuration file or the WebSEAL
configuration file.

To enable or disable HTTP access during WebSEAL configuration, run this
command:
[server]
http = {yes|no}

Setting the HTTP access port value

About this task

The default port for HTTP access is 80:
[server]
http-port = 80

To change to port 8080, for example, set:
[server]
http-port = 8080

WebSEAL configuration for HTTPS requests

Stanza entries for handling HTTP requests over SSL (HTTPS) are located in the
[server] stanza of the WebSEAL configuration file.

Enabling or disabling HTTPS access

About this task

To enable or disable HTTPS access during WebSEAL configuration:
[server]
https = {yes|no}

Setting the HTTPS access port value

About this task

The default port for HTTPS access is 443:

Chapter 3. Web server configuration 41

[server]
https-port = 443

To change to port 4343, for example, set:
[server]
https-port = 4343

Restrictions on connections from specific SSL versions

You can independently enable and disable connectivity for the following
communication protocol versions:
v Secure Sockets Layer (SSL) version 2
v SSL version 3
v Transport Layer Security (TLS) version 1
v TLS version 1.1
v TLS version 1.2

The stanza entries that control connections for specific SSL and TLS versions are in
the [ssl] stanza of the WebSEAL configuration file. By default SSL version 2 is
disabled. All other SSL and TLS versions are enabled by default.
[ssl]
disable-ssl-v2 = {yes|no}
disable-ssl-v3 = {yes|no}
disable-tls-v1 = {yes|no}
disable-tls-v11 = {yes|no}
disable-tls-v12 = {yes|no}

Persistent HTTP connections

At the HTTP communication layer, WebSEAL maintains persistent connections
between the client browser and WebSEAL, and between junctioned Web servers
and WebSEAL.

Client connections are controlled by the following entries in the [server] stanza of
the WebSEAL configuration file:

max-idle-persistent-connections
This entry controls the maximum number of idle client persistent
connections.

persistent-con-timeout
This entry controls the maximum number of seconds that WebSEAL holds
an HTTP persistent connection open for a new request before the
connection is shut down. See “Timeout settings for HTTP and HTTPS
communication” on page 43.

disable-timeout-reduction
This entry determines whether WebSEAL reduces the timeout duration to
help control the number of active worker threads. By default, WebSEAL
automatically reduces the timeout duration for threads as the number of
in-use worker threads increases.

Junction connections are controlled by the following entries in the [junction] stanza
of the WebSEAL configuration file:

42 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

max-cached-persistent-connections
This entry controls the maximum number of persistent connections that
will be stored in the cache for future use.

persistent-con-timeout
This entry controls the maximum number of seconds a persistent
connection can remain idle in the cache before WebSEAL closes the
connection.

Note: WebSEAL supports HTTP/1.1 persistent connections. HTTP/1.0 persistent
connections are not supported.

WebSEAL configuration for handling HTTPOnly cookies

Cross-site scripting is among the most common security problems for web servers
and can expose sensitive information about the users of a website. To help reduce
the risk of cross-site scripting, an HTTPOnly attribute was added to cookies,
preventing them from being accessed through client-side scripts. WebSEAL
includes the option to enable WebSEAL to add the HTTPOnly attribute to the
Set-Cookie headers it uses for sessions, failover, and LTPA cookies. WebSEAL can
also be configured to pass the HTTP-only Set-Cookie header attribute from
back-end junction servers to web browsers.

To configure WebSEAL to add the HTTPOnly attribute to Session, Failover and
LTPA Set-Cookie headers, change the value of use-http-only-cookies in the
[server] stanza of the WebSEAL configuration file to yes. The default value is no.
[server]
use-http-only-cookies = yes

To configure WebSEAL to pass the HTTPOnly attribute from Set-Cookie headers
sent by junctioned servers, change the value of pass-http-only-cookie-attr in the
[junction] stanza of the WebSEAL configuration file to yes. The default value is
no.
[junction]
pass-http-only-cookie-attr = yes

For more information about these entries, see the IBM Security Web Gateway
Appliance: Web Reverse Proxy Stanza Reference.

Timeout settings for HTTP and HTTPS communication

WebSEAL supports timeout settings for HTTP and HTTPS communication. Stanza
entries for timeout settings are usually located in the [server] stanza of the
WebSEAL configuration file.
v client-connect-timeout

After the initial connection handshake has occurred, this stanza entry specifies
how long WebSEAL holds the connection open for the initial HTTP or HTTPS
request. The default value is 120 seconds.
[server]
client-connect-timeout = 120

v intra-connection-timeout

This stanza entry affects request and response data sent as two or more
fragments. The stanza entry specifies the timeout (in seconds) between each
request data fragment after the first data fragment is received by WebSEAL. The

Chapter 3. Web server configuration 43

stanza entry also governs the timeout between response data fragments after the
first data fragment is returned by WebSEAL. The default value is 60 seconds.
[server]
intra-connection-timeout = 60

If the value of this stanza entry is set to 0 (or not set), connection timeouts
between data fragments are governed instead by the client-connect-timeout
stanza entry. The exception to this rule occurs for responses returned over HTTP
(TCP). In this case, there is no timeout between response fragments.
If a connection timeout occurs on a non-first data fragment due to the
intra-connection-timeout setting, a TCP RST (reset) packet is sent.

v persistent-con-timeout

After a completed HTTP request and server response exchange, this stanza entry
controls the maximum number of seconds that WebSEAL holds an HTTP
persistent connection open for a new client request before the connection is shut
down. The default value is 5 seconds.
[server]
persistent-con-timeout = 5

If the value of this stanza entry is set to 0, the connection does not remain open
for future requests. A value of zero causes WebSEAL to set the 'Connection:
close' header and then close the connection on every response.

Note: The timeout setting on the junction side is set by the
persistent-con-timeout entry in the [junction] stanza.

The following flow diagram shows where the timeout settings impact an example
request and response exchange. The number of fragments indicated for the request
and the response are only for example purposes.

44 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Additional WebSEAL server timeout settings

The following additional timeout settings are set in the WebSEAL configuration
file:

Stanza Entry Description Default Value

[junction]
http-timeout The timeout value for sending to and

reading from a back-end server over a
TCP junction.

120

[junction]
https-timeout The timeout value for sending to and

reading from a back-end server over an
SSL junction.

120

[cgi]
cgi-timeout The timeout value for sending to and

reading from a local CGI process.

Supported on UNIX systems only.

120

Connect

Client WebSEAL

Request 1 - fragment 1

client-connect-timeout

persistent-con-timeout

Ti
m

e

Request 1 - fragment 2

Request 1 - fragment 3

Response - fragment 1

Response - fragment 2

Response - fragment 3

Response - fragment 4

Request 2 - fragment 1

...

intra-connection-timeout

intra-connection-timeout

intra-connection-timeout

intra-connection-timeout

intra-connection-timeout

Request Processing

Figure 12. Timeout settings for HTTP and HTTPS communication

Chapter 3. Web server configuration 45

Stanza Entry Description Default Value

[junction]
ping-time WebSEAL performs a periodic background

ping of each junctioned server, to
determine whether it is running. This
value sets the time interval between these
pings.

To turn the ping off, set this entry to zero.
If this entry is set to zero, the
recovery-ping-time must be set.

300

[junction]
recovery-ping-time This optional entry sets the interval, in

seconds, between pings when the server is
determined not to be running. If this entry
is not set, the value defaults to the
ping-time setting.

300

Optionally, you can also customize the http-timeout and https-timeout settings for
any particular WebSEAL junction by manually creating a junction-specific stanza
(for example, [junction:/WebApp]) in the WebSEAL configuration file. The stanza
can be customized for a particular junction by adding the adjusted configuration
items below to a [junction:junction_name] stanza, where junction_name refers to
the junction point for a standard junction (including the leading '/'), or the virtual
host label for a virtual host junction. If specified, the following settings override
the default settings above:

Stanza Entry Description
Default Value

(seconds)

[junction:junction_name]
http-timeout The timeout value for sending to

and reading from a back-end
server over a specific TCP
junction.

120

[junction:junction_name]
https-timeout The timeout value for sending to

and reading from a back-end
server over a specific SSL junction.

120

Support for WebDAV
Web-based Distributed Authoring and Versioning (WebDAV) is a set of extensions
to the HTTP protocol that users can use to edit and manage files on remote web
servers.

WebSEAL supports the use of WebDAV methods in client requests for junctioned
applications. WebSEAL does not support WebDAV methods when it acts as a web
server that serves local content. Authorization for all WebDAV methods is
controlled through the r ACL bit.

WebSEAL forwards requests to junctioned applications by using the following
WebDAV methods:
v ACL

46 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v BASELINE-CONTROL
v BCOPY
v BDELETE
v BIND
v BMOVE
v BPROPPATCH
v CHECKIN
v CHECKOUT
v COPY
v LABEL
v LINK
v LOCK
v MERGE
v MKACTIVITY
v MKCOL
v MKREDIRECTREF
v MKWORKSPACE
v MOVE
v NOTIFY
v ORDERPATCH
v PATCH
v POLL
v PROPFIND
v PROPPATCH
v REBIND
v REPORT
v SEARCH
v SUBSCRIBE
v SUBSCRIPTIONS
v UNBIND
v UNCHECKOUT
v UNLINK
v UNLOCK
v UNSUBSCRIBE
v UPDATE
v UPDATEDIRECTREF
v VERSIONCONTROL

Support for Microsoft RPC over HTTP
Microsoft RPC over HTTP is a protocol used to communicate RPC traffic over an
HTTP connection. Microsoft Outlook clients use this protocol to access Microsoft
Exchange servers over HTTP.

Chapter 3. Web server configuration 47

WebSEAL does not natively support Microsoft RPC over HTTP operations.
WebSEAL does support the forwarding of RPC over HTTP version 2 methods to
junctioned applications. Authorization for all RPC over HTTP methods is
controlled through the r ACL bit.

WebSEAL forwards requests to junctioned applications using the following RPC
over HTTP methods:
v RPC_IN_DATA
v RPC_OUT_DATA

Support for chunked transfer coding

WebSEAL supports chunked transfer coding as defined by the HTTP/1.1
specification. Chunks from the client are transmitted as they are received to
junctioned Web servers.

Internet Protocol version 6 (IPv6) support

This section contains the following topics:
v “IPv4 and IPv6 overview”
v “Configuring IPv6 and IPv4 support” on page 49
v “IPv6: Compatibility support” on page 49
v “IPv6: Upgrade notes” on page 50
v “IP levels for credential attributes” on page 50

IPv4 and IPv6 overview
Beginning with Tivoli Access Manager for Web version 6.0, WebSEAL supports
Internet Protocol version 6 (IPv6).

IPv6 improves upon IPv4 in the following ways:
v IPv6 allocates 128 bits for the address space; IPv4 only allocates 32 bits for the

address space.
v IPv6 can decrease the size of static, non-default routing tables, used to route

packets through the Internet backbone.
v IPv6 provides end-to-end security by requiring adherence to the IP Security

protocols (IPsec).

The primary format of an IPv4 address is a 32-bit numeric address written as four
numbers separated by periods. For example:
x.x.x.x

The valid range for each number is zero to 255. For example:
1.160.10.240

One primary format of an IPv6 address is a 128-bit numeric address written as
eight numbers separated by colons. For example:
x:x:x:x:x:x:x:x

The valid range for each number is zero to ffff (hexadecimal). For example:
fec0:fff:0000:0000:0000:0000:0000:1

48 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The IPv6 address can be expressed in an abbreviated form by collapsing the
contiguous fields that contain only zeros. For example,
0009:0000:0000:0000:0000:0008:0007:0006 can be represented as 9::8:7:6.

Refer to the RFC 2373 standard to determine what constitutes a valid
representation of an IPv6 address. IBM Security Access Manager for Web supports
any of the valid forms for an IPv6 address described in Section 2.2 of RFC 2373.
Note that IBM Security Access Manager for Web does not support prefix notation
for a netmask.

Configuring IPv6 and IPv4 support

About this task

You can configure WebSEAL to support IPv4 or IPv6 with the ipv6-support stanza
entry in the [server] stanza of the WebSEAL configuration file. The following
values are valid:
v yes - Support both IPv6 and IPv4 networks (default setting).

When both IPv6 and IPv4 networks are supported, WebSEAL listens for
incoming HTTP and HTTPS requests that are IPV4-protocol based or
IPV6-protocol based.
If the host name for a junction maps only to an IPv6 address, then IPv6 is used.
If the host name maps to an IPv4 address, then an IPv4 address is used. If the
DNS name maps to both an IPv6 and an IPv4 address, then the choice is
arbitrary. To specify a particular protocol, use the IPv6 or IPv4 address of the
host when you create the junction.
If no interface on the machine is capable of IPv6, then WebSEAL listens only for
IPv4 requests. If there are both IPv6 and IPv4 interfaces available, then by
default WebSEAL listens for requests on both protocols. If you not want
WebSEAL to accept IPv6 connections, set ipv6-support = no.

v no- Only support IPv4 networks.

IPv6 support is provided by default with an installation of Security Access
Manager WebSEAL version 6.0 or later.
[server]
ipv6-support = yes

IPv6: Compatibility support

The following conditions describe how IP version compatibility is maintained for
previous versions of Security Access Manager:
v If the ipv6-support is set to "no", then WebSEAL provides support for IPv4 as it

did in previous releases, but does not support IPv6.
For example, the iv-remote-address-ipv6 HTTP header and
XAUTHN_IPADDR_IPV6 identifier, used with the external authentication C API
(see IBM Security Access Manager for Web: Web Security Developer Reference) are not
available.

v If ipv6-support is set to "yes", IPv6 is supported. Attributes containing IPv4
addresses continue to hold IPv4 addresses. Custom modules written for previous
releases still will continue working.
However, if WebSEAL passes an IPv6-only address to an older custom module
(that is not written to support IPv6 format), the older module might require
updating to handle the IPv6 address format.

Chapter 3. Web server configuration 49

The address range for IPv6 is much larger than the range available to IPv4.
When working with older modules, WebSEAL maps an IPv6 address to an IPv4
format when possible. For example, the IPv6 address ::c0a8:1 maps to the IPv4
address 192.168.0.1.
If the IPv6 address exceeds the range for IPv4, WebSEAL maps the address by
default to 0.0.0.0 in IPv4 format. For example, the IPv6 address fec0::1 has no
IPv4 equivalent and therefore is mapped to the IPv4 address 0.0.0.0.

IPv6: Upgrade notes

When upgrading to Security Access Manager WebSEAL version 7.0 from a
previous version of WebSEAL, IPv6 support is automatically disabled. The upgrade
module sets ipv6-support = no in the instance-specific configuration file. After an
upgrade, you can enable support for IPv6 by manually editing the WebSEAL
configuration to change the value of ipv6-support to "yes".

IP levels for credential attributes

Network (IP) information can be stored as an extended attribute in a user's
credential. There are different format structures available to hold IPv4 and IPv6
information. Adding attributes to credentials can affect WebSEAL performance.

The ip-support-level stanza entry in the [server] stanza of the WebSEAL
configuration file allows you to control the amount of network information stored
in a credential by specifying the required IP level. The following values are
available:
v displaced-only

WebSEAL generates the IPv4 attribute only when building user credentials and
when authenticating users through external authentication C API modules.
This value is the default for migrated WebSEAL installations (ipv6-support=no):
[server]
ip-support-level = displaced-only

This value is not permitted when ipv6-support=yes.
v generic-only

WebSEAL generates new generic attributes that support both IPv4 and IPv6 only
when building user credentials and when authenticating users through external
authentication C API modules.
This value is the default for new WebSEAL installations (ipv6-support=yes):
[server]
ip-support-level = generic-only

v displaced-and-generic

Both sets of attribute types (produced by displaced-only and generic-only) are
used when building user credentials and when authenticating users through
external authentication C API modules.
[server]
ip-support-level = displaced-and-generic

LDAP directory server configuration

When Security Access Manager is configured to use an LDAP-based user registry
(such as IBM Tivoli Directory Server), WebSEAL must be configured as an LDAP
client so it can communicate with the LDAP server.

50 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The location of the LDAP server (and its configuration file ldap.conf) is provided
during Security Access Manager runtime configuration. A combination of stanza
entries and values from the ldap.conf and the WebSEAL configuration file
(webseald.conf) provides the appropriate information for WebSEAL to perform as
an LDAP client.
v WebSEAL determines that the configured user registry is an LDAP-based

directory server.
v The following stanza entries in the [ldap] stanza of webseald.conf are valid:

enabled
host
port
ssl-port
max-search-size
replica
ldap-server-config
auth-using-compare
cache-enabled
prefer-readwrite-server
bind-dn
bind-pwd
ssl-enabled
ssl-keyfile
ssl-keyfile-dn
timeout
auth-timeout
search-timeout
default-policy-override-support
user-and-group-in-same-suffix
login-failures-persistent

v The value of the enabled stanza entry is read from ldap.conf. If the value is
"yes", then the bind-dn and bind-pwd stanza entries (and their values) are
required in the [ldap] stanza of webseald.conf.

v Additionally, the values for the following stanza entries in ldap.conf override
any existing values in webseald.conf:
enabled
host
port
ssl-port
max-search-size
replica

For information about the stanza entries mentioned in this discussion, see the IBM
Security Web Gateway Appliance: Web Reverse Proxy Stanza Reference.

Worker thread allocation

This section contains the following topics:
v “WebSEAL worker thread configuration”
v “Allocation of worker threads for junctions (junction fairness)” on page 52

WebSEAL worker thread configuration

The number of configured worker threads specifies the number of concurrent
incoming requests that can be serviced by a server. Other connections that arrive
when all worker threads are busy will be buffered until a worker thread is
available.

Chapter 3. Web server configuration 51

You can set the number of threads available to service incoming connections to
WebSEAL. Configuring the number of worker threads should be done carefully
due to possible performance impacts.

This configuration stanza entry does not impose an upper boundary on the
number of simultaneous connections. This stanza entry simply specifies the
number of threads made available to service a potentially unlimited work queue.

Choosing the optimal number of worker threads depends on understanding the
quantity and type of traffic on your network. In all cases, you must enter only a
value that is less than the worker threads limit imposed by the operating system.

By increasing the number of threads, you are, in general, decreasing the average
time it takes to finish the requests. However, increasing the number of threads
impacts other factors that could have an adverse effect on server performance.

WebSEAL maintains a single, generic worker list and worker threads pool for
handling requests from clients using TCP or SSL. This enhanced mechanism
enables WebSEAL to consume fewer system resources while handling significantly
greater load.

You can configure the worker thread pool size by setting the worker-threads
stanza entry in the [server] stanza portion of the WebSEAL configuration file.
[server]
worker-threads = 50

Note: The value of this stanza entry must remain within the worker threads limits
set by the operating system.

Allocation of worker threads for junctions (junction fairness)

You can configure the allocation of WebSEAL worker threads used to process
requests across multiple junctions on a global or per-junction basis. The
configuration mechanism maintains a "fair" distribution of worker threads across
all junctions and prevents depletion of the worker thread pool by any one junction.

Junction fairness concepts

WebSEAL draws from its pool of worker threads to process multiple requests. The
number of worker threads available to WebSEAL is specified by the
worker-threads stanza entry in the WebSEAL configuration file.

You can adjust the worker-threads value to best serve your particular WebSEAL
implementation. When no worker threads are available to handle incoming
requests, users experience a WebSEAL server that is not responding.

Worker threads are used to handle incoming requests to applications located on
multiple junctioned back-end servers. However, the worker thread pool can be
quickly drained if a particular back-end application is unusually slow when
responding to and processing a high volume of requests. A depletion of the worker
thread pool by this one application renders WebSEAL incapable of responding to
requests for services on the remaining junctioned application servers.

52 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

You can configure global or per-junction limits on the number of worker threads
used to service applications on multiple junctions. These limits allow "fairness" to
prevail for all junctions and prevents any one application from claiming more than
its share of worker threads.

Note: For information on worker thread resource usage limits, and for instructions
on detecting worker thread starvation, see the IBM Security Access Manager for Web:
Performance Tuning Guide

Global allocation of worker threads for junctions

Two stanza entries located in the [junction] stanza of the WebSEAL configuration
file control the global allocation of worker threads across all junctions for a
particular WebSEAL server. The values used for these stanza entries are expressed
as percentages within the range of 0 to 100.
v worker-thread-soft-limit

This stanza entry is set to send a warning before the "hard" limit is reached.
When the worker-thread-soft-limit is exceeded, warning messages are sent
(every 30 seconds) to the WebSEAL error log file.
For example, when worker-threads = 50, a setting of 60 (%) causes warning
messages to be issued when the junction consumes more than 30 worker
threads. All requests above 30 worker threads are still processed, until the "hard"
limit is reached.
The default value is 90 percent.

v worker-thread-hard-limit

This stanza entry determines the cut-off point for servicing requests across a
junction. When the worker-thread-hard-limit is exceeded, error messages are
sent (every 30 seconds) to the WebSEAL error log file. In addition, the user is
sent a 503 "Service Unavailable" message.
For example, when worker-threads = 50, a setting of 80 (%) causes error
messages to be issued when the junction tries to consume more than 40 worker
threads. All requests representing greater than 40 worker threads on the junction
are returned with a 503 "Service Unavailable" message.
The default value of 100 (%) indicates there is no limit.

These global settings apply equally to all configured junctions. When configuring
these two stanza entries, it is logical to set the "soft" limit to a lower value than the
"hard" limit.

Per-junction allocation of worker threads for junctions

Alternatively, you can limit worker thread consumption on a per-junction basis.
The following options to the pdadmin server task create command allow you to
specify hard and soft worker thread limits on a specific junction:
v –l percent_value

This option sets a value (percent) on the junction that defines the soft limit for
consumption of worker threads. As in the global soft limit setting, this option
causes warning messages to be issued when the junction consumes more worker
threads than allowed by the setting.

v –L percent_value

This option sets a value (percent) on the junction that defines the hard limit for
consumption of worker threads. As in the global hard limit setting, this option

Chapter 3. Web server configuration 53

causes warning messages to be issued when the junction tries to consume more
worker threads than allowed by the setting. In addition, the user is sent a 503
"Service Unavailable" message.

For example (entered as one line):
pdadmin> server task webseald-<server-name> create -t tcp -h <host-name>
-l 60 -L 80 jct-point

Per-junction settings always override the global settings in the WebSEAL
configuration file. Ensure that the settings on a specific junction do not adversely
affect the policy established by the global settings.

Troubleshooting notes
v You can use the pdadmin server task show command to view the number of

active worker threads on a specific junction:
pdadmin> server task webseald-<server-name> show /<jct-point>

This information might be useful when you want to determine the location of a
junction that is absorbing more than its share of worker thread resources.

v If you specify a soft limit value that is greater than the hard limit value on a
specific junction, the junction will not be created.

v You must specify both soft and hard limit values (both –l and –L options) on a
specific junction.

HTTP data compression

WebSEAL servers can be configured to compress data that is transferred over
HTTP between the WebSEAL server and the client. WebSEAL uses the gzip
compression algorithm described in RFC 1952. Gzip is supported by all major
browsers.

HTTP compression in WebSEAL can be configured based on MIME-type, browser
type, and protected object policies (POPs).

This section contains the following topics:
v “Compression based on MIME-type”
v “Compression based on user agent type” on page 55
v “Compression policy in POPs” on page 56
v “Data compression limitation” on page 57
v “Configuring data compression policy” on page 57

Compression based on MIME-type

You can create an entry in the WebSEAL configuration file for each MIME-type or
group of MIME-types for which data compression is needed. The syntax is:
[compress-mime-types]
mime_type = minimum_doc_size[:compression_level]

The mime-type can specify one particular MIME type or can use wildcard characters
to specify a class of MIME types. Each mime-type declaration is a separate entry in
the [compress-mime-types] stanza. The wildcard character (*) is limited to entries
of one collection of MIME types. For example, text/*. Any MIME-type not listed
in the stanza is not compressed. Order is important. The first entry that matches a
returned document is used for that document.

54 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The minimum_doc_size value specifies policy regarding what size of documents will
be compressed. This value is an integer. Valid values are shown in the following
list:
v -1

When the minimum size is -1, documents of the specified MIME-type are never
compressed.

v 0
When the minimum size is 0, documents of the specified MIME-type are always
compressed.

v Integer greater than zero
When the minimum size is greater than zero, documents of the specified
MIME-type are compressed when the number of bytes in the response to
WebSEAL exceeds this integer value.

Any negative number other than -1 generates an error message.

When WebSEAL receives a request from a browser, the server examines the
content-length field in the HTTP header to determine the size of the incoming
data. However, not all HTTP responses contain the content-length field. When the
content-length field is not found, WebSEAL compresses the document unless the
applicable MIME-type has been configured to never be compressed
(minimum_doc_size of -1).

The compression_level is an optional setting that specifies a data compression level.
Valid values are integers between 1 and 9. The larger the integer, the greater the
amount of compression that takes place. Note that the greater the amount of
compression, the greater the load placed on the CPU. The value of increased
compression must be weighed against any performance impacts. When the
compression_level is not specified, a default level of 1 is used.

The following example compresses all documents of a size greater than 1000 bytes:
[compress-mime-type]
/ = 1000

The following set of entries disables compression for all images, disables
compression for CSS files, enables compression at level 5 for all PDF documents,
enables compression for HTML documents of size greater than 2000 bytes, and
enables compression for all other text documents, regardless of size:
[compress-mime-type]

image/* = -1
text/css = -1
application/pdf = 0:5
text/html = 2000
text/* = 0

Compression based on user agent type

A user agent is a client that initiates a request. Examples of user agents include
browsers, editors, spiders (Web-traversing robots), or other end user tools.

WebSEAL returns compressed data to user agents that request compressed data.
WebSEAL does not return compressed data to user agents that do not request it.
However, some user agents request compressed data but do not know how to

Chapter 3. Web server configuration 55

handle the data properly. WebSEAL administrators can use the WebSEAL
configuration file to explicitly enable or disable compression for various browsers.

The configuration file entry syntax is:
[compress-user-agents]
user_agent_pattern = {yes|no}

The user_agent_pattern consists of wildcard patterns that match characters found in
the user-agent header sent to WebSEAL. The value yes means to compress data
that is returned to the browser. The value no means to return the data
uncompressed.

When the user-agent header does not match any of the stanza entries in the
WebSEAL configuration file, WebSEAL honors the accept-encoding header sent by
the browser.

For example, the following entry enables compression for Internet Explorer 6, but
disables compression for all other browsers:
[compress-user-agents]
*MSIE 6.0" = yes
* = no

Compression policy in POPs

You can specify a compression policy of do not compress in a protected object policy
(POP). You can attach the POP to an object, and WebSEAL disables compression of
that object. To specify this policy, add the following attribute to the POP:
document-compression = no

A POP without this attribute set, or with this attribute set to any value other than
no, allows documents to be compressed.

For example, to disable compression for the junction /appOne:
pdadmin> pop create appOnePop
pdadmin> pop modify appOnePop set attribute document-compression no
pdadmin> pop attach /WebSEAL/host/appOne appOnePop

To allow compression for a subdirectory beneath /appOne with an overriding POP,
attach a different POP that does not have the document-compression attribute. For
example:
pdadmin> pop create dataPop
pdadmin> pop attach /WebSEAL/host/appOne/data dataPop

This method of applying compression policy can be used with URLs. For example,
to disable compression based on wildcard patterns applied to URLs, you can use
dynurl. To disable compression for all requests to a junction that have a particular
argument in the query string, you can create a dynurl.conf file with entries like the
following:
/disableCompression /appOne/*\?want-response=text/xml

You can then attach a POP to /WebSEAL/host/disableCompression with the
document-compression attribute set to no.

56 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Data compression limitation
The transfer of compressed data between WebSEAL and back-end servers is not
supported.

WebSEAL performs filtering on URLs for various purposes. WebSEAL does not
perform filtering on compressed data.

Configuring data compression policy

About this task

To specify data compression policy for communication between WebSEAL and
client browsers, complete the following steps:

Procedure
1. In the WebSEAL configuration file, specify each MIME-type for which a data

compression policy applies. Assign a value that enforces the policy.
[compress-mime-types] mime_type = minimum_doc_size

Note that the default setting leaves all data uncompressed:
[compress-mime-types]
/ = -1

For more information on creating entries in this stanza, see “Compression
based on MIME-type” on page 54.

2. In the WebSEAL configuration file, specify each type of user agent (browser)
for which a data compression policy applies. Enable data compression by
assigning the value yes. Disable data compression by assigning the value no.
[compress-user-agents]
user_agent = {yes|no}

No entries are set by default. When no entry matches the user-agent's
accept-encoding header, the value in the accept-encoding header is honored.
For more information on creating entries in this stanza, see the
[compress-user-agents] stanza in the IBM Security Web Gateway Appliance: Web
Reverse Proxy Stanza Reference.

3. Optionally, specify compression policies in POPs, and apply the POPs to the
appropriate objects in the protected object space. For more information, see
“Compression policy in POPs” on page 56.

Multi-locale support with UTF-8

This section consists of the following topics:
v “Multi-locale support concepts”
v “Configuration of multi-locale support” on page 61

Multi-locale support concepts

This section contains the following topics:
v “WebSEAL data handling using UTF-8” on page 58
v “UTF-8 dependency on user registry configuration” on page 58
v “UTF-8 data conversion issues” on page 59

Chapter 3. Web server configuration 57

v “UTF-8 impact on authentication” on page 59
v “UTF-8 impact on authorization (dynamic URL)” on page 60
v “URLs must use only one encoding type” on page 61

WebSEAL data handling using UTF-8
WebSEAL implements multi-locale support by internally maintaining and handling
all data using UCS Transformation Format 8 byte (UTF-8) encoding. UTF-8 is a
multi-byte code page with variable width.

WebSEAL adopts UTF-8 as the default code page for all internal data handling.
This support enables WebSEAL to process data from multiple languages at the
same time.

WebSEAL administrators can configure how WebSEAL handles data input and
output. An example of data input is characters sent to WebSEAL by a browser,
such as user logins and forms data. An example of data output is logging
information written out to the file system by the Security Access Manager
event-logging manager.

WebSEAL handles data internally in UTF-8 regardless of the locale in which the
WebSEAL process is running. When locale-specific data is needed as input or
output, the locale in which the WebSEAL process is running becomes important.
Most operating systems do not use UTF-8 by default. Administrators expecting
locale-specific behavior need to know which locale is being used, and need to set
WebSEAL UTF-8 configuration options to match the required behavior.

The system locale consists of two parts: the language and the local code page.
Local code pages can be UTF-8 or not UTF-8. Historically, most operating systems
use a local code page that is not UTF-8. For example, a common local code page
used to represent the 8-bit ASCII character set for United States English is
en_US.ISO88591, which uses the ISO-8859-1 character set.

Administrators running systems that need to process client requests and forms
data in the local code page can modify the default settings for URL support
(utf8-url-support-enabled) and forms support (utf8-forms-support-enabled). The
default WebSEAL setting is to process data in UTF-8 format only.

For example, you might need to change default settings for systems that process
client requests and forms data that use non-UTF-8 local code pages. For example:
v A single-byte Latin character set, such as Spanish, French, or German
v A multi-byte character set, such as Japanese or Chinese

If you are running systems that need to provide true multi-locale support to
handle users and data in multiple languages, review the following settings:
v Your local code page setting. You might consider converting to a UTF-8 code

page.
v The default WebSEAL multi-locale UTF-8 settings.

You can customize these configuration settings to best fit your deployment.

UTF-8 dependency on user registry configuration
For optimal multi-locale support, store all the users in one common user registry,
regardless of which language they prefer.

58 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Most user registries support UTF-8 by default. Some LDAP user registries, and
their supporting databases, can optionally be configured to not support UTF-8.
Ensure that the LDAP user registry and database used with Security Access
Manager uses UTF-8.

IBM Tivoli Directory Server is by default configured to use UTF-8.

UTF-8 data conversion issues

WebSEAL can be deployed into environments where the local code page uses
UTF-8. Similarly, WebSEAL can also be deployed into environments where the
local code page does not use UTF-8. The use of WebSEAL with operating system
environments that use non-UTF-8 local code pages requires WebSEAL to convert
data upon data input and output. When WebSEAL reads data in, it must convert
the data from non-UTF-8 to UTF-8. When WebSEAL writes data out, it must
convert the data from UTF-8 to non-UTF-8.

If conversion to a local code page is required, no data loss will occur when
running in a UTF-8 locale.

The conversion from a UTF-8 locale to a non-UTF-8 locale (local code page) can, in
some situations, result in data loss.

Conversion of data from UTF-8 to a non-UTF-8 locale can result in data loss. For
example, if WebSEAL is running in an en_US.ISO8859 environment, and a Japanese
user name must be converted to the local code page, the result is a string of
question marks ("????"). This result occurs because there is no way to represent
Japanese characters in ISO-8859-1. For this reason, WebSEAL should be run using
UTF-8.

There is a risk of data loss when executing administrative commands (pdadmin)
from a non-UTF-8 environment. Prior to version 5.1, WebSEAL always ran in the
same locale as the pdadmin utility. With multi-locale support, WebSEAL can now
run in a different locale. WebSEAL must return messages to the administrator in
the administrator's chosen language. To do so, WebSEAL obtains messages from
the appropriate language pack, as determined by the locale presented by pdadmin.
All messages are transmitted in UTF-8, but pdadmin converts those messages to
local code page prior to displaying them. When the local code page is non-UTF-8,
data loss is potentially possible. When pdadmin is run in a UTF-8 environment,
there will be no data loss.

WebSEAL generates logging and auditing data using UTF-8. To prevent possible
data loss, use UTF-8 to write the data to the appropriate logging and auditing files.
When the local code page is non-UTF-8, data must be converted to non-UTF-8
before it can be written. In this case, the possibility of data loss exists.

All log audit files generated by WebSEAL are in the language specified by the
locale in which the server runs. The code page used to write the messages is
configurable in the WebSEAL routing file. For example, on UNIX and Linux
systems, the file is /opt/pdweb/etc/routing.

UTF-8 impact on authentication

The use of UTF-8 for internal data handling has the following impacts on
WebSEAL's processing of authentication requests:
v UTF-8 logins over basic authentication is not supported.

Chapter 3. Web server configuration 59

Use of UTF-8 with basic authentication (BA) login is not supported. UTF-8
logins with BA cannot be supported because browsers transmit data in
inconsistent ways. WebSEAL has always not supported multi-byte BA logins
because of browser inconsistency.
WebSEAL consumes BA login strings with the expectation that they are in the
local code page. WebSEAL supports 7-bit ASCII and single-byte Latin code
pages. For example, a server that wants to allow French users to use BA logins
must run in a Latin locale. WebSEAL consumes the BA login string and converts
it to UTF-8 internally. However, if the French user has a UTF-8 code page, BA
login is not available, because the login string will be multi-byte.

v Forms login.
In previous versions of WebSEAL, forms login data was always consumed by
WebSEAL with the auto functionality. This meant that WebSEAL examined the
login data to see if it was in UTF-8 format. If the data was not in UTF-8 format,
the data was processed as local code page.
For WebSEAL version 5.1 and greater, this setting is configurable, as described in
“UTF-8 support in POST body information (forms)” on page 62.

v Cross-domain single signon, e-community single signon, and failover
authentication
Each of these authentication methods employs encoded tokens. The encoding of
these tokens must be configured to use either UTF-8 encoding or non-UTF-8
encoding. For more information, see “Configuration of multi-locale support” on
page 61.

UTF-8 impact on authorization (dynamic URL)
WebSEAL restricts all requests requiring authorization checks to those that use
UTF-8 or the locale setting of the WebSEAL host. All back-end servers are also
bound by these settings. WebSEAL must enforce this restriction so it can apply
security policy on known protected objects.

This restriction is particularly important to consider when enabling the WebSEAL
dynamic URL feature. WebSEAL dynamic URL processes data from POST bodies
as well as from query strings. Data from both POST bodies and query strings need
to be in a character encoding known to WebSEAL for successful mapping of
character patterns to authorization objects.

By design, WebSEAL dynamic URL processes the query string portion of a request,
where the dynamic data destined for the Web application interface is located. The
GET request standard uses this query string format. To support the query string
requirement for dynamic URL, WebSEAL converts any data contained in the body
of a POST request into the query string format.

When dynamic URL is enabled, WebSEAL maps the data from query strings to
objects requiring protection (access control). To securely map query strings to
objects, the string data needs to use the same character set known to WebSEAL
and the back-end application server. Otherwise, dynamic URL access control could
be circumvented by a request that uses a character accepted by the back-end
application, but not accepted by WebSEAL. If WebSEAL receives dynamic data (in
a POST body or query string) using characters that are neither UTF-8 nor from the
character set in which WebSEAL runs, WebSEAL rejects the request and returns an
error.

If WebSEAL (with dynamic URL enabled) is running in a non-UTF-8 environment,
and request POST bodies or query strings contain UTF-8 characters, you can

60 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

configure the utf8-form-support-enabled stanza entry in the [server] stanza of the
WebSEAL configuration file to allow WebSEAL to decode the UTF-8 coding in
these requests.

Complete information on dynamic URL can be found in Chapter 38, “Dynamic
URLs,” on page 595.

URLs must use only one encoding type

WebSEAL requires that any URL presented for processing contain only a single
character encoding type such as UTF-8 or ShiftJIS. When URLs contain multiple
character encoding types, WebSEAL cannot guarantee the accuracy of the data in
the request because the decoded value of the UTF-8 characters might not match the
decoded value of the same characters in the local code page. This possible
inaccuracy in the data could cause WebSEAL to mistakenly grant unauthorized
users access to protected objects.

When WebSEAL encounters a URL with multiple character encoding types, the
URL is returned as a Bad Request.

Configuration of multi-locale support

This section consists of the following topics:
v “UTF-8 support for uniform resource locators (URLs)”
v “UTF-8 support in POST body information (forms)” on page 62
v “UTF-8 support in query strings” on page 63
v “UTF-8 encoding of tokens for cross domain single signon” on page 64
v “UTF-8 encoding of tokens for e-community single signon” on page 64
v “UTF-8 encoding of cookies for failover authentication” on page 65
v “UTF-8 encoding in junction requests” on page 65

UTF-8 support for uniform resource locators (URLs)

Browsers are limited to a defined character set that can legally be used within a
Uniform Resource Locator (URL). This range is defined to be the printable
characters in the ASCII character set (between hex code 0x20 and 0x7e). For
languages other than English, and other purposes, characters outside the printable
ASCII character set are often required in URLs. These characters can be encoded
using printable characters for transmission and interpretation.

There are a number of different encoding methods for transmitting characters
outside the printable ASCII range. WebSEAL, acting as a Web proxy, must be able
to handle all these cases. The UTF-8 locale support addresses this need.

The manner in which WebSEAL processes URLs from browsers can be specified in
the WebSEAL configuration file:
[server]
utf8-url-support-enabled = {yes|no|auto}

The three possible values are as follows:
v yes

In this mode, WebSEAL recognizes only URI encoded UTF-8 data in URL strings
and they are used without modification. These UTF-8 characters are then
validated and taken into account when determining access rights to the URL.

Chapter 3. Web server configuration 61

WebSEAL supports both raw UTF-8 and URI encoded UTF-8 strings in URLs. In
this mode, other encoding techniques are not accepted.
This is the default value, appropriate for most environments.
Servers that run in an 7-bit ASCII English locale should use this value.

v no

In this mode, WebSEAL does not recognize UTF-8 format data in URL strings.
Used for local code page only. If the string can be validated it is converted to
UTF-8 for internal use.
Servers that do not need to process multi-byte input and are running in a
single-byte Latin locale, such as French, German, or Spanish, should use this
setting.
Use this setting when supporting applications and Web servers do not function
correctly with WebSEAL if UTF-8 support is enabled. These applications might
use DBCS (such as Shift-JIS) or other encoding mechanisms in the URL.

Note: When setting this value to no, ensure that all junctioned servers do NOT
accept UTF-8 format URLs. It is important from a security perspective, that
WebSEAL interprets URLs in the same manner as the junctioned servers.

v auto

WebSEAL attempts to distinguish between UTF-8 and other forms of language
character encoding. WebSEAL correctly processes any correctly constructed
UTF-8 encoding. If the encoding does not appear to be UTF-8, then the coding is
processed as DBCS or Unicode.
If a URL has Unicode in the format "%uHHHH", WebSEAL converts it to UTF-8.
The rest of the decoding proceeds as if the configuration setting was yes. If the
double-byte-encoding option in the [server] stanza is set to yes, WebSEAL
converts %HH%HH to UTF-8.
Servers running in a single-byte Latin locale that need to process multi-byte
strings should use the auto setting.
Servers running in a multi-byte locale but that need to support only one
language (for example, Japanese) can use the auto setting.

A recommended deployment strategy is as follows:
1. Unless required for content purposes, immediately check and set the

default-webseal ACL on existing production deployments to NOT allow
unauthenticated "r" access. This setting limits security exposure to users who
have a valid account within the Security Access Manager domain.

2. Ensure that the utf8-url-support-enabled stanza entry is set to the default value
of yes.

3. Test your applications. If they function correctly, use this setting.
4. If any applications fail with "Bad Request" errors, retry the application with the

utf8-url-support-enabled stanza entry set to no. If this works, you can deploy
with this setting. Ensure, however, that no junctioned Web server is configured
to accept UTF-8 encoded URLs.

5. If the application continues to have problems, try setting utf8-url-support-
enabled to auto.

UTF-8 support in POST body information (forms)

The manner in which WebSEAL processes data in POST bodies containing
information from forms (for example, a login form) can be specified in the
WebSEAL configuration file:

62 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

[server]
utf8-form-support-enabled = {yes|no|auto}

The forms providing data to the server are forms that are part of WebSEAL, such
as login forms. These forms all declare the character set to be UTF-8. Thus the
default value is yes. If an administrator edits these forms and changes the
character set to a non-UTF-8 setting, such as a local code page, this configuration
setting should be changed. If some forms use UTF-8 and some use a local code
page, use the auto value. If all forms are modified to use a non-UTF-8 setting, use
the no value.

The three possible values are as follows:
v yes

WebSEAL recognizes only UTF-8 encoding in forms and the data is used
without modification. These UTF-8 characters are then validated and taken into
account when processing the data. Other encoding techniques are not accepted.
When double-byte-encoding is set to yes, Unicode of the form %HH%HH is
supported. When a double-byte Unicode character is detected, the entire string
must be double-byte encoded.
This is the default value, appropriate for most environments.

v no

WebSEAL does not recognize UTF-8 encoding in forms. Used for local code page
only. If the form data can be validated it is converted to UTF-8 for internal use.

v auto

WebSEAL attempts to distinguish between UTF-8 and other forms of language
character encoding. WebSEAL correctly processes any correctly constructed
UTF-8 input. If the encoding does not appear to be UTF-8, then the coding is
processed as non-UTF-8.

UTF-8 support in query strings

The manner in which WebSEAL processes data from query strings can be specified
in the WebSEAL configuration file:
[server]
utf8-qstring-support-enabled = {yes|no|enabled}

The default setting is no. Therefore, WebSEAL default behavior is to assume all
query strings are local code page.

The three possible values are as follows:
v yes

WebSEAL recognizes only UTF-8 encoding in query strings and the data is used
without modification. These UTF-8 characters are then validated and taken into
account when processing the data. Other encoding techniques are not accepted.
Use this setting when your WebSEAL server must process query strings that use
UTF-8.
Servers that operate in an single-byte Latin locale, such as French, German, or
Spanish, and process queries from an application that uses UTF-8, should use
this setting. Servers that operate in a multi-byte locale and process only UTF-8
query strings can use this setting.

v no

Chapter 3. Web server configuration 63

WebSEAL does not recognize UTF-8 encoding in query strings. Used for local
code page only. If the form data can be validated it is converted to UTF-8 for
internal use.
This is the default value, appropriate for most environments.
Servers that operate in a 7-bit ASCII English locale can use this setting.

v auto

WebSEAL attempts to distinguish between UTF-8 and other forms of language
character encoding (DBCS and Unicode). WebSEAL correctly processes any
correctly constructed UTF-8 encoding. If the encoding does not appear to be
UTF-8, then the coding is processed as DBCS or Unicode.
Servers that operate in a multi-byte locale and process a mixture of UTF-8 and
non-UTF-8 query strings can use this setting.
Servers that operate in a single-byte Latin locale, such as French, German, or
Spanish, and process a mixture of UTF-8 and non-UTF-8 query strings can use
this setting.

UTF-8 encoding of tokens for cross domain single signon

The use of UTF-8 encoding for strings within tokens used for cross domain single
signon is specified in the WebSEAL configuration file.
[cdsso]
use-utf8 = {true|false}

The default value is true.

When use-utf8 is set to false, strings are encoded using the local code page. Use
this value when implementing cross domain single signon with versions of
WebSEAL prior to version 5.1. WebSEAL versions prior to 5.1 do not use UTF-8
encoding for tokens. When deploying an environment that includes these older
servers, configure WebSEAL to not use UTF-8 encoding. This setting is necessary
for backward compatibility.

Note: Note that when this value is set to false, data loss can occur during
conversion from UTF-8 to a non-UTF-8 local code page.

UTF-8 encoding of tokens for e-community single signon

The use of UTF-8 encoding for strings within tokens used for e-community single
signon is specified in the WebSEAL configuration file.
[e-community-sso]
use-utf8 = {yes|no}

The default value is yes.

When use-utf8 is set to no, strings are encoded using the local code page. Use this
value when implementing e-community single signon with versions of WebSEAL
prior to version 5.1. WebSEAL versions prior to 5.1 do not use UTF-8 encoding for
tokens. When deploying an environment that includes these older servers,
configure the WebSEAL server to not use UTF-8 encoding. This setting is necessary
for backward compatibility.

Note: When this value is set to no, data loss can occur during conversion from
UTF-8 to a non-UTF-8 local code page.

64 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

UTF-8 encoding of cookies for failover authentication

The use of UTF-8 encoding for strings within failover authentication cookies is
specified in the WebSEAL configuration file.
[failover]
use-utf8 = {yes|no}

The default value is yes.

When use-utf8 is set to no, failover authentication cookies are encoded using the
local code page. Use this value when implementing failover authentication with
versions of WebSEAL prior to version 5.1. WebSEAL versions prior to 5.1 do not
use UTF-8 encoding for failover authentication cookies. When deploying an
environment that includes these older servers, configure the WebSEAL server to
not use UTF-8 encoding. This setting is necessary for backward compatibility.

Note: Note that when this value is set to no, data loss can occur during conversion
from UTF-8 to a non-UTF-8 local code page.

UTF-8 encoding of cookies for LTPA authentication
WebSEAL only supports LTPA version 2 cookies for LTPA authentication. The
specification for this version of LTPA cookies requires the use of UTF-8 encoding.

Due to this requirement, there is no option to enable or disable UTF-8 encoding for
LTPA cookies. LTPA cookies will always be UTF-8 encoded.

UTF-8 encoding in junction requests

WebSEAL inserts information into HTTP headers for requests to the back-end
server. This information can include extended attributes or user data. In WebSEAL
versions prior to version 5.1, the headers were added to the request using the local
code page. In WebSEAL version 5.1 and greater, the header data is transmitted in a
configurable format.

By default, WebSEAL adds information to HTTP headers using a UTF-8 code page.
This action prevents any potential data loss that could occur when converting to a
non-UTF-8 code page. Also by default, this data is sent URI encoded. For
backward compatibility, the format of the header data can be configured to the
local code page. In addition, two other formats are supported: Raw UTF-8 and URI
encoded local code page.

The -e option for creating junctions specifies the encoding of user name, groups,
and other extended attributes that are sent within the HTTP header to the
back-end server. The encode option can take one of the following arguments:

Argument Description

utf8_uri URI encoded UTF-8 data.

All white space and non-ASCII bytes are encoded %XY, where X
and Y are hex values (0–F).

Encoding applies also to:

v ASCII characters below 0x1F and above 0x7F

v Escape characters for tab, carriage return, and line feed

v Percent symbol

Chapter 3. Web server configuration 65

Argument Description

utf8_bin Unencoded UTF-8 data.

This setting allows data to be transmitted without data loss, and
the user does not need to URI-decode the data.

This setting should be used with caution, because it is not part
of the HTTP specification.

lcp_uri URI encoded local code page data.

Any UTF-8 characters that cannot be converted to a local code
page are converted to question marks (?). Use this option with
caution and only in environments where the local code page
produces the desired strings.

lcp_bin Unencoded local code page data.

This mode was used by versions of WebSEAL prior to version
5.1. Use of this mode enables migration from previous versions,
and is used in upgrade environments.

Note that data loss can potentially occur with this mode. Use
with caution.

Validation of character encoding in request data

WebSEAL parses requests to ensure character encoding is compatible with the
back-end server requirements. For example, it is possible for the query string of a
request to contain character encoding (such as raw binary data) that is
unacceptable to WebSEAL, and therefore rejected by WebSEAL.

The problem of invalid character encoding is also caused by the specific
requirements of the back-end server application. In a typical scenario, the client
makes a request to this back-end application. The request includes a query string,
required by the back-end application, that contains character encoding unknown to
WebSEAL. WebSEAL rejects the request and returns a "Bad Request" (400) error.
The error log contains a message such as: "Illegal character in URL."

One solution to the problem of incorrect validation of character encoding is to
configure WebSEAL to not validate the query string and POST body data of
requests. The request data can then be passed unchanged to the back-end
application.

To instruct WebSEAL to not validate query string and POST body data, set the
value of the decode-query stanza entry in the [server] stanza of the WebSEAL
configuration file to "no":
[server]
decode-query = no

The default setting is:
decode-query = yes

If decode-query is set to "yes", WebSEAL validates the query string in requests
according to the utf8-qstring-support-enabled stanza entry. See “UTF-8 support in
query strings” on page 63. This setting applies to POST body data in requests

66 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

when dynamic URL is enabled. Dynamic URL converts the POST body data in a
request to query string format. See “Conversion of POST body dynamic data to
query string format” on page 596.

If decode-query is set to "yes", WebSEAL validates the POST body in requests
according to the utf8-form-support-enabled stanza entry. See “UTF-8 support in
POST body information (forms)” on page 62.

If you set decode-query=no, you must understand the possible consequences to
securing protected objects. In particular, if WebSEAL is configured to not validate
query strings in requests (decode-query=no), then dynamic URL mapping for
authorization checking, if enabled, must be disabled.

To disable the dynamic URL feature, comment out the dynurl-map stanza entry in
the [server] stanza of the WebSEAL configuration file:
[server]
#dynurl-map = bin/dynurl.conf

Supported wildcard pattern matching characters

The following table lists the wildcard pattern matching characters supported by
WebSEAL.

Table 3. Supported wildcard matching characters

Character Description

\ The character that follows the backslash is part of a special sequence.
For example, \t is the TAB character. Can be used to escape the
other pattern matching characters: (? * [] ^). To match the
backslash character, use "\\".

? Wildcard that matches a single character. For example, the string
“abcde” is matched by the expression “ab?de”

* Wildcard that matches zero or more characters.

[] Defines a set of characters, from which any can match. For example,
the string “abcde” is matched with the regular expression
“ab[cty]de”.

^ Indicates a negation. For example, the expression [^ab] matches
anything but the ‘a’ or ‘b’ characters.

Examples in this document of pattern matching using wildcards include:
v Specifying extended attributes to add to a CDSSO token (“Extended attributes to

add to token” on page 546).
v Specifying extended attributes to add to an e-community token (“Extended

attributes to add to token” on page 568).
v Mapping ACL and POP objects to dynamic URLs (“Mapping ACL and POP

objects to dynamic URLs” on page 597).

Setting system environment variables
Use the system-environment-variables stanza to list the system environment
variables that the WebSEAL daemon exports during initialization. Include a
separate entry for each system environment variable that you want to export.

Note:

Chapter 3. Web server configuration 67

v This functionality is not supported on Windows platforms.
v The environment variable names are case-sensitive.

The format of each configuration entry is:
<env-name> = <env-value>

where:

<env-name>
The name of the system environment variable.

<env-value>
The value of the system environment variable.

For example:
[system-environment-variables]
LANG = de

68 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 4. Web server response configuration

This chapter discusses the resources available to the WebSEAL server for
responding to client requests.

Topic Index:
v “Static HTML server response pages”
v “HTML server response page locations” on page 74
v “HTML server response page modification” on page 75
v “Account management page configuration” on page 82
v “Error message page configuration” on page 84
v “Multi-locale support for server responses” on page 86
v “Handling the favicon.ico file with Mozilla Firefox” on page 87
v “Configuring the location URL format in redirect responses” on page 89
v “Local response redirection” on page 90

Static HTML server response pages
WebSEAL provides a number of static HTML server response pages that can be
used to provide responses to client requests.

These pages include:
v Error messages
v Informational messages
v Login forms
v Password management forms

You can modify the contents of these pages to include site-specific messages or
perform site-specific actions. Most pages are appropriate for forms and basic
authentication over HTTP or HTTPS.

The names, content, and descriptions of the HTML message pages are listed in the
following table. The following codes are used to indicate the message type:
v ER - error message
v IN - informational message
v LG - login form
v PW - password management form
v NA - not applicable

Filename Status and HTTP Code Description Type

132120c8.html
Authentication Failed
(HTTP 403)

Credentials cannot be retrieved for the client
certificate used. Possible reasons include:

v The user supplied an incorrect certificate.

v The user's credentials are missing from the
authentication database.

ER

© Copyright IBM Corp. 2002, 2013 69

Filename Status and HTTP Code Description Type

38ad52fa.html
Non-empty Directory
(HTTP 500)

The requested operation requires the removal
of a non-empty directory. The requested
operation is an illegal operation.

ER

38b9a4b0.html
Application Server
is Offline
(HTTP 503)

The application server you are accessing has
been taken offline by the system
administrator. Returned when a request is
blocked due to a junction that has been
placed in a throttled or offline operational
state.

ER

38b9a4b1.html
Service Unavailable
(HTTP 503)

The WebSEAL server is unable to service a
request because a needed resource is
unavailable.

ER

38b9a41f.html
Additional Login Denied
(HTTP 200)

You have already logged in to this Web server
from another client. No more new logins are
permitted until your initial session has ended.

ER

38cf013d.html
Request Caching Failed
(HTTP 500)

The request-max-cache or
request-body-max-read values have been
exceeded.

ER

38cf0259.html
Could Not Sign User On
(HTTP 500)

The resource requested requires the WebSEAL
server to sign the user on to another Web
server. However, a problem occurred while
WebSEAL was attempting to retrieve the
information.

ER

38cf025a.html
User Has No Single
Signon Information
(HTTP 500)

WebSEAL could not locate the GSO user for
the requested resource.

ER

38cf025b.html
No Single Signon
Target for User
(HTTP 500)

WebSEAL could not locate the GSO target for
the requested resource.

ER

38cf025c.html
Multiple Signon
Targets for User
(HTTP 500)

Multiple GSO targets are defined for the
requested resource. This is an incorrect
configuration.

ER

38cf025d.html
Login Required
(HTTP 500)

The resource requested is protected by a
junctioned back-end Web server, requiring
WebSEAL to sign the user on to that Web
server. In order to do this, user must first log
in to WebSEAL.

ER

38cf025e.html
Could Not Sign User On
(HTTP 500)

The resource requested requires WebSEAL to
sign the user on to another Web server.
However, the signon information for the user
account is incorrect.

ER

38cf025f.html
Unexpected Authentication
Challenge
(HTTP 500)

WebSEAL received an unexpected
authentication challenge from a junctioned
back-end Web server.

ER

70 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Filename Status and HTTP Code Description Type

38cf0421.html
Moved Temporarily
(HTTP 302)

The requested resource has been temporarily
moved. This event usually occurs if there has
been a mishandled redirect.

ER

38cf0424.html
Bad Request
(HTTP 400)

WebSEAL received an HTTP request that is
not valid.

ER

38cf0425.html
Login Required
(HTTP 401)

The resource you have requested is secured
by WebSEAL, and in order to access it, you
must first log in.

ER

38cf0427.html
Forbidden
(HTTP 403)

The user does not have permissions to access
the requested resource.

ER

38cf0428.html
Not Found
(HTTP 404)

The requested resource cannot be located. ER

38cf0432.html
Service Unavailable
(HTTP 503)

A service required by WebSEAL to complete
the request is currently not available.

ER

38cf0434.html
Privacy required
(HTTP 403)

Quality of protection at the privacy level is
required.

ER

38cf0437.html
Server Suspended
(HTTP 500)

The WebSEAL server has been temporarily
suspended by the System Administrator. No
requests will be handled until the server is
returned to service by the administrator.

ER

38cf0439.html
Session Information Lost
(HTTP 500)

The browser and server interaction was a
stateful session with a junctioned back-end
server that is no longer responding. WebSEAL
requires a service located on this server to
complete your request.

ER

38cf0442.html
Service Unavailable
(HTTP 503)

The service required by WebSEAL is located
on a junctioned back-end server where SSL
mutual authentication has failed.

ER

38cf04c6.html
Third-party server
not responding
(HTTP 500)

The requested resource is located on a
third-party server. WebSEAL has tried to
contact that server, but the server is not
responding.

ER

38cf04d7.html
Third-party server
not responding
(HTTP 500)

The requested resource is located on a
third-party server. WebSEAL has tried to
contact that server, but the server is not
responding.

ER

38cf07aa.html
CGI Program Failed
(HTTP 500)

A CGI program failed to execute properly. ER

Chapter 4. Web server response configuration 71

Filename Status and HTTP Code Description Type

38cf08cc.html
Access Denied
(HTTP 403)

The resource you have requested is protected
by a policy that restricts access to specific
time periods. The current time is outside of
those permitted time periods.

ER

acct_locked.html
Account locked
(HTTP 200)

Page displayed in these circumstances:

v Authentication failed because the user's
account was temporarily locked due after
too many unsuccessful login attempts.

v nsAccountLock is true for a user (in Sun
Directory Server) when they attempt to
login. This is only displayed if the user
provides the correct password during login.

Note: When using basic authentication
(BA-auth) with Security Access Manager, the
acct_locked.html file cannot be customized to
contain additional images. Although you can
embed images in the file, subsequent requests
to access the embedded images will fail.

ER

certfailure.html
Certification authentication
failed
(HTTP 200)

An attempt to authenticate with a client
certificate failed. Page displayed if client fails
to authenticate with a certificate when
accept-client-certs = required. A valid client
certificate is required to make this connection.

ER

certlogin.html
Access Manager Login
(HTTP 200)

Certificate login form used when
accept-client-certs = prompt_as_needed.

LG

certstepuphttp.html
Attempt to Step-up to
Certification authentication
failed
(HTTP 200)

An attempt to step-up to certificates over
HTTP failed. Use of HTTPS is required. Try
re-accessing the page over HTTPS.

ER

default.html
Server Error
(HTTP 500)

WebSEAL could not complete your request
due to an unexpected error.

ER

deletesuccess.html
Success
(HTTP 200)

The client-initiated DELETE request
completed successfully.

IN

help.html
PKMS Administration
(HTTP 200)

Help information for pkmslogout and
pkmspasswd. IN

login.html
Access Manager Login
(HTTP 200)

Standard request form for user name and
password

LG

login_success.html
Success
(HTTP 200)

Normally, WebSEAL caches the URL of the
requested resource, and returns the resource
to the user upon successful login. The
login_success.html page is displayed after
successful login if for some reason WebSEAL
cannot determine the URL of the originally
requested resource.

IN

72 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Filename Status and HTTP Code Description Type

logout.html
PKMS Administration: User
Log Out
(HTTP 200)

Page displayed after successful logout. User
USERNAME has logged out.

IN

passwd.html
PKMS Administration:
Change Password
(HTTP 200)

Change password form. Also displayed if
password change request failed.

PW

passwd_exp.html
PKMS Administration:
Expired Password
(HTTP 200)

Page displayed if user authentication failed
due to an expired password. Change expired
password.

PW

passwd_rep.html
PKMS Administration:
Change Password
(HTTP 200)

Page displayed if password change request
was successful.

PW

passwd_warn.html
Password Administration
The password will expire
at approximately...
(HTTP 200)

Page displayed if user LDAP password is due
to expire soon.

PW

putsuccess.html
Success
(HTTP 200)

The client-initiated PUT operation completed
successfully.

IN

query_contents.html
Junctioning Win32 Web
Servers
(HTTP 200)

Installation and configuration information for
making a junction from an Access Manager
WebSEAL server to third-party Web servers
running on the Win32 platform.

IN

relocated.html
Temporarily Moved
(HTTP 302)

The requested resource has temporarily
moved.

IN

stepuplogin.html
Access Manager
Step Up Login
(HTTP 200)

Login form for step-up authentication. LG

switchuser.html
Access Manager
Switch User
(HTTP 200)

Login form for switch user. LG

template.html
Template Template form for custom error messages. NA

too_many_sessions.html
PKMS Administration:
Session Displacement
(HTTP xxx)

Error message when exceeding the limit of
concurrent logins by a single user.

ER

websealerror.html
WebSEAL Server Error
(HTTP 400)

WebSEAL server internal error. ER

Chapter 4. Web server response configuration 73

HTML server response page locations

For storage location purposes on the WebSEAL server, static HTML server response
pages are grouped into three general categories:
v Account management pages
v Error message pages
v Junction-specific static server response pages

The location of these three storage categories is configurable, as described in the
following sections:
v “Management Root”
v “Account management page location”
v “Error message page location” on page 75
v “Junction-specific static server response pages” on page 75

Management Root
On the IBM Security Web Gateway Appliance, you can use the LMI to access the
Management Root file structure.

The file structure is available on the Manage Reverse Proxy Management Root
page for each instance. To open this Management Root page and access the file
structure from the LMI web interface, you must:
1. Select Secure Reverse Proxy Settings > Manage > Reverse Proxy from the top

menu. The Reverse Proxy management page displays.
2. Click the instance that you want to manage from the available list of Instance

Names.
3. Select Manage > Management root. The Manage Reverse Proxy Management

Root page for the selected instance displays with the available file structure.

The available directories include:
v management

v errors

v oauth

v junction-root

Account management page location
Account management pages include login forms, password management forms,
and some informational messages.

You can use the LMI to access the account management pages. Open the
management directory on the Manage Reverse Proxy Management Root page. Pages
are located in language-specific subdirectories at this location. The subdirectory
specific to your locale is automatically appended to the end of the directory
hierarchy during WebSEAL installation and configuration.

The default United States English directory is:
management/C

The Japanese locale directory is:
management/JP

74 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

See “Multi-locale support for server responses” on page 86 for further information
on multi-locale support.

Error message page location

Pages are in language-specific subdirectories of the errors directory. You can access
these directories from the Manage Reverse Proxy Management Root page. The
subdirectory specific to your locale is automatically appended to the end of the
directory hierarchy during WebSEAL installation and configuration.

The default United States English directory is:
errors/C

The Japanese locale directory is:
errors/JP

See “Multi-locale support for server responses” on page 86 for further information
on multi-locale support.

For information on creating junction-specific static server response pages, see
“Junction-specific static server response pages.”

Junction-specific static server response pages
You can customize static server response pages on a per-junction basis.

Add the customized static server response page files into a junction-specific
directory:
errors/language/junction_id

where junction_id refers to the junction point for a standard junction (excluding the
leading / character) or the virtual host label for a virtual host junction. For
example:
errors/C/test_junction

WebSEAL searches for static server response page files in the following sequence,
returning the first file found to the client:
1. errors/language/junction_id/page.html

2. errors/language/junction_id/default.html

3. errors/language/page.html

4. errors/language/default.html

You can use the / character in the junction name. For example, if you created a
junction directory named test under the jct directory, the junction is specified as
/jct/test. In this instance WebSEAL searches for files in the errors/language/jct/
test directory.

HTML server response page modification

This section contains the following topics:
v “Guidelines for customizing HTML response pages” on page 76
v “Macro resources for customizing HTML response pages” on page 76
v “Adding an image to a custom login form” on page 81

Chapter 4. Web server response configuration 75

Guidelines for customizing HTML response pages

You can customize the static HTML server response pages to better reflect your
current WebSEAL implementation. Observe the following notes:
v Do not modify the name of the file. The hexadecimal number is used by

WebSEAL to display the proper error file.
v Use an HTML or text editor to modify page contents. Ensure that you use valid

HTML tagging.
v Specify server-relative URIs (rather than relative URIs) for any URIs for

resources such as images or CSS. If virtual host junctions are being used for
WebSEAL, you must use absolute URIs for such resources.

v WebSEAL supplies a set of macros that you can use to capture dynamic
information. See “Macro resources for customizing HTML response pages.”

Macro resources for customizing HTML response pages
Macros are predefined, specially formatted strings that are used to dynamically
add information to static HTML server response pages.

When WebSEAL responds with a static HTML page, it parses the page and
searches for occurrences of macros. When a macro is found, the appropriate
content is dynamically substituted. Macros are populated only when the value is
relevant to that page.

For example, WebSEAL returns a static server response page in response to a
request that results in an error. If WebSEAL encounters the ERROR macro in the
static server response page, WebSEAL substitutes a string representation of the
error code that was generated when handling the request.

The following macros occur in some of the static HTML server response pages
provided by WebSEAL, and are available for use in customizing these pages:

Macro Description

AUTHNLEVEL Substitutes the authentication level used in authentication strength
policy (step-up).

BACK_NAME
Substitutes the value "BACK" if a referer header is present in the
request, or "NONE" if no referer header is present in the request.

BACK_URL
Substitutes the value of the referer header from the request, or "/" if
none.

BASICAUTHN Used to control the display of information in the certlogin.html and
stepuplogin.html login forms. When the authentication method
(indicated by the macro name) is valid, the section in the form
governed by the macro is displayed. When the authentication method
is not valid, the macro is replaced by a start comment delimiter (<!--).
All subsequent information in the form is commented out until a
comment closing delimiter (-->) is reached.

76 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Macro Description

CERTAUTHN Used to control the display of information in the certlogin.html and
stepuplogin.html login forms. When the authentication method
(indicated by the macro name) is valid, the section in the form
governed by the macro is displayed. When the authentication method
is not valid, the macro is replaced by a start comment delimiter (<!--).
All subsequent information in the form is commented out until a
comment closing delimiter (-->) is reached.

CREDATTR{name} The value of the user credential attribute that has the specified name.
For example, CREDATTR{tagvalue_session_index} returns the session
token.

EAIAUTHN Used to control the display of information in the certlogin.html and
stepuplogin.html login forms. When the authentication method
(indicated by the macro name) is valid, the section in the form
governed by the macro is displayed. When the authentication method
is not valid, the macro is replaced by a start comment delimiter (<!--).
All subsequent information in the form is commented out until a
comment closing delimiter (-->) is reached.

ERROR
The hard-coded error message returned from Security Access
Manager.

Same as ERROR_TEXT. Both macros exist for compatibility with prior
versions of WebSEAL.

ERROR_CODE
The numeric value of the error code.

ERROR_TEXT
The text associated with an error code in the message catalog.

Same as ERROR. Both macros exist for compatibility with prior
versions of WebSEAL.

EXPIRE_SECS
Contains the numbers of seconds before the password expires.

This can be submitted into the password warning form
(passwd_warn.html) to display the time left the user has to change
their password.

FAILREASON Error message.

HOSTNAME
Fully qualified host name.

HTTP_BASE
Base HTTP URL of the server "http://host:tcpport/".

HTTPS_BASE
Base HTTPS URL of the server, "https://host:sslport/".

HTTPHDR{name}
Used to include the contents of a specified HTTP header. If the
specified HTTP header does not exist within the request, the macro
will contain the text: ’Unknown’.

For example, the macro name to include the ’Host’ HTTP header
would be HTTPHDR{Host}.

LOCATION Contains the URL to which the client is being redirected. Sent only in
redirects.

METHOD
The HTTP method requested by the client.

Chapter 4. Web server response configuration 77

Macro Description

OLDSESSION
When WebSEAL receives a user request that contains an old ("stale")
session cookie that no longer matches any existing entry in the
WebSEAL session cache, the macro (normally set to "0") is set to the
value of "1". The macro is set whenever WebSEAL sees a session
cookie that is not recognized. Unrecognized session cookies can
occur, for example, during session timeouts, session displacement,
and when a user switches WebSEAL servers.

Used in the standard WebSEAL login form to provide a trigger
mechanism for a customized response to the user. This custom
response could more accurately explain to the user why the session is
not valid anymore.

See “Customized responses for old session cookies” on page 293.

PROTOCOL The client connection protocol used. Can be HTTP or HTTPS.

REFERER
The value of the HTTP referer header from the request, or
"Unknown", if none.

REFERER_ENCODED A URI encoded version of the HTTP referer header and macro.

STEPUP A message specifying the step-up level required. Only sent when
returning a step-up login form

URL
The URL requested by the client.

URL_ENCODED A URI encoded version of the URI and macro.

USERNAME
The name of the user responsible for the request.

(See also “Customization of login forms for reauthentication” on page
175.)

Macro data string format

WebSEAL provides a configuration stanza entry that specifies the format of macro
data strings that are inserted into HTML server response pages. The default setting
specifies UTF-8 format.
[content]
utf8-template-macros-enabled = yes

Static HTML server response pages use a UTF-8 character set by default. If you
modify the character set to specify the local code page, set this entry to “no”.

Note that this setting affects files located in the directories specified by the
error-dir and mgt-pages-root stanza entries in the [acnt-mgt] stanza of the
WebSEAL configuration file. See “HTML server response page locations” on page
74.

Macros embedded in a template

Security Access Manager verifies macro values before embedding the macros in
templates, but additional changes might be necessary in some customer
environments, depending on how the templates have been customized. Macros
used in Security Access Manager templates are either URL macros or non-URL

78 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

macros. URL macros are used to represent URLs, such as the HTTP request URL
and the referer URL. Non-URL macros are used to represent other values, such as
user names and error messages.

The following macros are URL macros:
v %LOCATION%
v %URL%
v %REFERER%
v %BACK_URL%
v %HOSTNAME%
v %HTTP_BASE%
v %HTTPS_BASE%
v %REFERER_ENCODED%
v %URL_ENCODED%

All other macros used in Security Access Manager are non-URL macros.

How Security Access Manager encodes macros
Security Access Manager encodes macros before embedding the macros in an
HTML template.

Encoding ensures that macro values are interpreted as text and not JavaScript or
HTML meta-characters. URL macros are encoded as Uniform Resource Identifier
(URI) characters. For example, the left bracket (<) character in a URL is converted
to %3c during encoding. Non-URL macros are encoded using HTML entities. For
example, left (<) and right (>) bracket characters are encoded as < and >,
respectively. Other HTML meta-characters in non-URL macros are encoded using
numeric character references. For example, a double quotation mark (") is rendered
as ".

Security Access Manager encodes the following characters in both URL and
non-URL macros:

Table 4. Characters encoded in URL and non-URL macros

Common Name Character or Description

less-than symbol <

greater-than symbol >

colon :

apostrophe '

quotation mark "

backslash \

All values less than ASCII 0x20 Examples include escape, tab, carriage
return, newline, formfeed, backspace, null
byte.

In addition, Security Access Manager encodes the ampersand (&) character in
non-URL macros.

Access Manger verifies that all URL macros except HOSTNAME are either absolute
or server-relative URLs and use either HTTP or HTTPS protocol. The HOSTNAME
macro must contain only alpha-numeric ASCII characters, dots, and hyphens.

Chapter 4. Web server response configuration 79

Use of macros in a template

Caution must be exercised when embedding macros in HTML templates to avoid
introducing cross-site scripting vulnerabilities to the Security Access Manager
environment. Use the following guidelines when embedding macros:
v URL macros may be safely used as HTML text. To use a macro as HTML text,

embed the macro between HTML tags. For example:
%URL%

v URL macros may be safely used as HTML attribute values for HTML attributes,
but only for attribute values that are intended for use with URLs. When using
macros as HTML attribute values, the macro must be surrounded by double or
single-quotes. For example:
clickable link

v URL macros may be safely used as JavaScript string values, but must be
surrounded by double or single-quotes. For example:
var url = ’%URL%’;

v Non-URL macros may be safely used as HTML text. To use a macro as HTML
text, embed the macro between HTML tags. For example:
%USERNAME%

v Non-URL macros may be safely used as HTML attribute values, but only for
attribute values that are NOT intended for use with URLs. When using macros
as HTML attribute values, the macro must be surrounded by double or
single-quotes. For example:
<input type="text" name="user" value="%USERNAME%">

v Non-URL macros may be safely used as JavaScript string values, but must be
surrounded by double or single-quotes. For example:
var user = ’%USERNAME%’;

HTML tags and attributes

Both URL and non-URL macros can be safely used with most basic HTML tags.
However, there are certain HTML tags and attributes that use special syntax that is
different from typical HTML tags. For example, the content of <style> tags is
interpreted as cascading style sheet rather than typical HTML. Security Access
Manager macros are encoded for use with typical HTML tags and attributes and
should not be used within tags whose content is not interpreted as HTML.

In general, there is no reason to include Security Access Manager macros in HTML
tags whose contents do not follow typical HTML syntax. If you are unsure of the
syntax used by particular HTML tags, refer to W3C HTML specifications and your
Web browser documentation for additional information.

Note also that non-URL macros such as %USERNAME% should not be used as
HTML attribute values for attributes that are intended for URLs. Using non-URL
macros as URLs can introduce cross-site scripting vulnerabilities in your deployed
Security Access Manager environment.

Use of JavaScript to work with macros

There are two methods of using JavaScript to work with Security Access Manager
macros. You can use macros as JavaScript strings or you can use JavaScript to work
with the HTML Document Object Model (DOM). To use a macro as a JavaScript
string, simply insert the macro name between double or single quotes. For
example:

80 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

var username = "%USERNAME%";

When using a macro as a JavaScript string, be aware that the macro value may
contain URI encoding or HTML entity encoding. You can use the JavaScript
unescape() function to remove URI encoding from macro values.

The recommended method for removing HTML entity encoding is to use
JavaScript to work with the HTML DOM. For example, the following HTML code
can be used to remove entity encoding from the %USERNAME% macro:
%USERNAME%
<script>
var user = document.getElementById(’user’);
if (user && user.firstChild)
{
var name = user.firstChild.nodeValue;
}

</script>

The name variable contains the contents of the %USERNAME% macro; you can
then use the variable as needed. However, use caution to avoid introducing
DOM-based cross-site scripting vulnerabilities to the HTML template pages when
using macro values.

Adding an image to a custom login form

About this task

When you customize a server response page, such as a login form, you can add
images (graphics) to the page or form. Perform the following steps:

Procedure
1. Place the image file in an appropriate subdirectory under junction-root. You

can use the LMI to manage this directory. Go to the Manage Reverse Proxy
Management Root page. A suggested location for the image might be:
junction-root/icons

You can use HTML code similar to the following example to describe the image
in the custom login form:
<image src="/icons/logo.jpg" alt="Company Logo">

2. Ensure the definition of the image's file format is listed in the
[content-mime-types] of the WebSEAL configuration file. For example:
[content-mime-types]
jpg = image/jpeg

3. Create an ACL that allows unauthenticated access to logo.jpg. Since this is the
login page, there is no user ID established at the point of access. Therefore you
must allow unauthenticated access to the image file object or directory object
containing the image (such as the icons directory). The minimum permission
required are "Tr" for both Unauthenticated and Any-other. For example:
pdadmin> acl show icons-acl
ACL name: icons-acl
Description:
Entries:

Any-other Tr
Unauthenticated Tr
User sec_master TcmdbsvaBRrl

Chapter 4. Web server response configuration 81

Note: When setting the permissions on the Unauthenticated ACL entry, you
must have as a minimum the same permissions as the Any-other ACL entry.

4. For this example, attach this ACL explicitly to the icons directory (or ensure
that the unauthenticated permission is inherited to this point). For example:
pdadmin> acl attach /WebSEAL/abc.ibm.com-default/icons icons-acl

Account management page configuration

This section contains the following topics:
v “Configuration file stanza entries and values”
v “Configuration of the account expiration error message”
v “Configuration of the password policy options” on page 83

Configuration file stanza entries and values
The following HTML response page stanza entries and values are located in the
[acnt-mgt] stanza of the WebSEAL configuration file. Some pages are used only by
the Forms login method of providing identity information.

Stanza Entry HTML Response Page Usage

login = login.html Forms login

login-success = login_success.html Forms login

logout = logout.html Forms login

account-inactivated = acct_locked.html Any method

account-locked = acct_locked.html Any method

passwd-expired = passwd_exp.html Any method

passwd-change = passwd.html Any method

passwd-change-success = passwd_rep.html Any method

passwd-change-failure = passwd.html Any method

passwd-warn = passwd_warn.html Any method

passwd-warn-failure = passwd_warn.html Any method

help = help.html Any method

certificate-login = certlogin.html Certificate login

cert-stepup-http = certstepuphttp.html Certificate login

stepup-login = stepuplogin.html Step-up authentication

switch-user = switchuser.html Any method

cert-failure = certfailure.html Certificate login

eai-auth-error = eaiautherror.html External authentication
interface login error page

too-many-sessions = too_many_sessions.html Too many concurrent
sessions error page

html-redirect = redirect.html HTML redirection

Configuration of the account expiration error message

WebSEAL returns an error message to a user when a login attempt fails. The
message is conveyed through the ERROR macro contained in the appropriate

82 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

account management page returned to the user. The generic error message ("Login
failed") applies to a variety of situations where the user has supplied
authentication information that is not valid, such as an incorrect user name or
password.

You can use the account-expiry-notification stanza entry in the [acnt-mgt] stanza
of the WebSEAL configuration file to control whether additional information is
revealed in the error message when the login failure is due to an expired account.

The default "no" setting allows only the generic error message ("Login failed") to
be returned when the user login fails due to an expired user account:
[acnt-mgt]
account-expiry-notification = no

A "yes" setting for the account-expiry-notification stanza entry allows a more
detailed error message to be returned when the user login fails due to an expired
user account. This more detailed error message ("Account expired") indicates the
exact reason for the failure (an expired account):
[acnt-mgt]
account-expiry-notification = yes

Note that the "Account expired" message implies that the correct user name is
being used. This level of information might be considered a security exposure in
some environments.

Configuration of the password policy options

The following WebSEAL options are available in the [acnt-mgt] stanza to use the
password policy and account state for LDAP users.
[acnt-mgt]
enable-passwd-warn = yes
passwd-warn = passwd_warn.html
passwd-warn-failure = passwd_warn.html
account-inactivated = acct_locked.html

These options have no effect unless the corresponding Security Access Manager
LDAP option is also enabled ([ldap] enhanced-pwd-policy=yes) and is supported
for the particular LDAP registry type.

The enable-passwd-warn stanza entry enables WebSEAL to detect the attribute
REGISTRY_PASSWORD_EXPIRE_TIME added to a user's credential when the LDAP
password policy indicates that the user's password is soon to expire. The value of
this new attribute is the number of seconds until the user's password expires. If
this attribute is detected, a password warning form will be displayed when the
user logs in to WebSEAL.

The page macro EXPIRE_SECS is available containing the number of seconds before
the password expires. You can use this macro in the password warning form to
display the time left for the user to change his password.

The account-inactivated stanza entry specifies a page to display if the value of
nsAccountLock is true for a user in the Sun Directory when he attempts to log in.
This page is only displayed if the user provides the correct password during login.

The passwd-warn stanza entry specifies the page to display after login if WebSEAL
detects the LDAP password is soon to expire.

Chapter 4. Web server response configuration 83

The passwd-warn-failure stanza entry specifies the page to display if the user fails
to change his password that is due to expire. This page is often the same as the
one specified by the passwd-warn stanza entry to give the users another chance to
change their password.

Pages specified by the passwd-warn and passwd-warn-failure entries must
provide a (hidden) field called warn when posting to the /pkmspasswd.form. Keep
the value of the warn field short, as the value is ignored. The /pkmspasswd.form
management URL detects this hidden field and proceeds to use the warning
versions of the password change page. If the warn field is not detected then the
non-warning forms are used instead.
<input type="HIDDEN" name="warn" value="*">

You can use the /pkmsskip WebSEAL Management URL to allow the passwd-warn
page to skip changing the password and continue on with the login. This URL
effectively redirects the users to the page that they were originally trying to access
before being interrupted by the login process.

You can use the local response redirect options: passwd_warn,
passwd_warn_failure, and acct_inactivated. See “Operation for local response
redirection” on page 93 for more information.

Error message page configuration
When WebSEAL is unable to process a request from a client, WebSEAL returns an
HTML error message page to the client. The error message page explains why the
request failed.

The error message pages are installed when the WebSEAL instance is configured.
Each error message page is a separate static HTML file. The names of the files are
the hexadecimal values of the returned error codes. Do not modify these file
names.

Note: You must specify server-relative URIs (rather than relative URIs) for any
URIs for resources such as images or CSS. If virtual host junctions are being used
for WebSEAL, you must use absolute URIs for such resources.

This section contains the following topics:
v “Enabling the time of day error page”
v “Creating new HTML error message pages” on page 85
v “Compatibility with previous versions of WebSEAL” on page 85

Enabling the time of day error page

About this task

The 38cf08cc.html error message page is used when access is denied because a
protected object policy (POP) time of day policy was not satisfied. WebSEAL
controls the use of this error message page through a configuration file setting.

To enable WebSEAL to display 38cf08cc.html, you must set the following entry in
the WebSEAL configuration file:
[acnt-mgt]
client-notify-tod = yes

84 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

When client-notify-tod = yes, WebSEAL sends the client an error message
stating that the authorization failure was due to a failed time-of-day POP access
check.

This entry is set to “no” by default.

Note: A 403 error is always logged, regardless of the value assigned to
client-notify-tod.

Creating new HTML error message pages

About this task

You can create new error message pages for hexadecimal errors returned by
WebSEAL. The hexadecimal errors returned by WebSEAL are documented in the
IBM Security Access Manager for Web: Error Message Reference.

For example, when WebSEAL encounters an invalid HTTP header, it returns the
following error:
wand_s_jct_invalid_http_header 0x38cf04d5

To create a new error message page for this error, complete the following steps:

Procedure
1. Create a new HTML file. To name the file, delete the 0x (hex) prefix characters

from the error number and supply the .html suffix. For example, 0x38cf04d5
becomes:
38cf04d5.html

Optionally, you can use one of the existing HTTP error files as a template.
Copy it and rename it.

2. Consult the IBM Security Access Manager for Web: Error Message Reference for
information about the exact error encountered. Use this information to edit the
body of the HTML page.

3. Optionally, you can use the macros described in “Macro resources for
customizing HTML response pages” on page 76.

4. Save the new file in the same directory as the rest of the HTTP error messages.

Results

If you wish to create customized error message pages for a specific junction, you
must place the customized HTML files in a junction-specific location. For more
information, see “Junction-specific static server response pages” on page 75.

Compatibility with previous versions of WebSEAL

WebSEAL version 5.1 introduced the following new error pages:
v 38cf04d7.html

v 38cf04c6.html

These messages provide information indicating that the encountered failure
originated with a back-end server, not with WebSEAL.

Chapter 4. Web server response configuration 85

In past releases, WebSEAL returned the default error page only. If you want to
retain the previous behavior, remove the new error message pages from the error
message page directory.

Multi-locale support for server responses

Standard WebSEAL server responses to client browsers, such as error messages,
custom HTML login and logout pages, and serviceability messages, can be
delivered in the preferred language of the client.

This section contains the following topics:
v “The accept-language HTTP header”
v “Process flow for multi-locale support” on page 87
v “Conditions affecting multi-locale support on WebSEAL” on page 87

The accept-language HTTP header

WebSEAL supports multi-locale capabilities by using the values contained in the
Accept-Language HTTP header to determine the correct language for
server-generated messages and HTML pages. Translated message information is
provided by installing optional WebSEAL language packs for server messages.

Browsers adopt a standard set of language values. Basic language values are
represented by two characters, indicating the language. Location-specific values are
expressed in a two part format, indicating the language and the country where this
version of the language is used. Examples include:
v es (Spanish)
v de (German)
v en (English)
v it (Italian)
v en-US (English/United States)
v en-GR (English/United Kingdom)
v es-ES (Spanish/Spain)
v es-MX (Spanish/Mexico)
v pt-BR (Portuguese/Brazil)

The Accept-Language header can include more than one language. Each additional
language is separated by a comma. For example:
accept-language: es-mx,es,en

The order in which the values appear in the header determine the hierarchy of
importance. WebSEAL checks the first listed value for an existing installed
language pack. If no language pack for this language is installed, WebSEAL checks
the next language in the list for its associated language pack.

Note: The Accept-Language header can use a "q=x.x" attribute to express a
preference level for a language. This attribute is not recognized by WebSEAL. The
listed order of languages in the header determines the order of priority for
WebSEAL.

86 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Process flow for multi-locale support

The following example process flow illustrates how WebSEAL evaluates the
Accept-Language header:
1. The Accept-Language header contains pt-br as the first value in the list.
2. The pt-br language is converted to pt_BR, representing the WebSEAL language

subdirectory for this language.
3. If this subdirectory does not exist for the required message (for example, no

language pack is installed for this language), WebSEAL checks for a pt
directory.

4. If no pt directory exists, WebSEAL attempts to find message subdirectories for
the next language listed in the header.

5. If there are no installed language packs for all languages listed in the header,
WebSEAL defaults to the language environment that WebSEAL is running in, as
determined by the LC_ALL or LANG environment variables set in the
operating system's environment when WebSEAL is started.

Conditions affecting multi-locale support on WebSEAL
v Multi-locale support is enabled at all times on the WebSEAL server.
v Installation of specific language packs determines what languages are supported.
v If WebSEAL receives a message with no Accept-Language HTTP header,

WebSEAL defaults to C.
v WebSEAL always returns the UTF-8 character set to the user, regardless of what

the Accept-Charset HTTP header value requests.
v If WebSEAL accesses a locale directory for a translated message, and the

directory is empty (for example, the contents were removed by the
administrator), a server error page is returned.

Handling the favicon.ico file with Mozilla Firefox

About this task

Problem background:

The favicon.ico file is a small graphic icon that is used by some browsers
(including Microsoft Internet Explorer and Mozilla Firefox) to enhance the display
of address bar information and "favorites" bookmark lists. When requesting a
resource, these browsers also try to locate the site's custom favicon.ico file.

There is a difference, however, in the way Internet Explorer and Mozilla Firefox
decide when to request the favicon.ico file:
v Internet Explorer requests favicon.ico only when the returned page is

bookmarked.
v Mozilla Firefox requests favicon.ico at the same time as the request for the

page.

The request and response exchange between a Mozilla Firefox browser and a
WebSEAL server can result in an HTTP 404 "Not found" message for the user
when the favicon.ico does not exist.

In a protected WebSEAL environment, Mozilla Firefox's attempt to access the
favicon.ico file triggers a login prompt. WebSEAL caches /favicon.ico as its "last

Chapter 4. Web server response configuration 87

requested URL." Once the user successfully logs in, WebSEAL redirects the request
to this "last requested URL" location. The file (being non-existent in this example)
is not found and a 404 "Not found" error is returned to the user. The originally
requested page is never accessed because of the redirection process.

Solution:

The following steps solve this problem:

Procedure
1. Place a favicon.ico file in the junction-root directory. You can access this

directory from the Manage Reverse Proxy Management Root page of the LMI.
2. Add a definition for the ico file format in the [content-mime-types] of the

WebSEAL configuration file:
[content-mime-types]
ico = image/x-icon

3. Create an ACL that allows unauthenticated access to /favicon.ico. For
example:
pdadmin> acl show favicon
ACL name: favicon
Description:
Entries:

Any-other Tr
Unauthenticated Tr
User sec_master TcmdbsvaBRrl

4. Attach this ACL explicitly to /favicon.ico or ensure that the unauthenticated
permission is inherited to this point. For example:
pdadmin> acl attach /WebSEAL/abc.ibm.com-default/favicon.ico favicon

Results

If you do not want to create and install a favicon.ico file, the problem can be
solved by following steps 3 and 4 only. An ACL can be attached to an object space
representation of a resource, even if the resource does not physically exist.
Although the browser still does not find the file, the unauthenticated ACL prevents
a login prompt. The browser handles the 404 error internally and proceeds to
access the requested page.

Adding custom headers to server response pages
You can add headers, which contain information about a custom response, to
generated server responses.

Use the macros in the following table to define the information in the custom
headers:

Table 5. Macros for defining custom headers

Macro Description

TAM_OP The operation code for the response. The
values for this macro are identical to the
values for local response redirects. See
“Operation for local response redirection” on
page 93.

AUTHNLEVEL Authentication level required by the
authentication strength policy (step-up).

88 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Table 5. Macros for defining custom headers (continued)

Macro Description

ERROR_CODE The hexadecimal value of the error code.

ERROR_TEXT The error message text that is associated
with the error code in the message catalog.
This text is supplied by WebSEAL.

USERNAME The name of the logged in user. WebSEAL
uses the value "unauthenticated" for users
who are not logged in.

CREDATTR{name} The value of the user credential attribute
that has the specified name. For example,
CREDATTR{tagvalue_session_index} returns
the session token.

The http-rsp-header configuration entry defines the headers that are included
with the server response pages. This configuration entry is in the [acnt-mgt]
stanza of the WebSEAL configuration file.

The format of the configuration entry is:
http-rsp-header = <header-name>:<macro>

where

<header-name>
The name of the header to hold the value.

<macro>
The type of value that is to be inserted as described in Table 5 on page 88.

For example, the following configuration entry includes the error message text
from WebSEAL in a header named error_msg:
[acnt-mgt]
http-rsp-header = error_msg:ERROR_TEXT

Note: You can specify this configuration entry multiple times to include more than
one custom header in the response.

For example:
[acnt-mgt]
http-rsp-header = error_msg:ERROR_TEXT
http-rsp-header = tam-error-code:ERROR_CODE

For further information, see the http-rsp-header configuration entry in the
[acnt-mgt] stanza in the IBM Security Web Gateway Appliance: Web Reverse Proxy
Stanza Reference.

Configuring the location URL format in redirect responses

About this task

When WebSEAL responds to a request with an HTTP 302 redirect response, the
format of the URL in the Location header is, by default, expressed as an absolute
path. For example:
Location: http://www.example.com/images/logo.jpg

Chapter 4. Web server response configuration 89

If your environment requires the use of a server-relative format for the URL in the
Location header, you can configure this specification in the WebSEAL configuration
file.

Manually add the redirect-using-relative stanza entry to the [server] stanza and
set the value to "true":
[server]
redirect-using-relative = true

With this configuration, the above Location header example will now appear as
follows:
Location: /images/logo.jpg

This hidden configuration option normally defaults to "false".

This configuration change affects all redirect responses generated by WebSEAL.
These redirect situations include:
v Redirect after authentication
v Redirect after logout
v Redirect after changing password
v Redirects during the e-community single signon authentication process
v Redirects during the cross-domain single signon authentication process
v Switch user processing
v Certificate authentication (prompt-as-needed only)
v Session displacement

This configuration change does not affect redirect responses that are returned from
back-end application servers.

Local response redirection

This section contains the following topics:
v “Local response redirection overview”
v “Local response redirection process flow” on page 91
v “Enabling and disabling local response redirection” on page 91
v “Contents of a redirected response” on page 92
v “URI for local response redirection” on page 92
v “Operation for local response redirection” on page 93
v “Macro support for local response redirection” on page 94
v “Local response redirection configuration example” on page 98
v “Technical notes for local response redirection” on page 99
v “Remote response handling with local authentication” on page 99

Local response redirection overview

WebSEAL provides a number of static HTML server response pages that can be
used to provide server responses to client requests. These pages include:
v Error messages
v Informational messages
v Login forms

90 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v Password management forms

In some environments, it might be beneficial to extend or modify server responses
beyond what WebSEAL provides with its default set of static HTML pages. Local
response redirection provides a means to externalize the handling of such
responses to an external server.

When using local response redirection, WebSEAL no longer has the responsibility
of generating responses to client requests. WebSEAL's default "local response" is
now redirected to a separate server that runs a custom application designed to
generate appropriate responses.

When local response redirection is enabled, the redirection is used for all local
WebSEAL response types: login, error, informational, and password management.

You can combine an external authentication interface application and a local
response redirection application to create a complete remote solution for handling
authentication and server response. Alternatively, you can implement local
response redirection without using the external authentication interface for
authentication handling. In this case, the server response handling is performed
remotely and authentication is handled locally by WebSEAL. See “Remote response
handling with local authentication” on page 99.

Local response redirection process flow

The local response redirection solution takes advantage of the fact that most
devices handle HTTP 302 redirection. The following process flow illustrates how
local response redirection works at a high level:
v WebSEAL receives the client request.
v WebSEAL determines that it must return a response that would normally be

handled by returning a static HTML page, such as a login or error page.
v WebSEAL builds a Location header in the response that contains the URI of a

custom response handling application located on a separate server.
v WebSEAL includes, as an attribute in the query string of the Location header, the

type of operation required (such as “login required”, “expired password”, or
"error") and an optional set of configurable WebSEAL macros and their values.

v WebSEAL redirects the client to this custom response handling application.
v The custom response handling application is responsible for presenting an

appropriate response or set of responses to the client.

Enabling and disabling local response redirection

About this task

The enable-local-response-redirect stanza entry in the [acnt-mgt] stanza of the
WebSEAL configuration file allows you to explicitly enable or disable local
response redirection. Valid values are “yes” (enable) and “no” (disable).

Local response redirection is disabled by default. For example:
[acnt-mgt]
enable-local-response-redirect = no

You can customize this configuration item for a particular junction by adding the
adjusted configuration item to a [acnt-mgt:{junction_name}] stanza.

Chapter 4. Web server response configuration 91

where {junction_name} is the junction point for a standard junction (including the
leading / character) or the virtual host label for a virtual host junction.

Contents of a redirected response

Redirected responses resulting from local response redirection are standard HTTP
302 redirect responses containing a specially constructed Location header.

The Location header contains the following components:
v A configurable destination URI.
v A query string indicating the required server response operation, and an

optional set of configurable WebSEAL macros and their values.

The Location header has the following format:
Location header = location-URI?TAM_OP=operation-value[&optional-macros]

For details on each of the components of the Location header, refer to the
following sections:
v “URI for local response redirection”
v “Operation for local response redirection” on page 93
v “Macro support for local response redirection” on page 94

URI for local response redirection

The local-response-redirect-uri stanza entry in the [local-response-redirect] stanza
of the WebSEAL configuration file specifies the location (URI) of the custom
application that provides the response handling service. WebSEAL uses this URI to
construct the value of the Location header required by the HTTP 302 response.

The server used for local response redirection can be a junctioned server or an
entirely separate server.

The format of the URI value for the local-response-redirect-uri stanza entry can be
absolute or server-relative. Server-relative URIs must contain an appropriate
junction name.

In the following example:
v jct is the name of the WebSEAL junction
v redirect-app is the name of the custom redirection application
v response-handler is the name of the custom response handling service (such as

a servlet, JSP, or CGI)
[local-response-redirect]
local-response-redirect-uri = /jct/redirect-app/response-handler

The local-response-redirect-uri stanza entry must be specified when
enable-local-response-redirect = yes.

You can customize this configuration item for a particular junction by adding the
adjusted configuration item to a [local-response-redirect:{junction_name}] stanza.

where {junction_name} refers to the junction point for a standard junction (including
the leading / character) or the virtual host label for a virtual host junction.

92 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Operation for local response redirection
When WebSEAL receives a client request, it determines the appropriate operation
required in response to the request.

To respond appropriately, the response handler application must be informed of
the required response operation, as determined by WebSEAL. Example operations
include serving a standard login form, a change password form, or an access
denied error message.

The required operation is provided as an argument in the query string of the
HTTP 302 Location URI header. The label for the operation argument is TAM_OP.

The following table lists the valid values for the TAM_OP query string argument:

Values for TAM_OP
Operation Argument Description

acct_inactivated
User has provided correct authentication details, but
nsAccountLock is set to true for the user in Sun Java System
Directory Server.

acct_locked
User authentication failed due to a locked (invalid) account.

cert_login
User must login with a certificate when accept-client-certs =
prompt_as_needed.

cert_stepup_http
User tried to step-up to certificate authentication over HTTP,
which is not allowed (HTTPS is required).

eai_auth_error
External authentication interface information returned to
WebSEAL is invalid.

error
An error occurred. Check the ERROR_CODE macro for the
hexadecimal error code. See the IBM Security Access Manager
for Web: Error Message Reference for more information about
the error.

failed_cert
An attempt to authenticate with a client certificate failed.
Client failed to authenticate with a certificate when
accept-client-certs = required. A valid client certificate is
required to make this connection. User's certificate is invalid.

help
User performed an action that makes no sense, such as
requesting /pkmslogout while logged in using basic
authentication.

login
User needs to authenticate.

login_success
User successfully authenticated, but there is no last cached
URL to redirect to.

logout
User has logged out.

passwd
User requests password change.

Chapter 4. Web server response configuration 93

Values for TAM_OP
Operation Argument Description

passwd_exp
User's password has expired.

passwd_rep_failure
Password change request failed.

passwd_rep_success
Password change request succeeded.

passwd_warn
Password is soon to expire.

passwd_warn_failure
Password change not performed after notification that the
password is soon to expire.

stepup
User must step-up to another authentication level. Check the
AUTHNLEVEL macro for the required authentication level.

switch_user
User requested the switch user login page.

too_many_sessions
User has reached or exceeded the maximum number of
allowed sessions.

The following example header shows a Location URI with a password change
operation indicated in the query string:
Location: https://webseal/jct/handler-svr/handler?TAM_OP=passwd

Macro support for local response redirection

Local response redirection provides support for a subset of the macros provided by
WebSEAL to customize static server response pages. Macros allow dynamic
substitution of information from WebSEAL.

As with the operation information (provided by the TAM_OP argument), macros
are specified as an argument in the query string of the location header. Specific
characters in the macro values are URI-encoded (see “Encoding of macro contents”
on page 97).

Valid WebSEAL macros for use in local response redirection include:

Macro Description

AUTHNLEVEL
Authentication level required by authentication strength policy
(step-up).

CREDATTR{name}
Used to include the contents of a specified attribute in the user
credential. If the specified credential attribute does not exist in the
request, the macro contains the text: 'Unknown'.

For example, use the following macro name to include the
tagvalue_session_index attribute, which contains the secret token for
the session: CREDATTR{tagvalue_session_index}.

ERROR_CODE
The hexadecimal value of the error code.

94 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Macro Description

ERROR_TEXT
The WebSEAL-supplied error message text associated with an error
code in the message catalog.

FAILREASON
Error message text associated with a Boolean rules operation.

HOSTNAME
Fully qualified host name.

HTTPHDR{name}
Used to include the contents of a specified HTTP header. If the
specified HTTP header does not exist in the request, the macro
contains the text: 'Unknown'.

For example, the macro name to include the "Host" HTTP header is
HTTPHDR{Host}.

METHOD
The HTTP method requested by the client.

PROTOCOL
The client connection protocol used. Can be HTTP or HTTPS.

REFERER
The value of the HTTP referer header from the request, or "Unknown",
if none.

URL
The URL requested by the client.

USERNAME
The name of the logged in user. The value "unauthenticated" is used
for users who are not logged in. (See also “Customization of login
forms for reauthentication” on page 175.)

When using local response redirection, WebSEAL also uses the value
"unauthenticated" after an inactivity timeout. This behavior differs
from the processing that occurs when WebSEAL serves static pages.
You can configure WebSEAL to set the USERNAME macro value to
the authenticated username as it does when serving static pages. To
achieve this behavior, set the use-existing-username-macro-in-custom-
redirects configuration entry in the [server] stanza to yes. You must
restart WebSEAL for this change to take effect.

For example, the originally requested URL might be required by an external
authentication interface server that provides authentication services. The standard
WebSEAL URL macro can be included in the query string of the Location header of
the HTTP 302 response. The value of the macro is dynamically provided by
WebSEAL.

To specify macro-supplied information (to be returned in the Location header
query string), uncomment the appropriate macro stanza entries in the
[local-response-macros] stanza of the WebSEAL configuration file. For example:
[local-response-macros]
macro = TAM_OP
#macro = USERNAME
#macro = METHOD
#macro = REFERER
#macro = HOSTNAME
#macro = AUTHNLEVEL
#macro = FAILREASON
#macro = PROTOCOL

Chapter 4. Web server response configuration 95

#macro = ERROR_CODE
#macro = ERROR_TEXT
#macro = HTTPHDR{header_name}
macro = URL

Note: WebSEAL inserts the TAM_OP macro in all local redirect responses
regardless of whether it is included in the configuration file.

The following example header shows a Location URI with the TAM_OP and URL
macros (and values) indicated in the query string (entered as one line):
Location: https://webseal/jct/handler-svr/handler?TAM_OP=login&
URL=%2FjctB%2Fresource.html

In this example, the forward slash character (/) in the value of the URL macro is
encoded as %2F. See “Encoding of macro contents” on page 97.

If a configured macro contains no information, the macro name and the “=”
delimiter still appear in the query string. For example (entered as one line):
Location: https://webseal/jct/handler-svr/handler?TAM_OP=stepup&USERNAME=eric&
FAILREASON=&AUTHNLEVEL=2

The HTTPHDR macro is used to include a specified HTTP header in the query string.
The desired header name should be configured in the [local-response-macros]
stanza. For example, to insert the Host header into the query string, the following
configuration entry should be added to the [local-response-macros] stanza:
macro = HTTPHDR{Host}

This will result in a query string similar to the following:
Location: https://webseal/jct/handler-svr/handler?TAM_OP=login&HTTPHDR_Host=webseal

Customizing macro field names

You can customize the names that WebSEAL uses for the Location URL macros in
the generated query strings. To configure these values, place a colon after the
macro name followed by the customized name.

For example:
[local-response-macros]
macro = TAM_OP:myOperation
#macro = USERNAME
#macro = METHOD
#macro = REFERER
#macro = HOSTNAME
#macro = AUTHNLEVEL
#macro = FAILREASON
#macro = PROTOCOL
#macro = ERROR_CODE
#macro = ERROR_TEXT
#macro = HTTPHDR{header_name}
#macro = CREDATTR{name}
macro = URL:destination

This example configuration causes WebSEAL to generate a Location URI that
contains the URL and TAM_OP macros. WebSEAL inserts the specified custom
values, rather than the WebSEAL macro name, into the query string. For this
example, the generated Location URI is similar to the following query string:
Location: https://webseal/jct/handler-svr/handler?myOperation=login&destination
=%2FjctB%2Fresource.html

96 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

If you configure a custom name for the HTTPHDR macro then the name of the
header (header_name) is not included in the query string. For example, consider
the following example entry in the [local-response-macros] stanza:
macro = HTTPHDR{Host}:myHost

The resulting query string looks similar to the following example:
Location: https://webseal/jct/handler-svr/handler?myOperation=login&destination=
%2FjctB%2Fresource.html&myHost=webseal

You can configure multiple HTTPHDR entries to be included in the query string.
You can customize the macro field names for each of these entries.

Note: WebSEAL inserts the TAM_OP macro in all local redirect responses
regardless of whether it is included in the configuration file. You can configure the
name that WebSEAL uses for this macro by including a customized name in the
configuration file.

Encoding of macro contents

Some macro content contains user-provided data such as the requested URI or the
Referer header of that request. It is important for security reasons to ensure that
reserved, or special characters in client-supplied data are encoded.

WebSEAL URI encodes macro contents to ensure that the content does not return
reserved, or special characters back to the client. URI encoding is an international
standard that allows you to map the wide range of characters used worldwide into
the limited character-set used by a URI.

Notes on encoding macro contents:

v WebSEAL always applies URI encoding to macro contents, even if the original
data has already been encoded.

v Encoded macro contents must be decoded using standard URI decoding rules.
v URI encoding increases the string length of macro content, and therefore the

Location header (where the content is embedded in the query string). For a
discussion of Location header length issues, see “Macro content length
considerations.”

Macro content length considerations

Information supplied by macros increases the string length of the Location URI
header. URI encoding of macro content further increases this string length.

Some client applications (such as WAP browsers on cellular phones) have URI
length limitations due to the small memory capacity of the device. If a URI exceeds
the length limitation on such a client device, errors can occur and the link will
likely fail.

WebSEAL does not impose any length restrictions on the Location URI header.
Therefore, when configuring macros for local response redirection, you must
carefully consider the possible limitations of client devices that access your site.
You can estimate the length of the Location header by determining the fixed
lengths of the URI and factoring in the expected sizes of any macros used in the
query string.

The following table provides information about the possible lengths of the content
provided by the macros used for local response redirection:

Chapter 4. Web server response configuration 97

Macro Size of Content

AUTHNLEVEL No more than 10 characters.

ERROR_CODE No more than 20 characters.

ERROR_TEXT The error message length.

FAILREASON The error message length.

HOSTNAME The length of the HOST header of the corresponding request, or the
fully qualified host name of the WebSEAL system if the HOST header
is not present.

METHOD Length of request method (such as GET or POST). No more than 20
characters.

PROTOCOL No more than 10 characters.

REFERER The length of the REFERER header of the corresponding request.

URL Length of the request URI.

USERNAME Maximum length defined by user name length policy for this
implementation of WebSEAL.

HTTPHDR{name} Length of the specified HTTP header.

CREDATTR{name} Length of the contents for the specified attribute in the user credential.

Local response redirection configuration example

The following example steps summarize the configuration required to implement
local response redirection. This example illustrates the combined implementation of
local response redirection with an external authentication interface service.

The following variables are used in this example:
v jct is the name of the WebSEAL junction
v eai-redirect-app is the name of the custom application that provides combined

external authentication interface and local response redirection services
v authn-handler is the name of the custom authentication service (such as a

servlet, JSP, or CGI)
v response-handler is the name of the custom response handling service (such as

a servlet, JSP, or CGI)

Example:
v A custom external authentication interface service is implemented on the

junctioned server to handle the WebSEAL authentication process:
webseal/jct/eai-redirect-app/authn-handler

v Enable local response redirection to handle responses to requests:
[acnt-mgt]
enable-local-response-redirect = yes

v Specify the location of the custom response handling application (Location URI):
[local-response-redirect]
local-response-redirect-uri = /jct/eai-redirect-app/response-handler

v Specify that the URL requested by the client (supplied by the URL macro) be
returned in the Location URI query string of the local response redirection:
[local-response-macros]
macro = URL

v Client requests a resource requiring authentication:

98 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

https://webseal/jctB/resource.html

v WebSEAL returns an HTTP 302 response containing the following Location URI
header (entered as one line). The login operation required is specified in the
query string as: TAM_OP=login:
Location: https://webseal/jct/eai-redirect-app/response-handler?TAM_OP=login&
URL=http%3A//webseal/jctB/resource.html

v The custom response handling application provides a response to the client
(consistent with a login operation) and makes use of the resource URL
information provided.

v The client completes one or more interactions with the custom response handler
and is eventually routed to the external authentication interface where the actual
authentication is performed.

Technical notes for local response redirection
v If a client makes a bad or erroneous request to WebSEAL as a result of a

redirected error page, WebSEAL returns a static error message page rather than
initiating another redirection operation.

v To avoid a possible redirection loop condition, the custom message handling
application must be a resource that is available to unauthenticated users.
Security Access Manager ACLs must be configured to ensure this availability to
unauthenticated users.

v When implementing external authentication interface and local response
redirection together, ensure that the configured location URI is not the same as
any external authentication interface trigger URLs.

v All requests that are redirected by local response redirection are cached in the
same manner as for default response handling.

Remote response handling with local authentication

You can implement local response redirection without using the external
authentication interface. In this case, the server response handling is performed
remotely and authentication is handled locally by WebSEAL. For example, the
remote response handler can serve a login page that requires a local WebSEAL
authentication handler such as pkmslogin.form to implement the authentication
process.

In this example, the login page served by the remote response handler contains a
FORM tag with an ACTION attribute. The value of the ACTION attribute points to
the location of the local WebSEAL authentication handler (pkmslogin.form). When
the client submits the completed login form, the data is directed to this handler.

When WebSEAL receives a request for pkmslogin.form, it responds by invoking the
appropriate authentication mechanism and passing the appropriate authentication
data to this mechanism.

Note: The pkmslogin.form management page is a management command to the
WebSEAL server. It is not represented in the object space and you cannot attach
policies to it.

You can use the appropriate static HTML response pages provided by WebSEAL as
templates for your custom pages. If necessary, edit the pages to customize the
content for your environment. Ensure that all URLs are expressed to correctly
satisfy the filtering rules of WebSEAL.

Chapter 4. Web server response configuration 99

See “Junction filtering issues for the ACTION URL.”

Junction filtering issues for the ACTION URL

The login page served by a response handler located on a junctioned server is
filtered by WebSEAL when it is returned to the client over the junction. The page
might contain a FORM tag similar to WebSEAL's standard static HTML login
response page (login.html):
<FORM METHOD=POST ACTION="/pkmslogin.form">

If this FORM tag appears in a page served by a remote response handler located
on a junctioned server, WebSEAL filters the server-relative ACTION URL by
prepending the junction name to the path:
/jct/pkmslogin.form

Because the pkmslogin.form authentication handler is local to WebSEAL, WebSEAL
cannot find the filtered version of the URL and the request for an authentication
operation from WebSEAL fails.

You must ensure that the response handler serves a login page with an ACTION
attribute that correctly points to pkmslogin.form. Use a relative path expression to
navigate upwards from the location where the custom login page is served. For
example, if the login page is served from the following JSP (JavaServer Pages)
application:
/jct/redirect-app/custom-login.jsp

the ACTION URL in this page must be expressed as follows:
<FORM METHOD=POST ACTION="../../pkmslogin.form">

WebSEAL does not filter relative path names. Therefore, this path is correctly
resolved by the client browser as being located in the document root space of the
WebSEAL server.

For complete information about WebSEAL filtering rules, see “Filter rules for
tag-based static URLs” on page 419.

HTML redirection

When a user successfully authenticates, WebSEAL typically uses an HTTP 302
response to redirect the user back to the resource that was originally requested.
This process causes problems for applications that rely on HTML fragments as the
fragment information is stored locally in the browser and is lost during redirection.

Alternatively, you can configure WebSEAL to enable HTML redirection. HTML
redirection causes WebSEAL to send a static page back to the browser instead of a
302 redirect. The browser can then use JavaScript or any other code that is
embedded in this static page to perform the redirect. WebSEAL provides the macro
LOCATION, which contains the URL for the redirection.

100 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Enabling HTML redirection

About this task

Use the enable-html-redirect stanza entry in the [acnt-mgt] stanza of the WebSEAL
configuration file to enable or disable HTML redirection. You can use HTML
redirection, in conjunction with some JavaScript code, to preserve the HTML
fragment in the response.

Valid values are “yes” (enable) and “no” (disable). HTML redirection is disabled by
default. For example:
[acnt-mgt]
enable-html-redirect = no

If you enable this configuration entry, WebSEAL returns the redirect page that is
specified by html-redirect in the [acnt-mgt] stanza instead of an HTTP 302
response. For example:
[acnt-mgt]
html-redirect = redirect.html

Note: This configuration for HTML redirection does not affect redirect responses
that are returned by junctioned web servers.

Preserving HTML fragments on redirection

About this task

WebSEAL provides an example configuration of HTML redirection. This example
uses cookies to store the original URL in the browser and JavaScript to later read
that URL and perform the redirection. The example shows how to save the HTML
fragment during an authentication operation.

In addition to enabling HTML redirection, you must modify the JavaScript on the
user interface form (such as login.html) to store the HTML fragment for the
subsequent redirect. The page before redirection must store the originally requested
resource, complete with HTML fragment, in a cookie in the client web browser
cookie jar. When the redirection page returns, the example JavaScript reads the
cookie value and redirects the client to the originally requested resource while
preserving the HTML fragment.

You can use this configuration with any of the login mechanisms for which
WebSEAL provides a login page. You must uncomment the line of JavaScript that
sets the TAMOriginalURL cookie in the corresponding WebSEAL templates. These
WebSEAL templates include: login.html, stepuplogin.html and certlogin.html.

For example, to preserve the HTML fragment with forms-based authentication you
must complete the following steps:

Procedure
1. Update the login.html page. Uncomment the bold line of JavaScript to set a

cookie named TAMOriginalURL on the client browser with a URI encoded
copy of the originally requested URL. This JavaScript is included in the default
login.html file that is supplied with WebSEAL.

Chapter 4. Web server response configuration 101

<SCRIPT LANGUAGE=JavaScript>
var warningString = "WARNING: To maintain your login session,

make sure that your browser is configured to accept Cookies.";
document.cookie = ’acceptsCookies=yes’;
if(document.cookie == ’’){
document.write(warningString);
}
else{
document.cookie = ’acceptsCookies=yes; expires=Fri, 13-Apr-1970 00:00:00 GMT’;
document.cookie = ’TAMOriginalURL=’ + encodeURIComponent(window.location) +

"; Path=/;";
}
</SCRIPT>

2. Ensure that the html-redirect configuration entry in the [acnt-mgt] stanza
specifies the redirect.html file that is supplied with WebSEAL. This file contains
the following script, which parses the cookies in the browser and looks for the
TAMOriginalURL cookie set by the preceding page. When this cookie is found,
it is URI decoded and set to expire immediately. The line containing
window.location.href then performs the redirection.
<SCRIPT LANGUAGE=JavaScript>
var redirect = "TAMOriginalURL=";
var cookies = document.cookie.split(’;’);
var redirectURL = "%LOCATION%";
for(var i=0; i<cookies.length; i++) {
var cookie = cookies[i];
while (cookie.charAt(0)==’ ’) {
cookie = cookie.substring(1, cookie.length);
if (cookie.indexOf(redirect) == 0) {
redirectURL = cookie.substring(redirect.length, cookie.length);
document.cookie = ’TAMOriginalURL=; expires=Thu, 01-Jan-70 00:00:01 GMT;’;
i = cookies.length;
break;
}
}
}
window.location.href = decodeURIComponent(redirectURL);
</SCRIPT>

Note: In some situations it is not possible to set a cookie before the redirection
is to take place, such as when a local response redirect is performed. For these
situations, WebSEAL includes the macro %LOCATION%, which is inserted into
the static redirect page. This macro contains the complete URL of the
redirection and can be used when cookies cannot be set. However, in this
situation any HTTP fragment information is lost.

102 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 5. Web server security configuration

This chapter contains information about configuring added security for the
WebSEAL server.

Topic Index:
v “Configuring WebSEAL to support only Suite B ciphers”
v “Prevention of vulnerability caused by cross-site scripting” on page 104
v “Suppression of WebSEAL and back-end server identity” on page 107
v “Disabling HTTP methods” on page 108
v “Platform for Privacy Preferences (P3P)” on page 109

Configuring WebSEAL to support only Suite B ciphers

About this task

Suite B is a set of cryptographic standards, protocols, and algorithms that the
National Security Agency (NSA) developed in 2005. This suite defines security
standards for protecting classified information. NSA Suite B includes the Advanced
Encryption Standard (AES) and a set of cryptographic algorithms for key exchange,
digital signatures, and hashing.

Suite B meets the NSA security standards for classified government
communications up to the SECRET level. For more information, go to the NSA
website at http://www.nsa.gov and search for Suite B Cryptography.

You can configure WebSEAL to use only Suite B ciphers when negotiating an SSL
connection. Use the gsk-attr-name and jct-gsk-attr-name entries to configure
WebSEAL support for Suite B ciphers. Set GSKit attribute 454 to the value 1.

The gsk-attr-name configuration entry is available in the [ssl], [dsess-cluster],
and [tfim-cluster:<cluster>] stanzas. The [ssl] stanza also includes the
jct-gsk-attr-name configuration entry. These stanza entries specify the additional
GSKit attributes to use when initializing SSL connections as follows:

[ssl] stanza
The gsk-attr-name applies to SSL connections with clients.

The jct-gsk-attr-name applies to SSL connections with junctioned servers.

[dsess-cluster] stanza
The gsk-attr-name applies to SSL connections with Session Management
Servers (SMS).

[tfim-cluster:<cluster>]
The gsk-attr-name applies to SSL connections with Tivoli Federated
Identity Manager.

Example

The following entry configures WebSEAL to use only Suite B ciphers for client
connections:

© Copyright IBM Corp. 2002, 2013 103

http://www.nsa.gov

[ssl]
gsk-attr-name = enum:454:1

Prevention of vulnerability caused by cross-site scripting
Cross-site scripting is a known technique for deploying malicious scripts on
browsers. Web servers that incorrectly reflect user-supplied data to the browser
without properly escaping the data are vulnerable to this type of attack.

For complete information about the mechanics of cross-site scripting and general
preventive measures, see the following CERT advisory: http://www.cert.org/
advisories/CA-2000-02.html.

WebSEAL provides limited protection against cross-site scripting for junctioned
applications through URL string filtering. Other solutions, such as the Web Content
Protection feature of the IBM Security Web Gateway Appliance, can also help
protect against these types of attacks.

Configuration of URL string filtering

You can configure WebSEAL to reject an incoming request if the request URL
contains a defined string pattern. WebSEAL rejects incoming URL requests if they
contain any of the string patterns that are defined in the [illegal-url-substrings]
stanza.

Note: The [illegal-url-substrings] feature is deprecated. IBM might remove this
feature in a subsequent release of the product.

In the WebSEAL configuration file, add a separate entry in the
[illegal-url-substrings] stanza to represent each string pattern that you want
WebSEAL to reject. For example:
[illegal-url-substrings]
substring = <script
substring = <applet
substring = <embed

If WebSEAL detects any configured string fragment in the requested URL,
WebSEAL rejects the request and returns a 400 "Bad Request" error page.

WebSEAL, by default, filters strings that contain <script. If you require additional
filtering, you must create the [illegal-url-substrings] stanza and list all
substrings individually.

You can completely disable the URL string filtering feature, including the default
behavior, by placing an empty [illegal-url-substrings] stanza in the WebSEAL
configuration file.

Functional notes:
v Substring entries in the configuration file must be ASCII. WebSEAL decodes

URLs before checking for the presence of these strings. Therefore, if these strings
are present in the URL in another encoding, WebSEAL still filters them.

v WebSEAL locates these substrings by using a search that is not case sensitive.
v Substring filtering accommodates multi-byte characters.

104 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html

Prevention of Cross-site Request Forgery (CSRF) attacks
Cross-site request forgery (CSRF) is a type of malicious website attack. A CSRF
attack is sometimes called a one-click attack or session riding. This type of attack
sends unauthorized requests from a user that the website trusts.

CSRF uses the trust that a site has in the browser of an authenticated user for
malicious attacks. CSRF uses links or scripts to send involuntary HTTP requests to
a target site where the user is authenticated. Unless precautions are taken, the
WebSEAL management pages, such as /pkmslogout, are susceptible to a CSRF
attack. For example, an attacker might get an authenticated WebSEAL user to
involuntarily log out by getting their browser to follow a link to /pkmslogout.

You can configure WebSEAL to help mitigate this type of vulnerability.

Secret token validation
You can configure WebSEAL to require that certain management operation requests
include a secret token. WebSEAL uses the secret token in the received request to
validate its authenticity.

Secret token validation affects the following WebSEAL management pages:
v /pkmslogin.form
v /pkmslogout
v /pkmslogout-nomas
v /pkmssu.form
v /pkmsskip
v /pkmsdisplace
v /pkmspaswd.form

Use the enable-secret-token-validation configuration entry in the [acnt-mgt]
stanza to enable secret token validation. By default, enable-secret-token-
validation is set to false, which disables secret token validation.

If you want WebSEAL to use secret token validation, set this entry to true:
[acnt-mgt]
enable-secret-token-validation = true

When secret token validation is enabled, WebSEAL adds a token to each session
and validates the "token" query argument for these account management requests.
For example, the request to /pkmslogout changes to pkmslogout?token=<value>,
where <value> is the unique session token.

Note: This setting modifies the URLs for these WebSEAL management pages. Each
of the affected management requests must contain a "token" argument with the
current session token. For example, /pkmslogout?token=a861582a-c445-4462-94c9-
b1074e135b9f.

If secret token validation is enabled and the token argument is missing from the
request or does not match the real session token, WebSEAL returns a "400 Bad
Request" error page.

Chapter 5. Web server security configuration 105

If you are using secret token validation then WebSEAL includes the session token
as the tagvalue_session_index attribute in the user credential. WebSEAL provides
a CREDATTR macro that you can use to access a credential attribute and insert it into
the following locations:
v Generated HTML pages (for example, /pkmshelp).
v Local response redirect URLs. See “Macro support for local response redirection”

on page 94.
v HTTP response headers (http-rsp-header configuration item). See “Adding

custom headers to server response pages” on page 88.

To reference the secret token, use the CREDATTR{tagvalue_session_index} macro.

Note: Secret token validation does not affect the CDSSO or eCSSO functionality in
WebSEAL.

Referrer validation
To help mitigate CSRF attacks, you can configure WebSEAL to validate the referer
header in incoming HTTP requests. WebSEAL compares this referer header with a
list of configured allowed-referers to determine whether the request is valid.

Referrer validation affects the following WebSEAL management pages:
v /pkmslogout

v /pkmslogout-nomas

v /pkmspasswd.form

v /pkmscdsso

v /pkmsvouchfor

v /pkmsskip

v /pkmsdisplace

Use the allowed-referers configuration entry in the [acnt-mgt] stanza to define
valid referer headers. The value for this entry can contain alphanumeric
characters, spaces, periods, and wildcard characters.

Note: You can specify this entry multiple times to define multiple valid referer
headers. WebSEAL uses all of these entries to validate the referrer.

You can set the allowed-referers to %HOST%, which is a special filter. This filter
indicates to WebSEAL that a referrer is valid if the host name portion of the
referer HTTP Request header matches the host HTTP Request header.

If you want WebSEAL to use referrer validation, you must include at least one
allowed-referers entry. For example:
[acnt-mgt]
allowed-referers = %HOST%

When attempting to validate an incoming request, if WebSEAL does not find an
allowed-referers entry that matches the referer header in the request then the
request fails. WebSEAL returns an error page.

Note: If there are no allowed-referers entries, referrer validation is disabled and
WebSEAL does not validate the referer headers in incoming requests.

106 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Reject unsolicited authentication requests
For extra mitigation against cross-site request forgery (CSRF), you can configure
WebSEAL to reject any unsolicited login requests. This configuration ensures that
WebSEAL does not process login requests without first issuing a login form.

The following steps outline the general process for a client to authenticate to
WebSEAL and access a protected resource:
1. The client requests the protected resource.
2. WebSEAL detects that the client is not authenticated so WebSEAL returns a

login form to the client.
3. The client enters login information and submits the form to WebSEAL.
4. WebSEAL processes the login information as follows:

a. Authenticates the user.
b. Creates a session.
c. Sends a redirect to the requested resource.

5. The client requests the protected resource.
6. WebSEAL detects that the user is authenticated and returns the resource to the

client.

By default, it is possible for a client to skip directly to step 3 and initiate
authentication with WebSEAL by sending through an unsolicited login request.
However, you can configure WebSEAL to reject these unsolicited requests. You can
set allow-unsolicited-logins in the [server] stanza to no to ensure that the first
two steps are required for a client to gain access to a resource. If you set this
option to no, WebSEAL must always issue a login form to unauthenticated clients.

By default, allow-unsolicited-logins is set to yes, which means that WebSEAL
does accept unsolicited authentication requests.

Set this entry to no if you are concerned that CSRF might cause a user to
inadvertently authenticate with authentication data provided by an attacker.
[server]
allow-unsolicited-logins = no

Suppression of WebSEAL and back-end server identity

This section contains the following topics:
v “Suppressing WebSEAL server identity”
v “Suppressing back-end application server identity” on page 108

Suppressing WebSEAL server identity
HTTP responses normally include a Server header containing the identity and
version of the server that is sending the response.

About this task

The following example illustrates the header output for a response sent from
WebSEAL:

Chapter 5. Web server security configuration 107

Content-Type: text/html
Date: Tue, 09 Nov 2004 02:34:18 GMT
Content-length: 515
Server: WebSEAL/6.0.0
Last-Modified: Thu, 04 Nov 2004 08:03:46 GMT
Connection: close

For security reasons, you might want WebSEAL to suppress the Server header in
its responses to clients.

To suppress WebSEAL server identity in HTTP server responses, set the
suppress-server-identity stanza entry in the [server] stanza of the WebSEAL
configuration file to "yes":
[server]
suppress-server-identity = yes

The default setting is "no".

Suppressing back-end application server identity

About this task

HTTP responses normally include a Server header containing the identity and
version of the server that is sending the response. The following example
illustrates the header output for a response sent from a back-end junctioned
application server:
Content-Type: text/html
Date: Tue, 09 Nov 2004 03:34:18 GMT
Content-Length: 515
Server: IBM_HTTP_SERVER/1.3.19Apache/1.3.20 (Win32)
Last-Modified: Thu, 04 Nov 2004 09:03:46 GMT
Connection: close

To suppress back-end application server identity in HTTP server responses, set the
suppress-backend-server-identity stanza entry in the [server] stanza of the
WebSEAL configuration file to "yes":
[server]
suppress-backend-server-identity = yes

The default setting is "no".

Disabling HTTP methods

About this task

You can configure WebSEAL to disable specific HTTP web methods such as the
TRACE method. You can block the use of HTTP methods to request local or
remote resources.

Use the http-method-disabled-local method in the [server] stanza to block the use
of specific methods for resource requests over a local junction.

The http-method-disabled-remote method in the [server] stanza disables the use
of HTTP methods to request remote resources.

108 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

You can use a comma (',') to separate multiple methods. For example, the
following configuration entry blocks access to the TRACE and PUT methods over
local junctions:
[server]
http-method-disabled-local = TRACE,PUT

By default, WebSEAL blocks all TRACE methods. WebSEAL disables the TRACE
method for requests to local and remote resources. The default values for these
configuration entries are as follows:
[server]
http-method-disabled-local = TRACE
http-method-disabled-remote = TRACE

Note:

RFC 2616 for HTTP defines a TRACE method as follows "This method is used to
invoke a remote, application-layer loopback of the requested message. The
recipient of the request is either the origin server or the first proxy or gateway to
receive a Max-Forwards value of zero (0) in the request."

Malicious users can use the TRACE method to implement a security attack on web
servers. To mitigate against this vulnerability, WebSEAL by default blocks the
TRACE method for all requests to the WebSEAL server.

You can enable the TRACE method (disable blocking) by removing the value TRACE
from these two entries in the WebSEAL configuration file.

To enable all HTTP methods including TRACE for local responses, set the
following entry:
[server]
http-method-disabled-local =

To enable all HTTP methods including TRACE for junctioned responses, set the
following entry:
[server]
http-method-disabled-remote =

Platform for Privacy Preferences (P3P)

This section contains the following topics:
v “Compact policy overview”
v “Compact policy declaration” on page 110
v “Junction header preservation” on page 111
v “Default compact policy in the P3P header” on page 112
v “Configuring the P3P header” on page 113
v “Specifying a custom P3P compact policy” on page 119
v “P3P configuration troubleshooting” on page 119

Compact policy overview

WebSEAL supports the Platform for Privacy Preferences (P3P) 1.0 specification. P3P
is a standard for the declaration of privacy policies in a machine-readable format.
The standard allows user agents to make decisions on the part of the user

Chapter 5. Web server security configuration 109

regarding whether to access certain URIs or accept certain cookies based on the
policy presented by the Web site. In the absence of a policy, the decision can be
made based on a set of assumptions about the site's policy.

Commercial browsers support P3P, particularly as part of the decision process for
accepting or rejecting cookies. Microsoft Internet Explorer 6 has P3P-based cookie
filtering enabled by default. Browsers based on Mozilla provide optional P3P
cookie filtering. WebSEAL provides P3P support to ensure that these browsers
accept WebSEAL session cookies.

The P3P specification describes a compact policy and a full policy. A compact policy
is a subset of a full policy. WebSEAL provides a default compact policy and also
provides configuration settings to enable customization of the compact policy.
WebSEAL does not provide a full policy. Full policies are specific to the vendor,
application, or security environment into which WebSEAL is deployed.
Implementation of a full policy is the responsibility of the vendor (service
provider). WebSEAL includes a configuration setting that can be used to point
clients to the location of a full policy.

The P3P specification states that an HTTP header can have only a single P3P
header (additional P3P headers are ignored). However, an HTTP response can have
multiple cookies. Therefore, the compact policy specified in the HTTP header
applies to all cookies in the response. Because there can be only a single policy, the
policy must represent the most strict of the actual policies for the cookies. For
WebSEAL, this means, for example, that if session cookies are accepted in a
response but failover cookies are not, the worst case P3P policy should be returned
for all cookies. The worst case is defined to be the minimum set of conditions that
would cause the browser to reject the cookie.

WebSEAL returns four types of cookies to the user agent (browser):
v Session cookie
v Failover cookie
v e-community cookie
v LTPA cookie

There is no need to configure policy for the e-community cookie. The cookie
contents are limited to specifying the location of the Web server to which the user
authenticated. This cookie contains no information that identifies the user.

The session cookie links to session data, and the failover cookie contains enough
session information to enable reconstruction of the session. The session cookie is
intended only for the origin server, is not retained past the end of the session, and
assists in the process of session maintenance. The failover cookie is intended for
the failover (replicated) server, is not retained past the end of the session, and also
assists in the process of session maintenance. Thus, session and failover cookies
have the same P3P policy. This means that the combined worst case policy for the
cookies is the session cookie policy.

Compact policy declaration

The WebSEAL configuration file provides a set of configuration options that match
the compact policy XML syntax as specified in the World Wide Web Consortium
Platform for Privacy Preferences specification. The complete specification can be
accessed at the following URL:

110 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

http://www.w3.org/TR/P3P/

WebSEAL provides configuration file entries that map to the following XML
elements in the compact policy:
v access

Indicates whether the site provides access to various kinds of information.
v categories

Type of information stored in the cookie.
v disputes

Specifies whether the full P3P policy contains some information regarding
disputes over the information contained within the cookie.

v non-identifiable

Signifies that either no data is collected (including Web logs), or that the
organization collecting the data will make the data anonymous.

v purpose

Purposes for data processing relevant to the Web.
v recipients

Legal entity, or domain, beyond the service provider and its agents where data
can be distributed.

v remedies

Remedies in case a policy breach occurs.
v retention

Type of retention policy in effect.
v p3p-element

Specifies any elements to add to the P3P header in addition to the compact
policy. This element can be used to supply a reference to a full XML policy.

The values for purpose (except current) and recipients (except ours) have an
additional option describing how the cookie data can be used. This option defines
whether the user is given a choice to opt-in or opt-out.

Junction header preservation

WebSEAL enables you to specify whether P3P headers from junctioned
applications are preserved or replaced. Note that this is not part of the P3P
compact policy, but is a WebSEAL function.

The configuration file entry is:
[p3p-header]
preserve-p3p-policy = {yes|no}

The default setting is "no". This means that P3P headers from junctioned servers
are replaced.

WebSEAL replaces back-end P3P policy headers by default to ensure that
WebSEAL cookies are not excluded due to a more strict policy set by the back-end
server.

When using the default setting, you might find that cookies that the back-end
server sets are not allowed due to the WebSEAL compact policy. In this case, you
should choose one of the following options:

Chapter 5. Web server security configuration 111

v Set preserve-p3p-policy = yes to force WebSEAL to preserve the compact
policy set by the back-end server.

v Modify the WebSEAL compact policy header to make the policy more
permissive, so that back-end cookies are allowed.

When WebSEAL processes responses from back-end servers, WebSEAL's actions
can include the addition of a cookie to the response. This addition occurs when the
WebSEAL junction has been created to generate junction cookies. These cookies are
used to map URLs across junctions, to ensure connectivity between the browser
and the back-end server. When the administrator chooses to preserve the compact
policy set by the back-end server (preserve-p3p-policy = yes), the administrator
must ensure that the compact policy is permissive enough to accept the addition of
the WebSEAL junction cookie. When the compact policy forbids the addition of the
junction cookie, the URL requests from the browser will not successfully resolve to
the URLs on the back-end server.

Default compact policy in the P3P header

WebSEAL adds a P3P header to every response in which cookies are set. The
header contains a P3P Compact Policy. The policy is a sequence of terms that
describe the policy regarding information contained within the cookies in the
response.

The following WebSEAL configuration file entries represent the default P3P
compact policy:
[p3p-header]
access = none
purpose = current
purpose = other-purpose:opt-in
recipients = ours
retention = no-retention
categories = uniqueid

The default configuration file entries result in a P3P header with the following
contents:
P3P: CP="NON CUR OTPi OUR NOR UNI"

The following table explains the values in the default policy header:

Table 6. P3P default header values

Term Definition

NON User has no access to information either in the cookie or linked to by the
cookie.

CUR Cookie helps provide the current service. The current service is the access
to the protected Web site.

OTPi Cookie provides another service, to which the user has opted-in.

OUR The Web site itself is the only recipient of the cookie and the information
linked to by the cookie.

NOR Neither the cookie data nor the data to which it links is retained after the
user logs out or after the user session expires.

UNI The cookie uses a unique identifier that represents the user, by using the
session ID and the user name.

112 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Configuring the P3P header

About this task

Administrators who deploy WebSEAL servers as part of the security solution for
their Web servers must specify the P3P compact policy for their site. This step
requires determining policy for each of the privacy settings defined by the P3P
specification. WebSEAL provides a default policy that is accepted by the default
settings for the Microsoft Internet Explorer 6 browser. Web administrators should
modify the default policy as needed to match the site policies for handling of user
data in cookies. Web administrators should test use of their policies with Internet
Explorer 6 to ensure that the WebSEAL cookies continue to be accepted by Internet
Explorer 6 browsers.

Web administrators should consult the P3P specification when defining their site
policy.

Multiple values are allowed for each configuration entry, with the exception of the
entries that require a value of "yes" or "no". When a particular configuration entry
is not declared, no indicators are added to the compact policy for that entry.

To configure the P3P compact policy for use with WebSEAL, complete the
following steps:

Procedure
1. Open the WebSEAL configuration file for editing. Go to the [server] stanza.
2. Decide if P3P headers from junctioned servers will be replaced or preserved.

Set the following value:[p3p-header] preserve-p3p-policy = {yes|no}
The default value is "no". Set this to "yes" if you want to preserve P3P
headers. For more information, see “Junction header preservation” on page
111

3. Go to the [p3p-header] stanza. Specify the access that the user will have to the
information in the cookie. Set the value for the following entry:
[p3p-header]
access = {none|all|nonident|contact-and-other|ident-contact|other-ident}

. The default setting is:
[p3p-header]
access = none

Table 7. Supported values for the access entry

Value Description

none No access to identified data is given.

all Access is given to all identified data.

nonident Web site does not collect identified data.

contact-and-other Access is given to identified online and physical contact information
as well as to certain other identified data.

ident-contact Access is given to identified online and physical contact information.
For example, users can access things such as a postal address.

other-ident Access is given to certain other identified data. For example, users
can access things such as their online account charges.

Chapter 5. Web server security configuration 113

4. Specify the type of information stored in the cookies or linked to by the
cookies. Set the value for the following entry:
[p3p-header] categories = {physical|online
|uniqueid|purchase|financial|computer
|navigation| interactive|demographic
|content|state|political|health
|preference|location|
government|other-category}

The default setting is:
[p3p-header]
categories = uniqueid

Table 8. Supported values for the categories entry

Value Description

physical Information that allows an individual to be contacted or located in
the physical world. For example, telephone number or address.

online Information that allows an individual to be contacted or located on
the Internet.

uniqueid Non-financial identifiers, excluding government-issued identifiers,
issued for purposes of consistently identifying or recognizing the
individual.

purchase Information actively generated by the purchase of a product or
service, including information about the method of payment.

financial Information about an individual's finances including account status
and activity information such as account balance, payment or
overdraft history, and information about an individual's purchase or
use of financial instruments including credit or debit card
information.

computer Information about the computer system that the individual is using
to access the network. For example, IP number, domain name,
browser type, or operating system.

navigation Data passively generated by browsing the Web site. For example,
which pages are visited, and how long users stay on each page.

interactive Data actively generated from or reflecting explicit interactions with a
service provider through its site. For example, queries to a search
engine, or logs of account activity.

demographic Data about an individual's characteristics. For example, gender, age,
and income.

content The words and expressions contained in the body of a
communication. For example, the text of email, bulletin board
postings, or chat room communications.

state Mechanisms for maintaining a stateful session with a user or
automatically recognizing users who have visited a particular site or
accessed particular content previously. For example, HTTP cookies.

political Membership in or affiliation with groups such as religious
organizations, trade unions, professional associations and political
parties.

health Information about an individual's physical or mental health, sexual
orientation, use or inquiry into health care services or products, and
purchase of health care services or products.

preference Data about an individual's likes and dislikes. For example, favorite
color or musical tastes.

114 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Table 8. Supported values for the categories entry (continued)

Value Description

location Information that can be used to identify an individual's current
physical location and track them as their location changes. For
example, Global Positioning System position data.

government Identifiers issued by a government for purposes of consistently
identifying the individual.

other-category Other types of data not captured by the above definitions.

5. Specify whether the full P3P policy contains some information regarding
disputes over the information contained within the cookie. Set the value for
the following entry:
[p3p-header]
disputes = {yes|no}

The disputes entry is not specified by default in the WebSEAL configuration
file. The P3P specification states that when the dispute entry is not specified,
the default value no is automatically assigned.

Table 9. Supported values for the disputes entry

Value Description

yes The full P3P policy contains information regarding disputes over the
information contained within the cookie.

no The full P3P policy does not contain information regarding disputes
over the information contained within the cookie.

6. Specify the types of remedies in case a policy breach occurs. Set the value for
the following entry:
[p3p-header]
remedies = {correct|money|law}

The default setting is:
[p3p-header]
remedies = correct

Table 10. Supported values for the remedies entry

Value Description

correct Errors or wrongful actions arising in connection with the privacy
policy will be remedied by the service.

money If the service provider violates its privacy policy, it will pay the
individual an amount specified in the human readable privacy policy
or the amount of damages.

law Remedies for breaches of the policy statement will be determined
based on the law referenced in the human readable description.

7. Specify either that no data is collected (including Web logs), or that the
organization collecting the data will make anonymous any information that
identifies the user. Set the value for the following entry:
[p3p-header]
non-identifiable = {yes|no}

Chapter 5. Web server security configuration 115

The non-identifiable entry is not specified in the WebSEAL configuration file.
The P3P specification states that when the non-identifiableentry is not
specified, the default value is automatically assigned no.

Table 11. Supported values for the non-identifiable entry

Value Description

yes Data that is collected identifies the user.

no No data is collected (including Web logs), or the information collected
does not identify the user.

8. Specify the purpose of the information in the cookie. Set the value for the
following entry:
[p3p-header]
purpose = {current|admin|develop|tailoring|pseudo-analysis|pseudo-decision|

individual-analysis|individual-decision|contact|historical|
telemarketing|other-purpose} [:[opt-in|opt-out|always]]

The default setting is:
[p3p-header]
purpose = current

Table 12. Supported values for the purpose entry

Value Description

current Information can be used by the service provider to complete the
activity for which it was provided.

admin Information can be used for the technical support of the Web site and
its computer system.

develop Information can be used to enhance, evaluate, or otherwise review
the site, service, product, or market.

tailoring Information can be used to tailor or modify content or design of the
site where the information is used only for a single visit to the site

pseudo-analysis Information can be used to create or build a record of a particular
individual or computer that is tied to a pseudonymous identifier,
without tying identified data to the record. This profile will be used
to determine the habits, interests, or other characteristics of
individuals for purpose of research, analysis and reporting.

pseudo-decision Information can be used to create or build a record of a particular
individual or computer that is tied to a pseudonymous identifier,
without tying identified data to the record. This profile will be used
to determine the habits, interests, or other characteristics of
individuals to make a decision that directly affects that individual.

individual-analysis Information can be used to determine the habits, interests, or other
characteristics of individuals and combine it with identified data for
the purpose of research, analysis and reporting.

individual-decision Information can be used to determine the habits, interests, or other
characteristics of individuals and combine it with identified data to
make a decision that directly affects that individual.

contact Information can be used to contact the individual, through a
communications channel other than voice telephone, for the
promotion of a product or service.

historical Information can be archived or stored for the purpose of preserving
social history as governed by an existing law or policy.

116 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Table 12. Supported values for the purpose entry (continued)

Value Description

telemarketing Information can be used to contact the individual with a voice
telephone call for promotion of a product or service.

other-purpose Information can be used in other ways not captured by the above
definitions.

For each value specified for purpose, except the value current, you can
optionally specify the opt-in policy. The syntax consists of a colon (:)
immediately following the purpose value, followed by one of the supported
values for the opt-in policy. For example: [p3p-header] purpose =
telemarketing:opt-in.
The following table lists the supported values:

Table 13. Supported values for the opt-in or opt-out policy

Value Description

opt-in Data can be used for this purpose only when the user affirmatively
requests this use.

opt-out Data can be used for this purpose unless the user requests that it not
be used in this way.

always Users cannot opt-in or opt-out of this use of their data.
This is the default value. When the opt-in policy is not specified, the
always policy applies.

9. Specify the recipients of the information in the cookie. Set the value for the
following entry (enter recipient value on one line):
[p3p-header]
recipient = {ours|delivery|same|unrelated|public|other-recipient}

[:[opt-in|opt-out|always]]

The default setting is:
[p3p-header]
recipient = ours

Table 14. Supported values for the recipient entry

Value Description

ours Ourselves and/or entities acting as our agents, or entities for whom
we are acting as an agent. An agent is a third party that processes
data only on behalf of the service provider.

delivery Legal entities performing delivery services that may use data for
purposes other than completion of the stated purpose.

same Legal entities following our practices. These are legal entities who use
the data on their own behalf under equable practices.

unrelated Unrelated third parties. These are legal entities whose data usage
practices are not known by the original service provider.

public Public forums. These are public forums such as bulletin boards,
public directories, or commercial CD-ROM directories.

other-recipient Legal entities following different practices. These are legal entities
that are constrained by and accountable to the original service
provider, but may use the data in a way not specified in the service
provider's practices.

Chapter 5. Web server security configuration 117

For each value specified for recipient, excepting ours, you can optionally
specify the opt-in policy. The syntax consists of a colon (:) immediately
following the recipient, followed by one of the supported values for the opt-in
policy. For example:[p3p-header] recipient = delivery:opt-inThe following
table lists the supported values:

Table 15. Opt-in policy values

Value Description

opt-in Data can be used for this purpose only when the user affirmatively
requests this use.

opt-out Data can be used for this purpose unless the user requests that it not
be used in this way.

always Users cannot opt-in or opt-out of this use of their data.
This is the default value. When the opt-in policy is not specified, the
always policy applies.

10. Specifies how long the information in the cookie is retained. Set the value for
the following entry:
[p3p-header]
retention = {no-retention|stated-purpose|legal-requirement|business-practices|

indefinitely}

The default setting is:
[p3p-header]
retention = no-retention

Table 16. Supported values for the retention entry

Value Description

no-retention Information is not retained for more than the brief period of time
necessary to make use of it during the course of a single online
interaction.

stated-purpose Information is retained to meet the stated purpose, and is to be
discarded at the earliest time possible.

legal-requirement Information is retained to meet a stated purpose, but the retention
period is longer because of a legal requirement or liability.

business-practices Information is retained under a service provider's stated business
practices.

indefinitely Information is retained for an indeterminate period of time.

11. Optionally, specify a reference to a full XML compact policy file. Specify a
value for the following entry:[p3p-header] p3p-element =
policyref=url_to_default_location_of_full_policy
This entry is present but commented out, and therefore not active, in the
default WebSEAL configuration file. The default entry is the default location
for the full policy on any Web site.
[p3p-header] # p3p-element = policyref=="/w3c/p3p.xml"
When p3p-element is not set, browsers look by default for the full policy in
/w3c/p3p.xml. Note that some browsers might not refer to p3p-element but
proceed directly to /w3c/p3p.xml.
Note: Ensure that unauthenticated access is granted to /w3c/p3p.xml. See “P3P
configuration troubleshooting” on page 119.

118 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Specifying a custom P3P compact policy

About this task

As an alternative to setting values for the entries in the WebSEAL configuration
file, you can specify the exact contents of the P3P header. This configuration can be
useful, for example, when your compact policy string has been generated by
another utility, and you want to use that string for the P3P policy.

To specify a custom P3P compact policy, complete the following steps:

Procedure
1. Comment out or remove the predefined policy elements from the WebSEAL

configuration file. For example, change the default WebSEAL entries to the
following:
[p3p-header]
#access =
#purpose =
#purpose =
#recipients =
#retention =
#categories =

2. Add your custom compact policy string to the p3p-element entry:
[p3p-header]
p3p-element = CP="your_series_of_compact_policy_abbreviations"

Any number of values can be added. The order of the values is not significant.

P3P configuration troubleshooting

Problem:

Browser cannot access the full P3P policy file.

Solution:

When the p3p-element stanza entry is used to specify the location of a file
containing the full policy, the browser attempts to access the file. The P3P
specification does not require browsers to submit cookies with the request for the
full policy. Internet Explorer 6 does not submit a session cookie when accessing the
full policy.

Therefore access to the full policy must be granted to unauthenticated users. When
the browser receives either a login form or a 401 error, modify the permissions on
the full policy to allow access by unauthenticated users.

Chapter 5. Web server security configuration 119

120 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 6. Runtime security services external authorization
service

This section contains the following topics:
v “About the runtime security services external authorization service”
v “Configuring the runtime security services external authorization service in

WebSEAL” on page 122
v “Sample configuration data for runtime security services external authorization

service” on page 124

About the runtime security services external authorization service
The runtime security services external authorization service (EAS) for risk-based
access is a modular authorization service plug-in. You can use IBM Security Access
Manager for Web authorization as an add-on to your own authorization models
when you have the EAS.

The runtime security services EAS provides the policy enforcement point (PEP)
functionality for risk-based access. You can configure the runtime security services
EAS to include risk-based access decisions as part of the standard authorization on
WebSEAL requests.

WebSEAL becomes the authorization enforcement point for access to resources that
risk-based access protects. For more information about risk-based access, see the
Installing, configuring, and administering risk-based access Guide in the IBM Tivoli
Federated Identity Manager information center at http://pic.dhe.ibm.com/
infocenter/tivihelp/v2r1/index.jsp

The runtime security services EAS plug-in uses the IBM Tivoli Federated Identity
Manager risk-based access capabilities. For more information about EAS, see the
Authorization C API Developer Reference Guide in the IBM Security Access Manager
for Web, version 7.0 Information Center at http://pic.dhe.ibm.com/infocenter/
tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html. Search for External
authorization service plug-ins.

The runtime security services EAS constructs a request that it sends to the policy
decision point (PDP), which is IBM Tivoli Federated Identity Manager. Based on
the policy decision that is received from the PDP, the EAS takes one of the
following actions:

Table 17. Runtime security services EAS access decisions

Action Description

Permit Grants access to the protected resource.

Permit with
obligations

Grants access to the protected resource, after the user successfully
authenticates with a secondary challenge.

Deny Denies access to the protected resource.

You must configure the WebSEAL runtime security services EAS to enforce policy
decisions that the PDP returns.

© Copyright IBM Corp. 2002, 2013 121

 http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp
 http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html

Configuring the runtime security services external authorization
service in WebSEAL

Configure the runtime security services external authorization service (EAS) to
enforce the policy decisions that the policy decision point (PDP) returns.

About this task

This configuration ensures that the correct data is passed to the runtime security
services EAS for each request. For more information, see “About the runtime
security services external authorization service” on page 121.

To include risk-based access decisions as part of the standard authorization on
WebSEAL requests, complete the steps in the following procedure.

Procedure
1. Configure the HTTP and cookie headers that the runtime security services EAS

requires.
The runtime security services EAS requires the authorization decision data from
the request. Specify the data as HTTP request elements in the
[azn-decision-info] stanza as shown in the following example. The specified
data is then passed to the runtime security services EAS.
[azn-decision-info]
The following information is passed on to the
policy decision point (PDP) for every request
to access a resource that risk-based access protects
User-Agent = header:User-Agent
Accept-Language = header:Accept-Language
Accept = header:Accept
Accept-Encoding = header:Accept-Encoding
Accept-Charset = header:Accept-Charset
Cache-Control = header:Cache-Control
Connection = header:Connection
Pragma = header:Pragma
Missing = header:Missing
rspcode = header:rspcode
X-Requested-With = header:X-Requested-With
method = method
scheme = scheme
uri = uri
Host = header:Host
Content-Type = header:Content-Type
Transfer-Encoding = header:Transfer-Encoding
Authorization = header:Authorization
Subject-UUID = cookie:ac.uuid

Important: Each header that you configure under the [azn-decision-info]
stanza must have a corresponding attribute configuration in the risk-based
access database. The values that you specify after the equal sign (=) in the
entries must match the attributes that you configure with the
manageRbaRiskProfile command. Ensure that the case of the attribute matches
the corresponding entry under the [azn-decision-info] stanza because the
entries are case sensitive.

The Subject-UUID entry is an exception. You do not have to configure
cookie:ac.uuid as an attribute with the manageRbaRiskProfile command. The
Subject-UUID entry is required only for the attribute collection service to work
in conjunction with the runtime security services EAS.

122 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

For more information, see the WebSEAL Administration Guide in the IBM
Security Access Manager for Web, version 7.0 Information Center at
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/
welcome.html. Search for azn-decision-info.

2. Configure the obligation mapping and the data that is specific to the runtime
security services EAS in the [rtss-eas] stanza of the WebSEAL configuration
file.
a. Open the WebSEAL configuration file for editing.
b. Configure the [rtss-eas] stanza.
c. For the server entry in the [rtss-cluster:<cluster>] stanza, specify the

URL that points to the runtime security service that runs in IBM Tivoli
Federated Identity Manager. If you specify an HTTPS URL, ensure that you
correctly configure the SSL entries.
The following steps describe one of the methods that you can use to
configure the Secure Socket Layer (SSL) entries for server-side SSL
authentication:
1) Copy the issuer certificate from the WebSphere Application Server

instance that hosts the runtime security service to a key database file.
2) Configure the ssl-keyfile entry to point to the key database file, for

example, pdsrv.kdb.
3) Configure the ssl-keyfile-stash entry to point to the stash file, for

example, pdsrv.sth.

For more information about configuring SSL for WebSEAL, see the
WebSEAL Administration Guide in the IBM Security Access Manager for Web,
version 7.0 Information Center at http://pic.dhe.ibm.com/infocenter/
tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html. Search for key
management.

d. Under the [obligations-levels-mapping] stanza, specify the mapping
between obligation levels that the PDP returns and the authentication levels
in WebSEAL. For more information, see the WebSEAL Administration Guide
in the IBM Security Access Manager for Web, version 7.0 Information Center
at http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/
com.ibm.isam.doc_70/welcome.html. Search for specifying authentication
levels.

3. To configure the protected object policy (POP) to call the runtime security
services EAS, you must complete the following tasks:
a. Create a POP.
b. Create the attributes that are required to trigger WebSEAL to call the EAS.
c. Attach the POP to the object, MyJct, which is the resource that risk-based

access must protect.
The EAS is called if the effective POP for the object has an attribute called
eas-trigger with an associated value of trigger_rba_eas.
For example, run the following commands to complete these tasks:
#pdadmin -a sec_master
Enter password: passw0rd
pop create rba-pop
pop modify rba-pop set attribute eas-trigger trigger_rba_eas
pop attach /WebSEAL/localhost-default/MyJct rba-pop
server replicate
quit

Note: Attach the POP in the object tree such that the runtime security services
EAS is used only for the resources protected by risk-based access. If you attach

Chapter 6. Runtime security services external authorization service 123

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome.html

the risk-based POP to a root object in the object space, the POP is used for
every request, including administrative tasks. Most of these calls to the runtime
security services EAS are not required and might result in lowered performance
throughput.

4. Restart WebSEAL to apply the configuration changes.
5. Use the pdadmin shell to enable tracing and logging for the runtime security

services EAS without restarting WebSEAL.
pdadmin > server task default-webseald-localhost

trace set pdweb.rtss 9 file path=rtss.log

Note: The setting is not persistent. The tracing is disabled when you restart
WebSEAL.

Results

The runtime security services EAS is now configured to enforce the risk-based
access policy decisions that the PDP returns.

What to do next

Configure the attribute collection service. See the Installing, configuring, and
administering risk-based access Guide in the IBM Tivoli Federated Identity Manager
information center at http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp
for details.

Sample configuration data for runtime security services external
authorization service

The sample [rtss-eas] stanza contains the configuration details for the runtime
security services external authorization service (EAS) to enforce policy decisions.
Add the sample entries under the [rtss-eas] stanza in the default WebSEAL
configuration file named webseald-default.conf.

Note: The formatting, commenting, and line breaks in the following code might
change when you copy and paste from a PDF file. Compare the code that you
copied and pasted with the following code to ensure that it conforms to the correct
syntax.
[rtss-eas]
Specify the name of the IBM(r) Security Access Manager for Web
trace component that the EAS uses

trace-component = pdweb.rtss

Set this property to true if you want the EAS
to first check with IBM(r) Security Access Manager for Web
whether the user has permission to access the resource based
on the ACL set.

apply-tam-native-policy = true

Specify the context-id that is used in the requests that are
sent by the EAS to the runtime security service.
If the context-id parameter is not set, the WebSEAL server-name is used
as the default value.
#
#context-id =
#
Specify the audit logging configuration. This entry consists

124 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

 http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/index.jsp

of an agent identifier that is followed by a comma-separated list
of key-value pairs of attributes that are associated with the agent.
#
For example, to configure the auditing of records to a file:
audit-log-cfg = file path=/tmp/rtss-audit.log,flush=20,
rollover=2000000,buffer_size=8192,queue_size=48
To send audit logs to STDOUT:
audit-log-cfg = STDOUT
#
If this attribute is missing or not configured, no audit
events will be logged.

audit-log-cfg =

Specify the name of the runtime security services SOAP cluster
that contains this runtime security services SOAP service.
Also specify a corresponding [rtss-cluster:cluster]
stanza with the definition of the cluster.

cluster-name = cluster1

[rtss-cluster:cluster1]
Specify the definitions for a cluster of runtime security services
SOAP servers in this stanza.

Define the specifications of the server that you use to communicate
with a single runtime security services SOAP server,
which is a member of this cluster.
Values for this entry are defined as:
{[0-9],}URL
where the first digit (if present) represents the priority of the server
in the cluster (9 being the highest, 0 being lowest). A priority of 9 is assumed
if you do not specify a priority. The URL can be any
well-formed HTTP or HTTPS URL.

You can specify multiple server entries for failover and load balancing
purposes. The complete set of these server entries defines the
membership of the cluster for failover and load balancing.

server = 9,https://localhost:9443/rtss/authz/services/AuthzService

Specify the maximum number of cached handles that are used when
communicating with runtime security services SOAP.

handle-pool-size = 10

Specify the length of time, in seconds, before an idle handle is removed
from the handle pool cache.

handle-idle-timeout = 240

Specify the length of time, in seconds, to wait for a response from
runtime security services SOAP.

timeout = 240

You can use the following optional configuration entries if
the runtime security services SOAP server is configured to require
basic authentication. If you leave these entries blank,
the basic authentication header is not provided when communicating
with the runtime security services SOAP server.

Specify the name of the user for the basic authentication header.

basic-auth-user =

Chapter 6. Runtime security services external authorization service 125

Specify the password for the basic authentication header.
Note: To obfuscate the the value of a stanza/key,
use the following pdadmin command:
pdadmin> config modify keyvalue set -obfuscate
config-file stanza key value
For example:
pdadmin> config modify keyvalue set -obfuscate
/opt/pdweb/etc/webseald-default.conf
rtss-eas basic-auth-passwd passw0rd
For more information about obfuscation, see Command Reference in
the IBM Security Access Manager information center.
Search for config modify in the pdadmin commands section.

basic-auth-passwd =
#
The following SSL entries are optional and are only required if:
1. At least one server entry uses SSL (that is, contains an HTTPS
protocol specification in the URL).
2. A certificate is required other than that which is used by this server
when communicating with the policy server. For information about the
default certificate, see the [ssl] stanza.
#
If these entries are required, but they are not specified in this stanza,
WebSEAL uses the values in the [ssl] stanza by default.
#
#
The name of the key database file that houses the client certificate for
WebSEAL to use.
#
ssl-keyfile =

#
The name of the password stash file for the key database file.
#
ssl-keyfile-stash =

#
The label of the client certificate in the key database.
#
ssl-keyfile-label =

#
This configuration entry specifies the DN of the server (obtained from the
server SSL certificate) that is accepted. If no entry is configured,
all DNs are accepted. You can specify multiple domain names by including
multiple ssl-valid-server-dn configuration entries.
#
ssl-valid-server-dn =

#
The entry controls whether FIPS communication is enabled with XACML SOAP.
If no configuration entry is present, the global FIPS setting (as
determined by the Security Access Manager policy server) takes effect.
#
ssl-fips-enabled =

Define the mappings between the obligation levels that the policy decision
point (PDP) returns and the WebSEAL step-up authentication levels.
The mapping must be one-to-one and the user must be permitted to authenticate
only through the appropriate obligation mechanisms. These entries ensure that the
EAS maps the obligations to the authentication levels and vice versa correctly.

[obligations-levels-mapping]
otp=3
consent=4

126 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Part 3. Authentication

© Copyright IBM Corp. 2002, 2013 127

128 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 7. Authentication overview

This chapter discusses basic concepts of WebSEAL authentication.

Topic Index:
v “Definition and purpose of authentication”
v “Information in a user request”
v “Client identities and credentials” on page 130
v “Authentication process flow” on page 130
v “Authenticated and unauthenticated access to resources” on page 131
v “Supported authentication methods” on page 133
v “Authentication challenge based on user agent” on page 134

Definition and purpose of authentication
Authentication is the process of identifying an individual process or entity that is
attempting to log in to a secure domain. Requests for protected resources by
unauthenticated users always result in an authentication challenge.
v WebSEAL provides several built-in authentication methods by default.

WebSEAL also provides the flexibility to customize the authentication
mechanism.

v The result of successful authentication to WebSEAL is a Security Access Manager
client identity.

v WebSEAL uses this client identity to build a credential for that user.
v The authorization service uses this credential to permit or deny access to

protected resources after evaluating the authorization policies governing each
object.

Information in a user request

During authentication, WebSEAL examines a user request for the following
information:
v Session key

A session key is a piece of data that is stored with a client and sent with every
request to WebSEAL made by that client. The session key is used by WebSEAL
to identify a series of requests as coming from the same client. It allows
WebSEAL to avoid the overhead of performing authentication for each request.
The session key is a locator index to the associated session data stored in the
WebSEAL server session cache. The session key is also known as the WebSEAL
session ID.

v Authentication data

Authentication data is information found in the user request that identifies the
user to the WebSEAL server. Examples of authentication data types include
client-side certificates, passwords, and token codes.

When WebSEAL receives a user request, WebSEAL always looks for the session
key first, followed by authentication data.

© Copyright IBM Corp. 2002, 2013 129

Client identities and credentials

The result of authentication is a client identity. WebSEAL requires the client
identity to build a credential for the user. The authorization service uses this
credential to permit or deny access to protected resources requested by the user.

The following process flow explains the relationship between authentication, a
client identity, and a credential:
1. WebSEAL always builds an unauthenticated credential for unauthenticated

users.
An unauthenticated user can still participate in the secure domain because
ACLs can contain rules that specifically govern unauthenticated users.

2. When a user requests a protected object and is required to authenticate,
WebSEAL first examines the user request for authentication data.
Authentication data includes method-specific authentication information, such
as passwords and certificates, that represent physical identity properties of the
user.

3. The result of successful authentication is a client identity.
The client identity is a data structure that includes the user name and any
extended attribute information that is to be added to the resulting credential.

4. Security Access Manager uses the client identity information to build a
credential for that user.
Security Access Manager matches the client identity with a registered Security
Access Manager user and builds a credential appropriate to this user. This
action is known as credentials acquisition.
The credential is a complex structure that includes the user name, any group
memberships, and any special extended security attributes associated with the
user's session. The credential describes the user in a specific context and is
valid only for the lifetime of that session.
The authorization service uses this credential to permit or deny access to
protected resources after evaluating the authorization policies governing each
object.
Credential acquisition can succeed only if the user has an account defined in
the Security Access Manager user registry.
If credential acquisition fails (the user is not a member of the Security Access
Manager user registry), WebSEAL returns an error.

Credentials can be used by any Security Access Manager service that requires
information about the user. Credentials allow Security Access Manager to securely
perform a multitude of services such as authorization, auditing, and delegation.

Authentication process flow

The following diagram illustrates the general process flow for WebSEAL
authentication when an external authentication interface (EAI) is not being used:

130 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

1. The user presents authentication information to WebSEAL (for example,
password, certificate, HTTP header) during a request for a resource in the
protected object space.

2. WebSEAL invokes the configured authentication module for that type of
authentication information.

3. The authentication module validates the authentication information and returns
an identity to WebSEAL.

4. WebSEAL uses this identity to create a credential for that user, based on data
stored for that user in the user registry. This credential is used during
authorization decisions for requests made by this user.

Note: The external authentication interface (EAI) supports external authentication.

Authenticated and unauthenticated access to resources

In a Security Access Manager environment, the identity of a user is proven to
WebSEAL through the process of authentication. But WebSEAL can accept requests
from both authenticated and unauthenticated users over HTTP and HTTPS.
WebSEAL then relies on the authorization service to enforce security policy by
permitting or denying access to protected resources. In general, a user can
participate in the secure domain as authenticated or unauthenticated.

In either case, the Security Access Manager authorization service requires a user
credential to make authorization decisions on requests for resources in the secure
domain. WebSEAL handles authenticated user credentials differently from
unauthenticated user credentials.

The credential for an unauthenticated user is a generic passport that allows the
user to participate in the secure domain and access resources that are available to
unauthenticated users.

The credential for an authenticated user is a unique passport that describes a
specific user who belongs to the Security Access Manager user registry. The
authenticated user credential contains the user identity, any group memberships,
and any special extended security attributes.

Client

User Registry

1

3

4

2

Authentication
Module

Create
Credential

WebSEAL

Figure 13. Authentication process flow

Chapter 7. Authentication overview 131

Request process for authenticated users

The following conditions describe the request process for authenticated users:
v A user makes a request for a resource protected by WebSEAL. The protection on

the resource requires that the user be authenticated. WebSEAL prompts the user
to log in.

v Successful authentication can occur only if the user is a member of the Security
Access Manager user registry.

v A WebSEAL session and key is created for the user.
v A credential for this user is built from information contained in the registry

about this user (such as group memberships).
v The session key and credential, plus other data, are stored as an entry in the

WebSEAL session cache.
v As WebSEAL processes this request (and future requests during this session), it

keeps the credential information available.
v Whenever an authorization check is required, the Security Access Manager

authorization service uses the credential information during the decision-making
process.

v When the user logs off, the cache entry for that user is removed and the session
is terminated.

Request process for unauthenticated users

The following conditions describe the request process for unauthenticated users:
v A user makes a request for a resource protected by WebSEAL. The protection on

the resource does not require that the user be authenticated. WebSEAL does not
prompt the user to log in.

v WebSEAL builds an unauthenticated credential for the user.
v No entry is created in the WebSEAL session cache.
v The request proceeds, with this credential, to the protected Web object.
v The authorization service checks the permissions on the unauthenticated entry of

the ACL for this object, and permits or denies the requested operation. The user
can access resources that contain the correct permissions for the unauthenticated
type category of user.

v Successful access to this object depends on the unauthenticated ACL entry
containing at least the read (r) and traverse (T) permissions.

v If the user requires access to a resource not available to unauthenticated users,
WebSEAL prompts the user to log in.

v A successful login changes the user's status to authenticated.
v If login is unsuccessful, a 403 "Forbidden" message is returned. However, the

user can still continue to access other resources that are available to
unauthenticated users.

Access conditions over SSL

The following conditions apply to unauthenticated users who access WebSEAL
over SSL:
v The exchange of information between the unauthenticated user and WebSEAL is

encrypted—just as it is with an authenticated user.

132 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v An SSL connection between an unauthenticated user and WebSEAL requires
only server-side authentication.

Forcing user login

About this task

You can force an unauthenticated user to log in by correctly setting the appropriate
permissions on the unauthenticated entry in the ACL policy that protects the
requested object.

The read (r) and traverse (T) permissions allow unauthenticated access to an object.

To force an unauthenticated user to log in, remove the read (r) permission from the
unauthenticated entry in the ACL policy that protects the object.

The user receives a login prompt (basic authentication or forms).

Use of unauthenticated HTTPS

There are many practical business reasons for supporting unauthenticated access to
WebSEAL over HTTPS:
v Some applications do not require a personal login, but require sensitive

information, such as addresses and credit card numbers. Examples include
online purchases of airline tickets and other merchandise.

v Some applications require that you register for an account with the business
before you can proceed with further transactions. Again, sensitive information
must be passed over the network.

Supported authentication methods
Although WebSEAL functions independently of the authentication process,
WebSEAL uses credentials to monitor all users participating in the secure domain.

To obtain the necessary identity information for credentials acquisition, WebSEAL
relies on the information gained from the authentication process.

The following table lists the authentication methods supported by WebSEAL for
credentials acquisition. When WebSEAL examines a client request, it searches for
authentication data in the order specified in this table.

Authentication Method
Supported Connection

Type

1. Failover cookie HTTP and HTTPS

2. LTPA cookie HTTP and HTTPS

3. CDSSO ID token HTTP and HTTPS

4. Client-side certificate HTTPS

5. Forms authentication (username and password) HTTP and HTTPS

6. Basic authentication (username and password) HTTP and HTTPS

7. External Authentication Interface HTTP and HTTPS

Chapter 7. Authentication overview 133

Authentication methods can be independently enabled and disabled for both HTTP
and HTTPS transports. If no authentication methods are enabled for a particular
transport, the authentication process is inactive for clients using that transport.

Authentication challenge based on user agent
WebSEAL provides a mechanism that allows the authentication challenge type to
be configured based on the user agent of a client requesting a protected resource.
This mechanism allows for tight integration and fine grained control over how
different clients can authenticate to WebSEAL.

Each authentication type, as specified by the auth-challenge-type configuration
entry, can be qualified with a set of rules. These rules define the user agent strings
that are included or excluded for different authentication types.

For example: auth-challenge-type = [-msie*+ms*]ba, [+mozilla*; +msie]forms;
eai

Based on the configuration example, WebSEAL:
v Does not return a basic authentication challenge to user agent strings beginning

with msie, but does return a basic authentication challenge for agents beginning
with ms.

v Returns a forms based authentication challenge client to user agents beginning
with mozilla or msie.

v Returns an EAI authentication challenge to any user agent.

User Agent String Authentication Challenges

msie forms, eai

ms_office_word ba, eai

mozilla forms, eai

chrome eai

Rule Syntax

Each authentication challenge type can be defined only once in the
auth-challenge-type string. The rules must precede the authentication type
enclosed in square brackets with different patterns separated by semicolons. A plus
(+) or minus (-) character indicates whether that challenge type is included or
excluded for that user agent string respectively.

The pattern can contain alphanumeric characters, spaces, periods, and wildcard
characters, such as, question mark (?) and asterisk (*).

When WebSEAL evaluates these rules based on the user agent, the first rule with a
pattern that matches the current string is applied. Any other rules that match the
given authentication mechanism are ignored. WebSEAL performs these evaluations
in the order in which the rules are defined.

An authentication type with no defined rule set will match any user agent string.

If you do not want the authentication type to match any user agent string, indicate
the given authentication challenge by using a negative wildcard string, such as
[-*]ba.

134 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note: The Authentication challenge based on the user agent functionality must not
be used as a security or enforcement measure.

Chapter 7. Authentication overview 135

136 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 8. Authentication methods

This chapter presents information about how to configure the core set of
authentication methods supported by WebSEAL.

Successful authentication results in a Security Access Manager identity that
represents the user. WebSEAL uses this identity to acquire credentials for that user.
Credentials allow the user to participate in the secure domain and are used by the
authorization service to permit or deny access to protected resources.

Topic Index:
v “Authentication terminology”
v “Logout and password change operations”
v “Basic authentication” on page 139
v “Forms authentication” on page 140
v “Client-side certificate authentication” on page 143
v “Kerberos authentication” on page 153
v “LTPA authentication” on page 155

Authentication terminology

The following terminology is used when discussing authentication in this
document:
v method

An authentication method describes the overall process and strategy of an
authentication type. Examples of authentication methods include, but are not
limited to:
– Username/password
– Certificate
Typically, but not always, authentication methods have a one to one relationship
with a particular type of data used to prove a user's identity.

v operations

An authentication operation describes any action that supports the
authentication method. For example:
– Performing an LDAP lookup during username and password authentication.
– Changing a user password.
– Verifying that a new password meets certain criteria.
– Adding attributes to an authenticated identity.

Logout and password change operations

Security Access Manager provides authenticated users with the following resources
for managing logout and password change operations:
v “Logging out: pkmslogout” on page 138
v “Logout using pkmslogout-nomas” on page 567\
v “Controlling custom response pages for pkmslogout” on page 138

© Copyright IBM Corp. 2002, 2013 137

v “Changing passwords: pkmspasswd” on page 139
v “Password change issue with Active Directory on Windows” on page 139

Logging out: pkmslogout

About this task

For some authentication methods, users can use the pkmslogout command to log
out from the current session.

The pkmslogout command is not appropriate for authentication methods that
supply authentication data with each request, such as basic authentication,
certificates, or IP address authentication. In these cases, you must close the browser
to log out.

Procedure
1. Run the pkmslogout command to log out from the current session. For

example: https://www.example.com/pkmslogout When this request is made,
WebSEAL returns the appropriate logout form defined in the WebSEAL
configuration file: [acnt-mgt]logout = logout.html

2. Modify the contents of the appropriate response page (such as logout.html) to
meet your specific requirements.

Controlling custom response pages for pkmslogout
The pkmslogout command allows the default HTML response page (such as
logout.html) to be replaced by a custom response page.

The custom response page is specified through a query string that is appended to
the pkmslogout URL. For example:
https://www.example.com/pkmslogout?filename=custom_logout_file

where custom_logout_file is the file name of the custom logout response page. This
file must be located in the same management/lang directory that contains the
default HTML response forms (such as logout.html) in the LMI.

The custom response page feature allows, for example, multiple logout response
pages when the network architecture requires different exit screens for users
logging out of distinctly different back-end systems.

You can control whether or not the appended query string is allowed to override
the default response page through the use-filename-for-pkmslogout stanza entry
in the [acnt-mgt] stanza of the WebSEAL configuration file.

A no value (default) disables the use of the query string. Any query string in a
pkmslogout URL that specifies a custom response page is ignored. Only the
default response page is used upon logout.

A yes value enables the use of the query string. If a query string in a pkmslogout
URL specifies a custom response page, that custom page is used instead of the
default page. For example:
[acnt-mgt]
use-filename-for-pkmslogout = yes

See also “Customized responses for old session cookies” on page 293.

138 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Changing passwords: pkmspasswd

About this task

Users can use this command to change their login password when using basic
authentication (BA) or forms authentication. For example:
https://www.example.com/pkmspasswd

Results

To assure maximum security when BA is used with WebSEAL, this command has
the following behavior for a BA client:
1. The password is changed.
2. The client user is logged out from the current session.
3. When the client makes an additional request, the browser presents the client

with a BA prompt.
4. The client must log back in to continue making requests.

This scenario applies only to a client using basic authentication.

Note: The pkmspasswd management page is a management command to the
WebSEAL server. It is not represented in the object space and you cannot attach
policies to it.

Password change issue with Active Directory on Windows

The following problem occurs for password changes when using Active Directory
as the Security Access Manager user registry and the Active Directory server is
running on Windows. Depending on certain Active Directory policy settings, old
passwords can still be used to log in to Security Access Manager after a password
change has occurred. By default, both the old and the new passwords continue to
work for approximately one hour after the password change. After one hour, the
old password stops working.

Windows introduced this behavior into Active Directory. See the Microsoft KB
article 906305 for information about what occurs and for instructions on disabling
the behavior if necessary.

http://support.microsoft.com/?id=906305

Basic authentication

Basic authentication (BA) is a standard method for providing a username and
password to the authentication mechanism. BA is defined by the HTTP protocol
and can be implemented over HTTP and over HTTPS.

By default, WebSEAL is configured for basic authentication (BA) over HTTPS.

This section contains the following topics:
v “Enabling and disabling basic authentication” on page 140
v “Setting the realm name” on page 140

Chapter 8. Authentication methods 139

http://support.microsoft.com/?id=906305

Enabling and disabling basic authentication

About this task

The ba-auth stanza entry, located in the [ba] stanza of the WebSEAL configuration
file, enables and disables the basic authentication method.

Basic authentication is enabled by default. To configure basic authentication:

Procedure
1. Stop the WebSEAL server.
2. Edit the WebSEAL configuration file. In the [ba] stanza, specify the protocols to

support in your network environment. The protocols are shown in the
following table.

Table 18. Configuring basic authentication

Protocol to Support Configuration File Entry

HTTP ba-auth = http

HTTPS ba-auth = https

Both HTTP and HTTPS ba-auth = both

Disable basic authentication ba-auth = none

For example, to support both protocols:
[ba]
ba-auth = both

3. Restart the WebSEAL server.

Setting the realm name

About this task

The realm name is the text that is displayed in the dialog box that appears when
the browser prompts the user for login data. The realm name is also the name of
the realm to which the user will be authenticated when the user login succeeds.

The basic-auth-realm stanza entry located in the [ba] stanza of the WebSEAL
configuration file sets the realm name.

For example:
[ba]
basic-auth-realm = Access Manager

The dialog box would display (for example):
Enter username for Access Manager at www.ibm.com:

Forms authentication

Security Access Manager provides forms authentication as an alternative to the
standard basic authentication mechanism. This method produces a custom HTML
login form from Security Access Manager instead of the standard login prompt
resulting from a basic authentication challenge.

140 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

When you use forms-based login, the browser does not cache the username and
password information as it does in basic authentication.

This section contains the following topics:
v “Enabling and disabling forms authentication”
v “Customizing HTML response forms”
v “Submitting login form data directly to WebSEAL” on page 142

Enabling and disabling forms authentication

About this task

The forms-auth stanza entry, located in the [forms] stanza of the WebSEAL
configuration file, enables and disables the forms authentication method.

Forms authentication is disabled by default. To configure forms authentication:

Procedure
1. Stop the WebSEAL server.
2. Edit the WebSEAL configuration file. In the [forms] stanza, specify the

protocols to support in your network environment. The protocols are shown in
the following table.

Table 19. Configuring forms authentication

Protocol to Support Configuration File Entry

HTTP forms-auth = http

HTTPS forms-auth = https

Both HTTP and HTTPS forms-auth = both

Disable forms authentication (default) forms-auth = none

For example, to support both protocols:
[forms]
forms-auth = both

3. Restart the WebSEAL server.

Customizing HTML response forms
Forms authentication requires you to use a custom login form called login.html.

About this task

You can use the LMI access the default login.html form.

You can customize the content and design of this form.

For detailed information on the available HTML forms that you can customize, see
“Static HTML server response pages” on page 69.

Chapter 8. Authentication methods 141

Submitting login form data directly to WebSEAL

About this task

It is possible to perform forms authentication to WebSEAL without being prompted
by WebSEAL.

The following sequence describes the events that occur during a typical WebSEAL
login where the user is prompted by WebSEAL with a login form:

Procedure
1. The user requests a protected resource.
2. WebSEAL caches the user's request.
3. WebSEAL returns a login form to the user.
4. The user fills in the login form fields (providing the user name and password)

and clicks a submit button.
5. The submit button triggers a POST request to /pkmslogin.form. The request

body contains the form field data.

Note: The pkmslogin.form management page is a management command to
the WebSEAL server. It is not represented in the object space and you cannot
attach policies to it.

6. WebSEAL authenticates the user and, upon successful authentication, follows
an order of precedence for redirecting the user to one of the following three
locations:
a. The location specified by the login-redirect-page entry in the [acnt-mgt]

stanza, if configured. See “Automatic redirection after authentication” on
page 201.

b. The user's originally requested resource (if known).
c. The generic login_success.html page. See “Static HTML server response

pages” on page 69.

Results

Some application integration implementations might require logging in directly
without making an initial request for a protected resource or being prompted by
WebSEAL to login. Such a direct login can be accomplished using a POST request
directly to /pkmslogin.form.

The following sequence describes the events that occur during a direct login:
1. The client sends a POST request to /pkmslogin.form with the proper form field

data in the body of the request.
2. WebSEAL authenticates the user and, upon successful authentication, follows

an order of precedence for redirecting the user to one of the following two
locations:
a. The location specified by the login-redirect-page entry in the [acnt-mgt]

stanza, if configured.
See “Automatic redirection after authentication” on page 201.

b. The generic login_success.html page.
See “Static HTML server response pages” on page 69.

The format of the POST data must follow these conventions:

142 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v The POST must be made to /pkmslogin.form.
v The POST request body must contain the field data for three fields:

– username

– password

– login-form-type

v The value of login-form-type must be "pwd" for forms logins.
v The content-length header must indicate the length of the resulting request

body.

Example (using telnet):
prompt> telnet webseal.example.com 80
Connected to webseal.example.com.
Escape character is ’^]’.
POST /pkmslogin.form HTTP/1.1
host: webseal.webseal.com
content-length: 56

username=testuser&password=my0passwd&login-form-type=pwd

Client-side certificate authentication

This section contains the following topics:
v “Client-side certificate authentication modes”
v “Certificate authentication configuration task summary” on page 146
v “Enabling certificate authentication” on page 146
v “Configuration of the certificate authentication mechanism” on page 147
v “Certificate login error page” on page 149
v “Certificate login form” on page 150
v “Disabling SSL session IDs for session tracking” on page 150
v “Enabling and configuring the Certificate SSL ID cache” on page 150
v “Setting the timeout for Certificate SSL ID cache” on page 151
v “Error page for incorrect protocol” on page 151
v “Disabling certificate authentication” on page 152
v “Disabling the Certificate SSL ID cache” on page 152
v “Technical notes for certificate authentication” on page 152

Client-side certificate authentication modes

Client-side certificate authentication enables a user to use a client-side digital
certificate to request an authenticated identity for use within a Security Access
Manager secure domain. When authentication is successful, WebSEAL obtains a
Security Access Manager identity that is used to build a credential for the user. The
credential specifies the permissions and authorities to be granted to the user.

Client-side certificate authentication is disabled by default.

WebSEAL supports client-side certificate authentication in three different modes.
The administrator must specify the appropriate mode at configuration time. The
following sections describe each mode:
v “Required certificate authentication mode” on page 144
v “Optional certificate authentication mode” on page 144

Chapter 8. Authentication methods 143

v “Delayed certificate authentication mode”

Required certificate authentication mode
In the required certificate authentication mode, WebSEAL always requires a
client-side certificate with the first HTTPS request.

When the user requests access to a resource over SSL, WebSEAL provides its
server-side certificate, which allows the user to establish an SSL session. WebSEAL
then asks the user for a client-side certificate.

If the user does not present a valid certificate, the SSL connection with the user is
closed and client-side certificate authentication is not attempted.

Note: To be valid, the data in the certificate must not be corrupted and the
certificate itself must not have been revoked by a certificate revocation list (CRL).

If a valid certificate is presented, but the authentication or authorization of the
Distinguished Name (DN) in the certificate fails, the connection is established and
an unauthenticated session is created. Access to protected resources is not allowed.

Optional certificate authentication mode

In this mode, WebSEAL requests a client-side certificate with the first HTTPS
request, but does not require it.

When the user requests access to a resource over SSL, WebSEAL provides its
server-side certificate, which allows the user to establish an SSL session. WebSEAL
then asks the user for a client-side certificate. If the user presents a client-side
certificate, WebSEAL uses it to initiate a certificate-based authentication session. If
the user does not present a client-side certificate, WebSEAL allows the SSL session
to continue but the user remains unauthenticated to Security Access Manager.

Delayed certificate authentication mode

In this mode, WebSEAL does not request a client-side certificate for the purpose of
client-side certificate authentication until the user attempts to access a protected
resource that requires certificate-based authentication.

When the user requests access to a resource over SSL, WebSEAL provides its
server-side certificate, which allows the user to establish an SSL session. WebSEAL
checks the security policy on the requested resource to determine if certificate
authentication is required. The security policy is described in the contents of an
access control list (ACL) or protected object policy (POP) that has been attached to
the protected resource.

If the security policy does not require certificate authentication, WebSEAL does not
request a client-side digital certificate.

If the security policy does require certificate authentication, WebSEAL returns a
login form. The user clicks a button contained in this form to initiate the certificate
exchange.

In this mode, the SSL session ID cannot be used to track user session activity,
because the SSL session will be renegotiated (resulting in a new SSL session ID).
All connections for the existing SSL session will be closed.

144 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Delayed certificate authentication is used in two scenarios, based on the user's
authentication status at the time that the user requests a resource that requires
certificate authentication. In both scenarios, a user can have an unlimited number
of exchanges with the WebSEAL server prior to establishing a need to authenticate
using certificates.

The two scenarios include the following:
v User is unauthenticated

In this scenario, the user remains unauthenticated because the user does not
attempt to access any resources that require any authentication. When the user
eventually attempts to access a resource that requires authentication because of
an ACL, WebSEAL presents a certificate login form, and the user can initiate
certificate transfer (by clicking the button on this form).
WebSEAL retains the entry in the session cache for the unauthenticated user, but
obtains a new SSL ID from GSKit. The old SSL session ID is discarded. When
the user successfully authenticates, WebSEAL replaces the old unauthenticated
user credentials from the session cache data with the new user credentials. The
user is now authenticated, and is able to request access to resources that require
authentication (because of an ACL).

v User has previously authenticated using another authentication method

In this scenario (know as authentication strength policy or step-up
authentication), the user was required to authenticate to Security Access
Manager during the previous exchanges with WebSEAL. The previous
authentication took place through a different authentication method, such as
forms authentication.
The user eventually attempts to access a resource that is protected by a protected
object policy (POP) that requires client-side certificate authentication in order to
access the resource. WebSEAL examines the current WebSEAL authentication
strength policy configuration to determine the ranking of the enabled
authentication methods. (The authentication strength policy ranks authentication
methods in a hierarchy from weakest to strongest.)
When certificate authentication is ranked stronger than the user's current
authentication method, WebSEAL serves the user a step-up login form that
contains the certificate login button. The user can click the button to initiate the
certificate exchange. When the user successfully authenticates using a certificate,
the user's authentication strength level is increased for the duration of the
current session.
WebSEAL retains the user's entry in the session cache, but obtains a new SSL
session ID from GSKit. The old SSL session ID is discarded. WebSEAL replaces
the old user credentials (which were based the user's previous authentication
method) with the new user credentials.
The authentication strength policy enables a user to move between different
authentication levels during a session. Certificate authentication is one of the
authentication levels that can be entered when a user needs to increase (step-up)
authentication level in order to access protected object resources.
To enable a user to move up to a certificate authentication level, administrators
must modify the WebSEAL configuration file to include certificate authentication
in the list of supported levels for authentication strength.
For authentication strength policy configuration instructions, see “Authentication
strength policy (step-up)” on page 176.

Chapter 8. Authentication methods 145

Certificate authentication configuration task summary

All of the certificate authentication modes share a common set of configuration
tasks. The delayed certificate authentication mode requires additional tasks.

To enable client-side certificate authentication in any of the supported modes,
complete the following tasks:

1. “Enabling certificate authentication”
2. “Configuration of the certificate authentication mechanism” on page 147
3. “Certificate login error page” on page 149

When enabling delayed certificate authentication mode, complete the following
additional tasks:

1. “Certificate login form” on page 150
2. “Disabling SSL session IDs for session tracking” on page 150
3. “Enabling and configuring the Certificate SSL ID cache” on page 150
4. “Setting the timeout for Certificate SSL ID cache” on page 151
5. “Error page for incorrect protocol” on page 151

Note: The WebSEAL server must be stopped and restarted to activate the new
configuration settings.

To disable (unconfigure) client-side certificate authentication, complete the
following tasks:

v “Disabling certificate authentication” on page 152
v “Disabling the Certificate SSL ID cache” on page 152

Technical notes for certificate authentication:

v “Technical notes for certificate authentication” on page 152

The WebSEAL configuration file settings for certificate authentication are
summarized in the IBM Security Web Gateway Appliance: Web Reverse Proxy Stanza
Reference.

Enabling certificate authentication

About this task

Certificate authentication is disabled by default. To enable certificate
authentication:

Procedure

Edit the WebSEAL configuration file. In the [certificate] stanza, specify a value to
the accept-client-certs stanza entry that instructs WebSEAL how to handle
client-side certificate authentication requests. The following table provides the valid
values:

146 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Table 20. Configuring certificate authentication

Configuration Description

accept-client-certs = optional Client can optionally use certificate-based
authentication.

WebSEAL asks clients for an X.509 certificate.
If the user supplies a certificate,
certificate-based authentication is used.

accept-client-certs = required Client must use certificate-based
authentication.

WebSEAL asks clients for an X.509 certificate.
If the user does not present a certificate,
WebSEAL does not allow a connection.

accept-client-certs = prompt_as_needed The user is not required to authenticate with a
certificate at session start-up. The user can
later initiate certificate authentication.

This setting enables delayed certificate
authentication mode.

For example, to prompt users for a client-side certificate only when the user
encounters a resource that requires certificate authentication, enter:
[certificate]
accept-client-certs = prompt_as_needed

This setting is used when implementing an authentication strength policy (step-up)
for certificate authentication.

Configuration of the certificate authentication mechanism

You can use the External Authentication Interface (EAI) protocol to configure a
junctioned web application to handle authentication on behalf of WebSEAL.
v “EAI certificate authentication.”
v “Configuring EAI certificate authentication” on page 148.

Note: For more information about EAI, see Chapter 13, “External authentication
interface,” on page 229.

EAI certificate authentication
An external application can also be used to authenticate the client certificate. This
external application uses the EAI protocol to provide the authentication data that
WebSEAL uses when generating the user credential.

The following diagram highlights the process flow for the authentication operation:

Chapter 8. Authentication methods 147

WebSEAL EAI Application

1

Client

Request for a protected
resource

Authentication response

WebSEAL builds credential

Response to user

junction

2

3

4

5

EAI configured URI requested

Original request processed

6

1. A request is made for a resource which is protected by WebSEAL. WebSEAL
negotiates the client certificate based on the setting of the accept-client-certs
configuration entry.

2. WebSEAL creates a sub-request, which is then sent to the configured EAI
application. The URI for the EAI application is configured through the eai-uri
configuration entry.

3. The EAI application authenticates the user (based on the client certificate data)
and provides the necessary EAI headers so that WebSEAL is able to correctly
construct the credential for the user. If the authentication fails, the EAI should
return no authentication data, which indicates to WebSEAL that an
authentication error has occurred. At this point WebSEAL will generate an
authentication error page and return this to the client.

4. WebSEAL uses the authentication data to build a credential for the user.
5. Now that the user has been correctly authenticated, WebSEAL continues to

process the original request.
6. The response to the original request is passed back to the client.

Configuring EAI certificate authentication
About this task

To configure the external authentication mechanism complete the following steps:

Procedure
1. Verify that certificate authentication is enabled. See “Enabling certificate

authentication” on page 146.

148 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

2. In the [certificate] stanza, specify the URI which is invoked to perform the
authentication as the value for the eai-uri stanza entry. This URI must be
relative to the root web space of the WebSEAL server. See the configuration
entry in the IBM Security Web Gateway Appliance: Web Reverse Proxy Stanza
Reference.

3. In the [certificate] stanza, specify the client certificate data elements that is
passed to the EAI application, as the value for the eai-data stanza entry. This
must be of the form eai-data = data: header_name. Multiple pieces of client
certificate data can be passed to the EAI application by including multiple
eai-data configuration entries. For details, including acceptable data values, see
the configuration entry in the IBM Security Web Gateway Appliance: Web Reverse
Proxy Stanza Reference.

What to do next

For more information on the EAI protocol, see the following sections:
1. “HTTP header names for authentication data” on page 234
2. “Extracting authentication data from special HTTP headers” on page 236
3. “How to generate the credential” on page 236
4. “How to write an external authentication application” on page 238

Note: When using an external application to authenticate the client certificate,
multi-step authentications are not allowed, and the external authentication
application does not need to be available to unauthenticated users.

5. “External authentication interface HTTP header reference” on page 240
6. “Post-authentication redirection with external authentication interface” on

page 242
7. “Session handling with external authentication interface” on page 242
8. “Authentication strength level with external authentication interface” on page

242
9. “Reauthentication with external authentication interface” on page 243

10. “Setting a client-specific session cache entry lifetime value” on page 244
11. “Setting a client-specific session cache entry inactivity timeout value” on page

246

Certificate login error page
Administrators can choose to use the default error page, customize the error
message, or specify an entirely different customized error page. Typically,
administrators use the default page but might customize the contents of the error
message.

WebSEAL returns a default HTML response page containing an error message that
is displayed when a user fails to successfully authenticate using client-side
certificate authentication. Specifically, the error page is returned when the
certificate is valid, but does not correspond to a Security Access Manager user.

This page is not returned when a revoked certificate is presented. Certificate
revocation is handled by SSL. When a revoked certificate is presented, the SSL
connection is immediately closed, resulting in a browser error page (and not the
WebSEAL error page).

Chapter 8. Authentication methods 149

Administrators who choose to create a new HTML error page must edit the
WebSEAL configuration file to indicate the location of the new page.

The default WebSEAL configuration file entry is:
[acnt-mgt]
cert-failure = certfailure.html

Certificate login form

WebSEAL provides an HTML page containing a login form, to be presented to
users when the need for delayed certificate authentication has been identified.

Administrators can choose to use the default login form, customize the login form,
or specify an entirely different customized login page. Typically, administrators use
the default file but customize the contents of the form.

Administrators who choose to create a new HTML file must edit the WebSEAL
configuration file to indicate the location of the new file.

The default WebSEAL configuration file entry is:
[acnt-mgt]
certificate-login = certlogin.html

Disabling SSL session IDs for session tracking

About this task

This configuration step applies only when delayed certificate authentication has
been enabled.

Procedure

Disable the use of SSL session IDs to track session state. Verify the default "no"
value for the ssl-id-sessions stanza entry in the WebSEAL configuration file:
[session]
ssl-id-sessions = no

Note: In this case, SSL IDs cannot be used to maintain user sessions because when
the user is prompted for a certificate, the user's SSL ID will change. If
ssl-id-sessions is set to "yes", WebSEAL generates an error message upon startup
and shuts down.

Enabling and configuring the Certificate SSL ID cache

About this task

This configuration step applies only when delayed certificate authentication has
been enabled.

To configure the cache, complete the following steps:

Procedure
1. Verify that certificate authentication is enabled.

See “Enabling certificate authentication” on page 146.

150 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

2. Specify the maximum number of entries allowed in the cache. Edit the
WebSEAL configuration file. In the [certificate] stanza, assign a value to
cert-cache-max-entries. For example:
[certificate]
cert-cache-max-entries = 1024

The value corresponds to the maximum number of concurrent certificate
authentications. The default value is one quarter of the default number of
entries in the SSL ID cache. (Most SSL sessions do not require certificate logins
or require certificate authentication only once for the session). The number of
entries in the SSL ID cache is set in the [ssl] stanza. For example:
[ssl]
ssl-max-entries = 4096

Therefore, the default value for cert-cache-max-entries is 1024, which is one
quarter of the default value for ssl-max-entries, which is 4096.

Note: Most user requests to WebSEAL occur over SSL connections, and all
requests over SSL connections without certificates must check the cache.
Keeping the cache size smaller can significantly improve performance.

Setting the timeout for Certificate SSL ID cache

About this task

This configuration step applies only when delayed certificate authentication has
been enabled.

Complete the following steps:

Procedure
1. Verify that certificate authentication is enabled.

See “Enabling certificate authentication” on page 146.
2. Edit the WebSEAL configuration file. In the [certificate] stanza, adjust the value

of cert-cache-timeout as necessary. For example:
[certificate]
cert-cache-timeout = 120

The value is the maximum lifetime for an entry in the cache, expressed as a
number of seconds. Use the default value unless your conditions warrant
modifying it. Possible reasons to modify the value include:
v Systems with memory restrictions might need a reduced expiration time.
v The expiration time might need to be increased if there is a significant lag

between the time when the user initiates a certificate transfer and when the
user actually submits the certificate.

v Lower values clean out the cache sooner when no certificate authentications
are required. Cleaning the cache frees system memory.

Error page for incorrect protocol

This configuration step applies only when delayed certificate authentication has
been enabled.

WebSEAL provides a default HTML page containing an error message to be
displayed when an authenticated user attempts to increase the authentication

Chapter 8. Authentication methods 151

strength level to certificate authentication from an HTTP session. Users attempting
to increase the authentication level to certificate authentication must use the
HTTPS protocol.

Administrators can choose to use the default error page, customize the error
message, or specify an entirely different customized error page. Typically,
administrators use the default page but might customize the contents of the error
message.

Administrators who choose to create a new HTML error page must edit the
WebSEAL configuration file to indicate the location of the new page.

The default WebSEAL configuration file entry is:
[acnt-mgt]
cert-stepup-http = certstepuphttp.html

Disabling certificate authentication

About this task

To disable certificate authentication:

Procedure
1. Stop the WebSEAL server.
2. Edit the WebSEAL configuration file. In the [certificate] stanza, specify the

following key = value pair:
[certificate]
accept-client-certs = never

3. Restart the WebSEAL server.

Disabling the Certificate SSL ID cache

About this task

The Certificate SSL ID cache is used only with delayed certificate authentication or
authentication strength step-up to certificate authentication.

The cache is disabled automatically, based on the configuration settings for
certificate authentication.

Procedure

To verify that the cache is disabled, examine the value for accept-client-certs in the
[certificate] stanza. Verify that the value is one of the following:
v required

v optional

v never

Verify that the value is not prompt_as_needed.

Technical notes for certificate authentication
For all certificate configurations, a client-side certificate can be presented only once
per browser session.

152 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

If the client-side certificate exchange fails, WebSEAL requires that the browser
session be restarted before a client-side certificate can be presented again.

Kerberos authentication
The IBM Security Web Gateway Appliance does not internally support Kerberos
authentication for use with Windows clients to achieve Windows desktop single
signon. However, you can configure a junctioned web server to handle Kerberos
authentication on behalf of the appliance.

The junctioned web server acts as an External Authentication Interface (EAI)
application and completes the Kerberos authentication. This web server, known as
the Kerberos Authenticator, then passes the authenticated user identity back to the
appliance in an EAI header. For more information about EAI, see Chapter 13,
“External authentication interface,” on page 229.

Topic index:
v “Configuring Kerberos authentication.”
v “Limitations” on page 154.

Configuring Kerberos authentication
To achieve Windows desktop single signon, you must configure a Kerberos
Authenticator to authenticate clients on behalf of the IBM Security Web Gateway
Appliance.

About this task

You can configure a junctioned web server to complete the actual authentication
and return the authenticated identity to the appliance.

Complete the following steps to configure an external Kerberos Authenticator to do
the authentication on behalf of the appliance. An example is provided for each
step. Collectively, these examples describe one possible configuration that supports
Windows desktop single signon.

Procedure
1. Install the Policy Server and configure its user registry. For example, Active

Directory.

Windows
Client

Appliance Domain Controller

WebSEAL

KDC

Kerberos
Authenticator

Policy Server

EAI
Junction

Figure 14. External Kerberos authentication

Chapter 8. Authentication methods 153

2. Configure a web server that supports Kerberos Authentication. This web server
is the Kerberos Authenticator. For example, install WebSEAL on the domain
controller and configure Kerberos authentication.
For details about this WebSEAL configuration, search for "Windows desktop
single signon" in the IBM Security Access Manager for Web: WebSEAL
Administration Guide.

3. Configure the External Authentication Interface (EAI) application on the
Kerberos Authenticator. For example, create a simple Common Gateway
Interface (CGI) to act as the EAI. This CGI creates an EAI response, setting the
am-eai-user-id header field as the name of the authenticated user.
You can now verify the configuration of the Kerberos Authenticator. Add a
Windows client to the domain. Verify that Windows desktop single signon
occurs when you access the WebSEAL server from this client.
You can install a network protocol analyzer, such as Wireshark, on the domain
controller to monitor and validate the network traffic.

4. Configure WebSEAL on the appliance to use the external Kerberos
Authenticator for authentication. For example, follow these steps:
a. Create a junction to the Kerberos authenticator.
b. Configure the CGI script as an EAI application.
c. Set the strip-www-authenticate-headers configuration entry to no.

If the strip-www-authenticate-headers configuration entry is set to yes,
WebSEAL removes the Negotiate www-authenticate and NTLM
www-authenticate headers from junctioned server responses. Therefore, you
must set the value to no to keep these www-authenticate headers in the
junctioned server responses.
For more information about this configuration entry, see the IBM Security
Web Gateway Appliance: Web Reverse Proxy Stanza Reference.

You can now verify that Windows desktop single signon is available on the
appliance.
Send a request from the Windows client, through the WebSEAL server on the
appliance, to the EAI application. Single signon occurs. That is, the user can
access the WebSEAL server on the appliance as an authenticated user. Again,
you can use a network protocol analyzer to monitor and validate the network
traffic.

Limitations
When using an external Kerberos authenticator, the appliance can support
Kerberos authentication only. It cannot support NTLM authentication.

The Windows NTLM implementation requires that the same connection is used
during the multiple stages of the authentication process. WebSEAL cannot always
provide the same connection for use throughout the authentication process.

Therefore, you cannot use a server that supports only NTLM authentication as the
Kerberos Authenticator. You must use a server that supports Kerberos
authentication as the Kerberos Authenticator.

Note: Microsoft Internet Information Services (IIS) uses NTLM authentication by
default.

154 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

LTPA authentication

Security Access Manager supports authentication using an LTPA cookie received
from the client. This section contains the following topics:
v “LTPA authentication overview”
v “Enabling LTPA authentication”
v “Key file information” on page 156
v “Specifying the cookie name for clients” on page 156
v “Specifying the cookie name for junctions” on page 156
v “Controlling the lifetime of the LTPA Token” on page 157
v “Disabling LTPA authentication” on page 157

LTPA authentication overview
Various IBM servers provide support for the cookie-based lightweight third-party
authentication mechanism (LTPA). Among these servers are WebSphere and
DataPower®. To achieve a single signon solution to one or more of these servers,
you can configure WebSEAL to support LTPA authentication.

The LTPA cookie, which serves as an authentication token for WebSphere/
DataPower, contains the user identity, key and token data, buffer length, and
expiration information. This information is encrypted using a password-protected
secret key that is shared between WebSEAL and the other LTPA enabled servers.

When an unauthenticated user makes a request for a WebSEAL protected resource,
it will first determine whether an LTPA cookie is available. If an LTPA cookie is
available, it will validate the contents of the cookie and, if successful, create a new
session based on the user name and expiry time contained within the cookie. If no
LTPA cookie is available, WebSEAL will continue to authenticate the user using the
other configured authentication mechanisms. Once the authentication operation has
been completed, a new LTPA cookie will inserted into the HTTP response and
passed back to the client for consumption by other LTPA enabled authentication
servers.

WebSEAL only supports LTPA version 2 (LtpaToken2) cookies. LtpaToken2
contains stronger encryption than prior versions of the token and enables you to
add multiple attributes to the token. This token contains the authentication identity
and additional information, such as the attributes that are used for contacting the
original login server, and the unique cache key for looking up the Subject when
considering more than just the identity in determining uniqueness. LtpaToken2 is
generated for WebSphere Application Server Version 5.1.0.2 (for z/OS) and for
version 5.1.1 (for distributed) and beyond.

Enabling LTPA authentication
The ltpa-auth stanza entry is located in the [ltpa] stanza of the WebSEAL
configuration file. It enables and disables the LTPA authentication method.

About this task

LTPA authentication is disabled by default. To configure LTPA authentication,
complete the following steps:

Chapter 8. Authentication methods 155

Procedure
1. Stop the WebSEAL server.
2. Edit the WebSEAL configuration file. In the [ltpa] stanza, specify the protocols

to support in your network environment. The protocols are shown in the
following table.

Table 21. Configuring LTPA authentication

Protocol to Support Configuration File Entry

HTTP ltpa-auth = http

HTTPS ltpa-auth = https

Both HTTP and HTTPS ltpa-auth = both

Disable HTTP header and cookie
authentication (default)

ltpa-auth = none

For example, to support both protocols: [ltpa] ltpa-auth = both

3. Customize the entries contained within the [ltpa] stanza.
4. Restart the WebSEAL server.

Key file information
The LTPA token is encrypted by a password-protected secret key. The key itself is
generated by WebSphere and is contained in a key file. This key file is
password-protected by a clear text key.

The name of the key file that WebSEAL uses is defined by the keyfile
configuration entry in the [ltpa] stanza. The permissions on the file must give
read access to the user who is running the WebSEAL binary.

The keyfile-password configuration entry in the [ltpa] stanza defines the
password, which is used to protect the key file. If the password is sensitive, it can
alternatively be stored in the corresponding configuration entry in the WebSEAL
obfuscated database.

You can use the Local Management Interface (LMI) to manage this password.

Specifying the cookie name for clients
You can configure the name of the cookie containing the LTPA token that
WebSEAL issues to clients.

By default, WebSEAL uses a cookie named Ltpatoken2 to contain the LTPA token.
Both WebSphere and DataPower expect this name by default. To customize the
name of the client cookie that contains the LTPA token, change the value of the
cookie-name configuration entry in the [ltpa] stanza.

For example:
[ltpa] cookie-name = Ltpatoken2

Specifying the cookie name for junctions
You can configure the name of the cookie that contains the LTPA token for
junctioned web servers.

WebSphere Application Server and WebSEAL use the same default values for the
LTPA cookie name:

156 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v LtpaToken for LTPA tokens.
v LtpaToken2 for LTPA version 2 tokens.

You can use the entry jct-ltpa-cookie-name in the [ltpa] stanza to configure the
name of the LTPA cookies sent from WebSEAL across junctions on the backend.
You can configure this item globally or on a per junction basis.

To set a cookie name for WebSEAL to use across all junctions, configure the entry
in the [ltpa] stanza. For example:
[ltpa]
jct-ltpa-cookie-name = myGlobalLTPAcookie

To set a cookie name specific to a particular junction, configure the entry in an
[ltpa:/jct] stanza.

where:

jct Name of the junction to the backend server.

For example:
[ltpa:/jct]
jct-ltpa-cookie-name = myLTPACookieForJct

If you use a custom LTPA cookie name in WebSEAL, you must also configure the
same cookie name in WebSphere to achieve single sign-on. If you do not configure
the jct-ltpa-cookie-name entry, WebSEAL uses the default cookie name.

Controlling the lifetime of the LTPA Token

By default, the lifetime of the LTPA cookie is set to the lifetime of the session that
was used to create the token. For a more fine-grained approach, you can modify
the update-cookie configuration entry in the [ltpa] stanza. This entry controls the
frequency at which the token is updated with a new lifetime timeout.

Note: This configuration entry affects the LTPA cookie that WebSEAL issues to
clients. It is the lifetime of the cookie that is specified by the cookie-name
configuration entry in the [ltpa] stanza.
v The default value of -1 indicates that the token is never updated and the

lifetime of the token is equal to the maximum session lifetime.
v A value of zero indicates that the lifetime of the token is updated on every

request. This configuration provides the functional equivalent of the inactivity
timeout to the token.

v A positive number indicates the number of seconds that elapse between updates
of the token. This configuration provides a less fine-grained equivalent of the
inactivity timeout to the token.

Carefully consider whether to enable this configuration entry in your environment.
The cost of creating the LTPA token and adding it to the HTTP response can
outweigh the benefits gained by achieving an inactivity timeout for the token.

Disabling LTPA authentication

About this task

To disable LTPA authentication, complete the following steps:

Chapter 8. Authentication methods 157

Procedure
1. Stop the WebSEAL server.
2. Edit the WebSEAL configuration file, setting ltpa-auth to none:

[ltpa] ltpa-auth = none

3. Restart the WebSEAL server.

Results

Note: LTPA authentication is disabled by default.

158 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 9. Advanced authentication methods

This chapter contains information that describes advanced WebSEAL authentication
functionality.

Topic Index:
v “Multiplexing proxy agents”
v “Switch user authentication” on page 162
v “Reauthentication with external authentication interface” on page 243
v “Authentication strength policy (step-up)” on page 176
v “External authentication interface” on page 186
v “Client Certificate User Mapping” on page 187

Multiplexing proxy agents

This section contains the following topics:
v “Multiplexing proxy agents overview”
v “Valid session data types and authentication methods” on page 160
v “Authentication process flow for MPA and multiple clients” on page 161
v “Enabling and disabling MPA authentication” on page 162
v “Creation of a user account for the MPA” on page 162
v “Addition of the MPA account to the webseal-mpa-servers group” on page 162
v “MPA authentication limitations” on page 162

Multiplexing proxy agents overview

Security Access Manager provides solutions for securing networks that use a
multiplexing proxy agent (MPA).

Standard Proxy Agents (SPA) are gateways that support per-client sessions
between clients and the origin server over SSL or HTTP. WebSEAL can apply
normal SSL or HTTP authentication to these per-client sessions.

Multiplexing proxy agents (MPA) are gateways that accommodate multiple client
access. These gateways are sometimes known as WAP gateways when clients
access using Wireless Access Protocol (WAP). Gateways establish a single
authenticated channel to the origin server and "tunnel" all client requests and
responses through this channel.

To WebSEAL, the information across this channel initially appears as multiple
requests from one client. WebSEAL must distinguish between the authentication of
the MPA server and the additional authentication of each individual client.

© Copyright IBM Corp. 2002, 2013 159

Because WebSEAL maintains an authenticated session for the MPA, it must
simultaneously maintain separate sessions for each client. Therefore, the
authentication method and session data used for the MPA must be distinct
(different) from the session data and authentication method used by the client.

Valid session data types and authentication methods
Different session data types and authentication methods are valid depending on
whether the session is for a Multiplexing proxy agent (MPA) or a client.

The following table lists the valid session types for the MPA and the client:

Valid Session Types

Session Types MPA-to-WebSEAL Client-to-WebSEAL

SSL Session ID Yes Not valid

HTTP Header Yes Yes

IP Address Yes Not valid

Session Cookie Yes Yes

The session data type used by the MPA to WebSEAL must be distinct from the
session data type used by the client to WebSEAL. As an example, if the MPA uses
a session cookie for the session data type, the client must use the HTTP Header
session data type.
v The client cannot use an SSL session ID as the session data type.
v If MPA support is enabled, the function of ssl-id-sessions changes. Normally,

if ssl-id-sessions = yes, only the SSL session ID is used to maintain sessions
for HTTPS clients. To allow the MPA to maintain a session with an SSL session
ID and have clients maintain sessions by using another method, this restriction
is removed. See also “Valid session key data types” on page 288.

The following table lists the valid authentication methods for the MPA and the
client:

MPA
Gateway

�

�

�

�

Multiple sessions over single SSL channel
MPA authenticates to WebSEAL
MPA has membership in group
Clients authenticate to WebSEAL

webseal-mpa-servers

WebSEAL
ServerA B C

Client A

Client B

Client C

Figure 15. Communication over an MPA Gateway

160 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Valid Authentication Types

Authentication
Types MPA-to-WebSEAL Client-to-WebSEAL

Basic
authentication

Yes Yes

Forms
authentication

Yes Yes

Certificate Yes Not valid

External
authentication
interface

Yes Not valid

The authentication method used by the MPA to WebSEAL must be distinct from
the authentication method used by the client to WebSEAL. As an example, if the
MPA uses basic authentication, the client must use forms authentication.
v Certificates and external authentication interface authentication methods are not

valid for use by the client.
v Normally, if forms authentication is enabled for a particular transport, basic

authentication is automatically disabled for that transport. If MPA support is
enabled, this restriction is removed. The MPA is then allowed to log in, for
example, with forms and clients to log in with basic authentication over the
same transport.

Authentication process flow for MPA and multiple clients
1. The WebSEAL administrator performs the following preliminary

configuration:
v Enable support for multiplexing proxy agents.
v Create a Security Access Manager account for the specific MPA gateway.
v Add this MPA account to the webseal-mpa-servers group.

2. Clients connect to the MPA gateway.
3. The gateway translates the request to an HTTP request.
4. The gateway authenticates the client.
5. The gateway establishes a connection with WebSEAL with the client request.
6. The MPA authenticates to WebSEAL (using a method distinct from the client)

and an identity is derived for the MPA (which already has a WebSEAL
account).

7. WebSEAL verifies the MPA’s membership in the webseal-mpa-servers group.
8. A credential is built for the MPA and flagged as a special MPA type in the

cache.
Although this MPA credential accompanies each future client request, it is not
used for authorization checks on these requests.

9. Now WebSEAL needs to further identify the owner of the request.
The MPA is able to distinguish the multiple clients for proper routing of login
prompts.

10. The client logs in and authenticates using a method distinct from the
authentication type used for the MPA.

11. WebSEAL builds a credential from the client authentication data.

Chapter 9. Advanced authentication methods 161

12. Session data type used by each client must be distinct from the session data
type used by the MPA.

13. The authorization service permits or denies access to protected objects based
on the user credential and the object’s ACL permissions.

Enabling and disabling MPA authentication

About this task

The mpa stanza entry, located in the [mpa] stanza of the WebSEAL configuration
file, enables and disables MPA authentication:

Procedure
v To enable the MPA authentication method, enter "yes".
v To disable the MPA authentication method, enter "no".

Example
[mpa]
mpa = yes

Creation of a user account for the MPA

Refer to the IBM Security Access Manager for Web: Administration Guide for
information on creating user accounts.

Addition of the MPA account to the webseal-mpa-servers
group

Refer to the IBM Security Access Manager for Web: Administration Guide for
information on managing groups.

MPA authentication limitations
v Security Access Manager supports only one MPA per WebSEAL server.
v MPA authentication is not supported with step-up authentication configuration.
v MPA is not supported with use-same-session = yes

Switch user authentication

This section contains the following topics:
v “Overview of the switch user function”
v “Configuration of switch user authentication” on page 165
v “Using switch user” on page 168

Overview of the switch user function

The WebSEAL switch user function allows administrators to assume the identity of
a user who is a member of the Security Access Manager secure domain. The ability
to assume a user's identity can help an administrator in a Help Desk environment
to troubleshoot and diagnose problems. Switch user can also be used to test a
user's access to resources and to perform application integration testing.

162 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The switch user implementation is similar to the su command in UNIX
environments. In the WebSEAL environment, the administrator acquires the user's
credentials and interacts with resources and back-end applications with exactly the
same abilities as the actual user.

The administrator uses a special HTML form to supply switch user information.
WebSEAL processes the form and calls a special authentication mechanism that
returns the specified user's credential without the requirement of knowing the
user's password.

The following sequence describes the switch user process flow:
1. An administrator authenticates to WebSEAL. WebSEAL establishes a session for

the administrator, and creates an entry for the administrator in the WebSEAL
session cache.
The session cache entry contains a cache data structure. This data structure
stores the administrator's credential. During the switch user process flow, the
cache data will be manipulated.
For more information on WebSEAL session caches, see “WebSEAL session cache
structure” on page 252.

2. The administrator requests a pre-configured switch user HTML form, and
completes the form. On the form, the administrator specifies:
v The name of the user identity that the administrator needs to assume.
v A destination URL.
v An authentication method.

This action results in a POST request being sent to /pkmssu.form.
The contents of the switch user HTML form can be modified before making it
available for use by WebSEAL. See “Configuring the switch user HTML form”
on page 166.
You can also extend the capabilities of the form. See “Designing additional
input forms” on page 167.

Note: The pkmssu.form management page is a management command to the
WebSEAL server. It is not represented in the object space and you cannot attach
policies to it.

3. WebSEAL determines whether to allow the switch user request by performing
the following checks:
a. WebSEAL examines the membership of the Security Access Manager

su-admins group to determine if the administrator has permission to invoke
the switch user function.
Administrators requesting use of switch user authentication must be
members of the su-admins group. Membership in this group must be
configured before switch user can be used. For more information, see
“Configuring user access” on page 165.

b. WebSEAL examines the membership of the Security Access Manager
su-admins > securitygroup > su-excluded groups to ensure that the user
identity supplied in the switch user form is not a member of one of these
groups.
User identities that belong to any of these groups cannot be accessed by the
switch user function. The WebSEAL administrator must configure
memberships in these groups before administrators use the switch user
function. For configuration instructions and more information on these
groups, see “Configuring user access” on page 165

Chapter 9. Advanced authentication methods 163

4. When WebSEAL decides to allow the switch user request, WebSEAL calls the
appropriate switch user module to perform the special switch user
authentication.
WebSEAL supports a variety of authentication mechanisms. Each authentication
mechanism has a corresponding switch user authentication mechanism.
WebSEAL provides built-in modules that contain the special switch user
function.

5. When authentication of the designated user succeeds, the switch user module
returns a valid credential for the user—without requiring the user password for
input.

6. WebSEAL manipulates the contents of the appropriate entry in the WebSEAL
session cache by:
a. Removing the administrator's WebSEAL session cache data and storing it in

a separate location.
b. Inserting the switched-to user's cache data, including the user's credential,

in place of the administrator's cache data.

7. WebSEAL sends a redirect to the browser for the destination URL supplied in
the switch user form.
The request is processed normally, using the user's credential.

8. The administrator can continue to make other requests. All authorization
decisions for these requests are based on the credential of the user.
When using switch user functionality, administrators might need to establish
and manage sessions with additional applications. These sessions need to be
established using the identity of the new user. To enable this, the new user
credential also contains a new User Session ID. This User Session ID is used,
for example, when troubleshooting the user's ability to access and use
additional Web resources.
For more information on WebSEAL session caches, see “WebSEAL session cache
configuration” on page 260 and “WebSEAL session cache structure” on page
252.

9. The administrator ends the switch user session using the standard Security
Access Manager /pkmslogout utility. Upon successful log out:
a. The user's cache data is deleted.
b. The administrator's original cache data (and credential) is restored.

WebSEAL session cache

Session ID Cache Data

1234 - user credential
- other user data

admin
cache
entry

- admin credential
- other admin data

original
administrator session ID

user cache data
returned from SU
authentication

administrator cache data
stored during SU

Figure 16. Swapping administrator and user cache data during switch user

164 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

c. The administrator is returned to the original page from which the switch
user form was requested.

The authorization service uses the original credential of the administrator for
all subsequent requests.

Configuration of switch user authentication

The WebSEAL administrator must complete several configuration steps before
administrators can use the switch user functionality. To configure switch user,
complete the instructions in each of the following sections:
1. “Configuring user access”
2. “Configuring the switch user HTML form” on page 166

This step is optional.
3. “Designing additional input forms” on page 167

This step is optional.
4. “Stopping and restarting WebSEAL” on page 167

Configuring user access

About this task

During WebSEAL installation, the WebSEAL configuration process automatically
creates several groups for use by the switch user functionality. The WebSEAL
administrator controls switch user capability by adding users to the groups.

To configure user access, complete the following steps:

Procedure
1. Add users to the su-admins group.

To use switch user function, a user must be a member of a special
administrative group called su-admins. This group is automatically created by
default during installation of a WebSEAL server. There are no users in this
group by default. The WebSEAL administrator must manually add users to this
group. Typically, only administrative users are added to this group.
Users who have been granted membership in su-admins can switch user to
most other user identities, but cannot switch to the identity of any other user
that is also a member of the su-admins group. Therefore, as soon as an
administrator is granted switch user privileges by being added to su-admins,
the administrator's account is protected from access by any other user that
gains switch user privileges.

2. Add users to the su-excluded group
This group contains the names of users whose identities should not be accessed
through the switch user capability. During WebSEAL installation, the WebSEAL
configuration process automatically creates this group. There are no users in
this group by default. A WebSEAL administrator typically adds to this group
the names of users who are not members of the administrative group
su-admins, but for whom switch user access should still be blocked

Results

When switch user is used, WebSEAL also checks the memberships of the Security
Access Manager group called securitygroup. This group contains the name of the

Chapter 9. Advanced authentication methods 165

Security Access Manager administrative user sec_master, plus a number of
WebSEAL processes that must be excluded from access through switch user
capability.

The securitygroup group is automatically created by default during installation of
a WebSEAL server. The following identities are automatically added to this group
during installation:
v sec_master — the Security Access Manager administrator
v acld — the Security Access Manager authorization server daemon
v webseald — the WebSEAL daemon

WebSEAL administrators should not add any users to the securitygroup group. To
control user access to switch user, use either su-admins or su-excluded.

Configuring the switch user HTML form
WebSEAL provides a default HTML form that the administrator accesses to use the
switch user function. The default form can be used without modification.
Optionally, you can edit the form for customized appearance and functionality.

About this task

This step is optional.

The default form is named switchuser.html. You can modify the name of this file.

You can use the LMI to access this file in the management/lang directory. The value
of the lang directory is specific to the locale. For example, the lang directory for a
US English locale is called "C".

Form contents

The form contains requests for:
v User name

The name of the user whose credentials the administrator wants to access.
v Destination URL

This page displays after a successful switch user operation.
v Authentication method

The authentication method stanza entries specify which authentication
mechanism WebSEAL uses to build the user credential.

Each of these entries is required. WebSEAL verifies that all required data is present
in the submitted form. If data is missing, the form is returned to the administrator
with a descriptive message. When all required data is present, WebSEAL submits
data from the switch user form data to the /pkmssu.form action URL.

Note: Only members of the su-admins group can invoke the form. An ACL is not
required on this file. WebSEAL performs an internally hardcoded group
membership check. WebSEAL returns a 404 "Not Found" error when the group
membership check fails.

Customizing the HTML form

To customize the switch user form, open the form for editing, and complete the
following steps:

166 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Procedure
1. Specify the location and contents of the destination URL.

You can configure this URL as hidden input, which contains an appropriate
home page or a successful switch user confirmation page.

2. Specify the authentication methods.
You can configure this field as hidden input. Valid values for the authentication
method include:
su-ba su-forms su-certificate su-http-request su-cdsso
The methods in this list map directly to authentication mechanisms specified in
the WebSEAL configuration file. Note, however, that the su-ba > su-forms
methods both map to the su-password authentication mechanism. Both basic
authentication (ba) and forms authentication (forms) use the su-password
authentication module. Note that a WebSEAL deployment can support basic
authentication without supporting forms authentication. Therefore separate
configuration values are maintained for each authentication type (su-ba >
su-forms).

Designing additional input forms

About this task

This step is optional.

You can design additional forms to validate or process data to be submitted to
/pkmssu.form. These forms can be used to assist the administrator by populating
some of the entries on the switch user form.

Some examples are:
v An administrator might have chosen to have different destination URLs, to be

accessed based on the user identity. Another form could be written to build and
present a list of these URLs, from which the administrator could select the
appropriate entry.

v A form could be developed to call another program, such as a CGI script, to
supply a list of user identities for whom switch user is allowed. This list could
help administrators determine if access to a user identity through switch user is
allowed.

v A form could be developed to display a list of user identities for whom switch
user is not allowed. This list would be based on the memberships of the
su-excluded and securitygroup groups.

Stopping and restarting WebSEAL

About this task

To activate the new configuration changes you must stop and restart WebSEAL.
This enables WebSEAL to use the new values that were specified to the WebSEAL
configuration file in “Configuring user access” on page 165.

The methods for stopping and restarting the WebSEAL server are described in
“WebSEAL instance management” on page 19.

Chapter 9. Advanced authentication methods 167

Using switch user

About this task

When the configuration steps in the previous section have been completed,
WebSEAL administrators can use the switch user function.

To use the switch user function, complete the following steps:

Procedure
1. Log in as a user who has permission to access the switch user function.

This function is usually accessed by administrators. The user must be a
member of the su-admins group.

2. Request the switch user HTML form.
The default file name is switchuser.html. For information about this file, see
“Configuring the switch user HTML form” on page 166.

3. On the form, specify:
v The name of the user identity that you want to assume.
v A destination URL.
v An authentication method.
This action results in a POST request being sent to /pkmssu.form. WebSEAL
sends a redirect to the browser for the destination URL supplied in the switch
user form. The request is processed using the user's credential, and the URL is
accessed.

Note: The pkmssu.form management page is a management command to the
WebSEAL server. It is not represented in the object space and you cannot attach
policies to it.

4. Make other requests as necessary.
All authorization decisions for these requests are based on the credential of the
user.

5. When finished, end the switch user session by using the standard Security
Access Manager /pkmslogout utility.

Results

For more information on how the switch user function works, see “Overview of
the switch user function” on page 162.

Additional switch user feature support

This section describes switch user support for additional features such as
reauthentication, user session management, and auditing.

Support for session cache timeout

The functionality of the configured WebSEAL session cache inactivity and lifetime
timeout values is not affected by the switch user operation. The inactivity and
lifetime timers are associated with the administrator's session cache entry and not
the cache data that changes during a switch user operation.

168 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The inactivity timer continues to be reset while the administrator performs
requests as the "switched-to" user. When the administrator ends the switch user
session, the inactivity is still valid for the re-established administrator session.

The lifetime value is not extended because of a switch user operation. It is possible
for the lifetime timeout of the session cache entry to expire during a switch user
operation. If this timeout occurs, the session cache is deleted and the administrator
is logged off. The administrator must reauthenticate and begin the switch user
operation again.

Support for reauthentication
WebSEAL reauthentication functionality is recognized by the switch user operation.

If reauthentication is required during a switch user operation, the administrator
must authenticate as the "switched-to" user.

Note: The administrator must know the "switched-to" user's password to
successfully reauthenticate.

Support for user session management
The switch user operation supports user session management.

The administrator has a unique User Session ID. Additionally, during a switch user
operation, a unique User Session ID exists for the "switched-to" user. The terminate
single user sessions task and terminate all user sessions task perform as expected.

Support for tag-value

The tag-value capability often used by custom authentication modules is
recognized and supported by the switch user functionality.

Support for auditing

It is possible to audit the administrator during a switch user operation. The switch
user functionality adds an extended attribute to the "switch-to" user credential that
identifies the administrator. The extended attribute, as stored in the credential, is
called tagvalue_su-admin:
tagvalue_su-admin = su-admin-name

This extended attribute is available to any auditing mechanism.

Reauthentication

This section contains the following topics:
v “Reauthentication concepts” on page 170
v “Reauthentication based on security policy” on page 171
v “Reauthentication POP: creating and applying” on page 171
v “Reauthentication based on session inactivity” on page 171
v “Enabling of reauthentication based on session inactivity” on page 172
v “Resetting of the session cache entry lifetime value” on page 172
v “Extension of the session cache entry lifetime value” on page 172
v “Prevention of session removal when the session lifetime expires” on page 173
v “Removal of a user session at login failure policy limit” on page 174

Chapter 9. Advanced authentication methods 169

v “Customization of login forms for reauthentication” on page 175

Reauthentication concepts
Security Access Manager WebSEAL can force a user to perform an additional login
(reauthentication) to ensure that a user who is accessing a protected resource is the
same person who initially authenticated at the start of the session. Forced
reauthentication provides additional protection for sensitive resources in the secure
domain.

Reauthentication can be activated by:
v A protected object policy (POP) on the protected object.
v Expiration of the inactivity timeout value of a WebSEAL session cache entry.

Reauthentication is supported by the following WebSEAL authentication methods:
v Forms (user name and password) authentication
v External authentication interface

In addition, a custom user name and password module can be written to support
reauthentication.

Reauthentication assumes that the user has initially logged in to the secure domain
and that a valid session (credential) exists for the user. The reauth-at-any-level
option in the [reauthentication] stanza of the WebSEAL configuration file
determines how WebSEAL handles a reauthentication operation:
v If the value for this option is no, the user must login using the same identity,

authentication method, and authentication level that generated the existing
credential. WebSEAL preserves the user's original session information, including
the credential, during reauthentication. The credential is not replaced during
reauthentication.

v If the value for this option is yes, the user must use the same identity but can be
authenticated using a different authentication method or level from that which is
currently held by the user. In this case, the user's credential can change one or
more times during the lifetime of the user's session, and the user's credential is
updated upon successful reauthentication. Note that this might have several
consequences that must be carefully considered. If the credential changes during
the course of an established session, then operations that utilize credential
attributes, such as authorization decisions and auditing, might return different
results mid-session. Care must be taken to ensure a consistent user experience
and to account for these types of changes in audit records.

During reauthentication, WebSEAL also caches the request that prompted the
reauthentication. Upon successful reauthentication, the cached data is used to
rebuild the request. See “Server-side request caching” on page 205.

If reauthentication fails, WebSEAL returns the login prompt again. If
reauthentication succeeds, but the ACL check fails for that resource, a 403 error
("Forbidden") is returned and the user is denied access to the requested resource.

In either case, the user is not logged off (the exception to this outcome is when the
max-login-failures policy limit has been reached). Using a still valid credential,
the user can terminate the reauthentication process (by requesting another URL)
and still participate in the secure domain by accessing other resources that do not
require reauthentication.

170 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

A configuration option exists that requires WebSEAL to remove the user's session
cache entry and log the user out when the reauthentication attempts reach the
max-login-failures policy limit.

Another configuration option is available to reset the lifetime timer of WebSEAL
session cache entries. In addition, a grace period can be configured to allow
sufficient time for the reauthentication process to complete before the lifetime
timeout of a session cache entry expires.

Reauthentication based on security policy

Reauthentication based on security policy is activated by a specific extended
attribute in a POP that protects the requested resource object. The POP can be
directly attached to the object, or the object can inherit the POP conditions from a
parent object.

Reauthentication POP: creating and applying

Forced reauthentication based on security policy is configured by creating a
protected object policy (POP) with a special extended attribute named "reauth".
You can attach this POP to any object that requires the extra protection provided
by forced reauthentication.

Remember that all children of the object with the POP also inherit the POP
conditions. Each requested child object requires a separate reauthentication.

Use the pdadmin pop create, pdadmin pop modify, and pdadmin pop attach
commands to create and apply the reauthentication POP. The following example
illustrates creating a POP called "secure" with the reauth extended attribute and
attaching it to an object (budget.html):
pdadmin> pop create secure
pdadmin> pop modify secure set attribute reauth true
pdadmin> pop attach /WebSEAL/hostA/junction/budget.html secure

Anyone attempting to access budget.html is forced to reauthenticate using the
same identity and authentication method that generated the existing credential.

If the user requesting the resource is unauthenticated, the POP forces the user to
authenticate. No reauthentication is necessary for this resource after successful
initial login.

Details about the pdadmin pop commands can be found in the IBM Security Access
Manager for Web: Command Reference.

Reauthentication based on session inactivity

Reauthentication based on session inactivity is enabled by a configuration stanza
entry and is activated by the expiration of the inactivity timeout value of a session
cache entry.

A user's session is normally regulated by a session inactivity value and a session
lifetime value. When WebSEAL is configured for reauthentication based on session
inactivity, the user's session cache entry is "flagged" whenever the session inactivity
timeout value expires. The session cache entry (containing the user credential) is
not removed. The user can proceed to access unprotected resources. However, if

Chapter 9. Advanced authentication methods 171

the user requests a protected resource, WebSEAL sends a login prompt. After
successful reauthentication, the inactive session "flag" is removed and the inactivity
timer is reset.

If reauthentication fails, WebSEAL returns the login prompt again. The session
cache entry remains "flagged" and the user can proceed to request unprotected
resources until the session cache entry lifetime value expires.

Two other conditions can end a user session: the user can explicitly log out or an
administrator can terminate a user session. See “Terminating user sessions” on
page 590.

Enabling of reauthentication based on session inactivity

To configure WebSEAL to "flag" inactive sessions rather than remove them from
the session cache, set the value for the reauth-for-inactive stanza entry to "yes" in
the [reauthentication] stanza of the webseald.conf configuration file:
[reauthentication]
reauth-for-inactive = yes

The default value for this stanza entry is "no".

For information on enabling reauthentication based on session inactivity for the
session management server (SMS), see “Adjustment of the last access time update
frequency for SMS” on page 325.

Resetting of the session cache entry lifetime value

The user's session cache entry has a limited lifetime, as specified by the timeout
stanza entry in the [session] stanza of the webseald.conf configuration file. The
default value, in seconds, is 3600 (1 hour):
[session]
timeout = 3600

Regardless of session activity or inactivity, the session cache entry is removed
when the lifetime value is reached, at which point the user is logged off.

However, you can configure the lifetime of the session cache entry to be reset
whenever reauthentication occurs. With this configuration, the user session no
longer has a single maximum lifetime value. Each time reauthentication occurs, the
lifetime value of the session cache entry is reset.

You can configure session cache entry lifetime reset with the reauth-reset-lifetime
stanza entry in the [reauthentication] stanza of the webseald.conf configuration
file:
[reauthentication]
reauth-reset-lifetime = yes

The default value is "no".

Extension of the session cache entry lifetime value

It is possible for the lifetime value of a session cache entry to expire while the user
is performing a reauthentication. This situation occurs under the following
conditions:

172 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v The user requests a resource protected by a reauthentication POP
v The user's session cache entry lifetime value is very near expiration

The lifetime of a session cache entry can expire after the reauthentication login
form is sent to the user and before the completed login form is returned. When the
session cache entry lifetime value expires, the session cache entry is deleted. When
the login form is returned to WebSEAL, there is no longer a session for that user.
In addition, all cached user request data is lost.

You can configure a time extension, or "grace period," for the session cache entry
lifetime value if the session cache entry lifetime expires during reauthentication.
The reauth-extend-lifetime stanza entry in the [reauthentication] stanza of the
webseald.conf configuration file provides this time extension, in seconds. For
example (5 minutes):
[reauthentication]
reauth-extend-lifetime = 300

The default value, "0", provides no extension to the session cache entry timeout
value.

The reauth-extend-lifetime stanza entry applies to users with existing session
cache entries and who are required to reauthenticate. For example:
v Users performing reauthentication resulting from POP security policy
v Users performing reauthentication resulting from session cache inactivity
v Users performing step-up authentication

The reauth-extend-lifetime option is intended to be used in conjunction with the
reauth-reset-lifetime=yes option.

Prevention of session removal when the session lifetime
expires

The session cache entry lifetime value usually determines the maximum session
length. It is possible for a user to remain active for the full duration of a session
lifetime. When the session lifetime value expires, the session cache entry is
normally removed and the user is logged off, regardless of activity.

To prevent this sudden session termination, you can configure WebSEAL to allow
the user to reauthenticate after the session timeout value has expired. After
successful reauthentication, the lifetime value of the session cache entry is reset.

WebSEAL allows resetting of the session lifetime value, after it has expired, under
the following conditions:
v Reauthentication based on inactivity policy is enabled (reauth-for-

inactive=yes)
v The session lifetime value (timeout) has expired
v The time extension ("grace period") for the session lifetime is enabled and set to

a reasonable value (for example, reauth-extend-lifetime=300)
v The user activates the reauthentication prompt by requesting a protected

resource before the time extension ("grace period") expires
(WebSEAL does not allow repeated additions of the time extension to an end of
session lifetime event.)

Chapter 9. Advanced authentication methods 173

v Resetting the session cache lifetime is configured to be true (reauth-reset-
lifetime=yes)

At the occurrence of a session lifetime expiration, WebSEAL checks the conditions
listed above. If all conditions are met, the lifetime timeout is extended by the
reauth-extend-lifetime value and the user's session cache entry is "flagged" as
extended. The session cache entry (containing the user credential) is not removed
and the user can proceed to access unprotected resources. When the user requests
a protected resource, WebSEAL prompts the user to reauthenticate.

The reauth-extend-lifetime value should be set to a reasonable value so the user
has enough time to trigger the reauthentication prompt. Note that if the user does
not access a protected object during the "grace period", the reauthentication process
is not activated. In this case, it is possible for the reauth-extend-lifetime value to
expire, in which case the session cache entry is removed.

Typically, however, reauthentication policy is implemented to secure an application
that is serving predominantly protected resources. A time extension ("grace
period") of 5–10 minutes should be adequate time to allow an active user to trigger
the reauthentication process, and therefore reset the session lifetime value.

Removal of a user session at login failure policy limit

If a reauthentication attempt fails, WebSEAL normally returns the login prompt
again. Because the user still has a valid session and credential, the user can
terminate the reauthentication process (by requesting another URL) and still
participate in the secure domain by accessing other resources that do not require
reauthentication.

However, the reauthentication process is impacted by the login failure policy
(max-login-failures) if the user continues failed attempts to reauthenticate. When
the number of failed reauthentication attempts reaches or exceeds the
max-login-failures limit, WebSEAL responds according to the terminate-on-reauth-
lockout configuration.

The terminate-on-reauth-lockout stanza entry is located in the [reauthentication]
stanza of the WebSEAL configuration file. The purpose of this stanza entry is to
control whether or not the user's session cache entry is completely removed upon
reaching the max-login-failures policy limit.

The default setting is "yes". When the maximum number of failed login attempts
(specified by the max-login-failures policy) is reached during reauthentication, the
user is logged out of the original session and the user's session cache entry is
removed. For example:
[reauthentication]
terminate-on-reauth-lockout = yes

Now the user no longer has a valid session and credential. Although the user can
still access unprotected resources, the user is required to login again for any
request made to any protected resource.

A value of "no" for the terminate-on-reauth-lockout stanza entry is provided as
backward compatibility for versions of WebSEAL prior to version 6.0.
[reauthentication]
terminate-on-reauth-lockout = no

174 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

With the "no" setting, the user is not logged out and the initial login session is still
valid. The user can still access other resources that are not protected by a reauth
POP.

When the maximum number of failed login attempts (specified by the
max-login-failures policy) is reached during reauthentication, the user is locked
out from accessing that resource as specified by the disable-time-interval policy
setting, and notified of the lockout as specified by the late-lockout-notification
configuration setting.

For both values of terminate-on-reauth-lockout, the specific response to the user is
governed by the disable-time-interval and late-lockout-notification settings.

If the disable-time-interval policy is set to a number of seconds, the error message
indicates that the account is temporarily locked out.

If the disable-time-interval policy is set to "disable", the error message indicates
that the account has been disabled and that an administrator is required to reset
(unlock) the account.

For complete details on the login failure policy mechanism, see “Login failure
policy ("three strikes" login policy)” on page 209.

Customization of login forms for reauthentication
WebSEAL supports reauthentication for both forms authentication methods.

By default, forms authentication uses the login.html page to request user name
and password information from the client (see “Static HTML server response
pages” on page 69). This default login page is also used during reauthentication.

It is possible to have the user name field in these login pages automatically filled
in during reauthentication by using the USERNAME macro (see “Macro resources
for customizing HTML response pages” on page 76). The user needs to complete
only the password (passcode) field.

For example, modify the following line in the login.html page:
<TD><INPUT NAME="username" SIZE="15"></TD>

to include the USERNAME macro:
<TD><INPUT NAME="username" SIZE="15" VALUE="%USERNAME%"></TD>

During an initial login (unauthenticated user), the value for the USERNAME
macro is empty and the user name text field displayed on the login page appears
with the entry "unknown".

For a reauthenticating client, the USERNAME macro would contain the value of
the client user name. The user name text field on the login page appears with the
user's name automatically provided.

Chapter 9. Advanced authentication methods 175

Authentication strength policy (step-up)

This section contains the following topics:
v “Authentication strength concepts”
v “Authentication strength configuration task summary” on page 177
v “Establishing an authentication strength policy” on page 178
v “Specifying authentication levels” on page 178
v “Specifying the authentication strength login form” on page 180
v “Creating a protected object policy” on page 181
v “Specifying network-based access restrictions” on page 182
v “Attaching a protected object policy to a protected resource” on page 184
v “Enforcing user identity match across authentication levels” on page 185
v “Controlling the login response for unauthenticated users” on page 185

Authentication strength concepts

WebSEAL supports many authentication methods. These include basic
authentication, forms authentication, certificate authentication, and others. Any
client that accesses a WebSEAL server has an authentication state, such as
unauthenticated or certificate, which indicates the method by which the client last
authenticated with WebSEAL.

WebSEAL provides a feature that enables administrators to assign a ranking or
level to some of the supported authentication methods. Administrators can define
an ordered list that ranks each authentication method from lowest to highest. This
hierarchical ranking can be arbitrarily tailored to each individual WebSEAL
deployment.

There is no absolute ranking between the authentication methods. No one
authentication method is inherently better or stronger than another method. The
ranking is simply a method for an administrator to define a relative level for each
authentication method for use with a specific Security Access Manager WebSEAL
protected object namespace. The only rule governing the assignment of levels is
that the unauthenticated level is always lower than all other authenticated levels.

This set of authentication levels can be used to implement an authentication
strength policy. Authentication strength is sometimes called step-up authentication.
Note, however, that step-up authentication is not a unique authentication method
like forms authentication or certificate authentication. Instead, it is a defined
process for requiring users to change their current authentication method to
another authentication method.

The concept of changing the authentication method is useful as a way of providing
additional protection for selected resources in the WebSEAL protected object
namespace. For example, a user can log in using certificate authentication, and
then access many resources that are protected by Security Access Manager security.
When the user attempts to access a more sensitive resource, which has been
marked to require a higher level of access, the user is prompted to log in to a
different authentication level.

176 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note that when a user activates authentication strength by attempting to access a
protected object, the user does not have to log out first. Instead, the user is
presented with a login prompt, and simply logs in again to the higher level.

Users can change authentication strength multiple times per authentication session.
The authentication level specified in the controlling POP governs the level at which
the user must be authenticated.

The following authentication methods can be assigned an authentication level:
v Unauthenticated
v Password authentication

Password authentication is limited to forms authentication. Basic authentication
is not supported as a step-up authentication level.

v Certificate authentication
v External authentication interface

Authentication strength is supported over both HTTP and HTTPS, with the
exception of certificate authentication. Because certificates are valid only over an
SSL connection, it is not possible to step up to certificates over HTTP. If an object
that requires certificate authentication is requested over HTTP, an error page is
served, as specified by the cert-stepup-http stanza entry in the [acnt-mgt] stanza
of the WebSEAL configuration file.

Administrators apply an authentication level to a protected resource by declaring
and attaching a standard Security Access Manager protected object policy (POP) to
the resource object. Authentication strength policy is set and stored in a POP
attribute called an IP Endpoint Authentication Method. The attribute takes an integer
value that represents the authentication level. The lowest level, unauthenticated, is
always 0. Each level increases the integer index up to the total number of
authentication methods that have been assigned a level.

When clients first authenticate to WebSEAL, the initial authentication method used
is stored as an extended attribute in the client's credential. The Security Access
Manager authorization service compares the authentication method (level) in the
credential against the authentication level for the requested resource, as specified
in the POP. When the level in the POP exceeds the level in the credential, the user
is prompted to authenticate at the higher authentication strength level.

The IP Endpoint Authentication Method attribute can also optionally be used to
restrict access to a resource, based on the network address of the client that sent
the access request. The access can be restricted based on an individual network (IP)
address, or a range of network addresses.

WebSEAL uses the following algorithm to process the conditions in a POP:
1. Check the IP endpoint authentication method policy on the POP.
2. Check ACL permissions.
3. Check time-of-day policy on the POP.
4. Check the audit level policy on the POP.

Authentication strength configuration task summary

To configure authentication strength levels, complete the instructions in each of the
following sections:

Chapter 9. Advanced authentication methods 177

1. “Establishing an authentication strength policy”
2. “Specifying authentication levels”
3. “Specifying the authentication strength login form” on page 180
4. “Creating a protected object policy” on page 181
5. “Specifying network-based access restrictions” on page 182
6. “Attaching a protected object policy to a protected resource” on page 184
7. “Enforcing user identity match across authentication levels” on page 185
8. “Controlling the login response for unauthenticated users” on page 185
9. “Stepping up authentication at higher levels” on page 186

Establishing an authentication strength policy

About this task

This section consists of planning steps to be taken before specifying authentication
strength settings in the WebSEAL configuration file.

Complete the following steps:

Procedure
1. Compile a list of protected objects for which access will be limited only to users

who have successfully authenticated through a specific authentication method.
For each protected object, specify the authentication method that applies.

2. Compile a complete list of all authentication mechanisms that will be active
(enabled) on the WebSEAL server system.

3. Determine a hierarchy (ranking) for the active authentication mechanisms.
Order the mechanisms from weakest to strongest.

4. Determine if, during authentication strength level step-up, the user identity
must be identical across the increased authentication level.

5. Determine if any protected resources require access restriction based on the
network address of the requesting client.

6. Stop the WebSEAL server.

Specifying authentication levels
About this task

Complete the following steps to specify authentication levels.

Procedure
1. Edit the [authentication-levels] stanza in the WebSEAL configuration file.

For each authentication method to be used for authentication level step-up, add
an entry to the stanza. The supported authentication methods are described in
the following table:

Table 22. Authentication methods supported for authentication strength

Authentication Method Configuration File Entry

None level = unauthenticated

Forms authentication level = password

Certificate authentication level = ssl

External authentication interface level = ext-auth-interface

178 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The default entries are:
[authentication-levels]
level = unauthenticated
level = password

The following entry must always be the first in the list: level =
unauthenticated. Additional entries can be placed in any order. For example, to
enable authentication strength levels for certificate authentication at the highest
level, the completed stanza entry is:
[authentication-levels]
level = unauthenticated
level = password
level = ssl

2. Verify that each authentication method listed in [authentication-levels] is
enabled. To determine if an authentication method is enabled, check the
appropriate entries in the WebSEAL configuration file. To review the necessary
entries and access the authentication configuration instructions, see the
following sections:
v “Enabling and disabling basic authentication” on page 140
v “Enabling and disabling forms authentication” on page 141
v “Enabling certificate authentication” on page 146

Note: Basic authentication is enabled by default.

Using multiple authentication levels
You can associate more than one authentication level with a particular
authentication mechanism.

Authentication mechanisms can set the authentication level, which results from a
successful authentication, directly into the credential as an attribute. If so, this
overrides the level set in the credential by the placement of the authentication
mechanism in the [authentication-levels] stanza. You can use this method to
specify the authentication level that will be set in the resulting Security Access
Manager credential. Use it when you want to associate more than one level with a
particular authentication mechanism.

The reasons to enter an authentication mechanism more than once in the
[authentication-levels] stanza are:
1. To control the prompt that is displayed to a user when they are required to

step-up.
2. To satisfy the Policy Server requirement that a method exists that can handle

every configured POP level.

This is likely to be a consideration when using an External Authentication Interface
(EAI) server to perform authentication. It is common to want the EAI to handle
multiple authentication levels. An EAI server can return an authentication level
either as an attribute in a Privilege Attribute Certificate (PAC), if it returns one, or
as an extended attribute header if it returns a User Id. The EAI authentication
mechanism can then be specified in multiple lines of the [authentication-levels]
stanza. For example, if an EAI server is configured to handle authenticating users
at levels 2 and 3, while Forms authentication is used to authenticate users at level
1, the [authentication-levels] stanza would contain the following entries:

Chapter 9. Advanced authentication methods 179

[authentication-levels]
#----------------------
STEP UP
#----------------------
authentication levels
#
Syntax:
level = <method-name>
#
Valid method names are:
unauthenticated
password
ssl
ext-auth-interface
#
level = unauthenticated
level = password
level = ext-auth-interface
level = ext-auth-interface

Specifying the authentication strength login form

About this task

When an authenticated client attempts to access a protected resource, and is
required to reauthenticate to a higher authentication strength level, WebSEAL
presents a special HTML form. The client uses the form to supply the information
needed for the type of authentication required.

WebSEAL supplies a default login form. Administrators can either use the default
login form or customize it to fit the local WebSEAL deployment.

The location of the default login form is specified in the WebSEAL configuration
file:
[acnt-mgt]
stepup-login = stepuplogin.html

Complete the following steps:

Procedure
1. Specify the name of the authentication strength login form.

To use the default location for the form, verify that the WebSEAL configuration
file stanza entry, stepup-login, contains the default value, stepuplogin.html.

2. Optionally, customize the contents of the authentication strength login form.
This file contains macros, in the form of %TEXT% sequences, which are replaced
with the appropriate values. This substitution occurs within WebSEAL's
template file processing functions and allows the form to be used for the
supported authentication methods with correct formatting. It also allows other
information, such as error message and authentication method name, to be
supplied in the form for the user.
For more information on using macros, see “Macro resources for customizing
HTML response pages” on page 76.

3. Restart the WebSEAL server.

Results

The configuration of authentication strength levels is now complete.

180 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Creating a protected object policy

About this task

Complete the following steps:

Procedure
1. Create a POP. For example, use pdadmin to create a new POP named test:

pdadmin> pop create test

2. Display the contents of the new POP:
pdadmin> pop show test

The new POP contains new settings similar to the following:
pdadmin> pop show test

Protected object policy: test
Description:
Warning: no
Audit level: none
Quality of protection: none
Time of day access: sun, mon, tue, wed, thu, fri, sat:

anytime:local
IP Endpoint Authentication Method Policy

Any Other Network 0

3. Note the default values in the POP for the attribute IP Endpoint
Authentication Method Policy.
...
...
IP Endpoint Authentication Method Policy

Any Other Network 0
...

The IP Endpoint Authentication Method Policy attribute is used to specify two
different attributes:
v Authentication strength level.

The default value is 0.
v Network-based access policy.

The default value is Any Other Network.
4. Use pdadmin pop modify to modify the IP Endpoint Authentication Method

Policy attribute to specify the authentication strength level that you want to
apply to the resources identified in “Establishing an authentication strength
policy” on page 178. The syntax is:
pdadmin> pop modify pop-name set ipauth anyothernw level-index

The value level-index is an integer. The default value is 0. The default value
maps to the authentication strength level unauthenticated.
Specify the index that corresponds to the necessary authentication strength
level. To determine the correct level-index, examine the [authentication-level]
stanza in the WebSEAL configuration file.
For example:[authentication-levels]
level = unauthenticated
level = password
level = ssl

For the above entry, the index values are described in the following table:

Chapter 9. Advanced authentication methods 181

Table 23. Example integer values for authentication strength levels

Authentication method Index value

unauthenticated 0

password 1

ssl 2

For example, to add the password authentication strength level (index value 1)
to the test POP, enter:pdadmin> pop modify test set ipauth anyothernw 1 To
verify the modification, display the POP:
pdadmin> pop show test

Protected object policy: test
Description: Test POP
Warning: no
Audit level: none
Quality of protection: none
Time of day access: sun, mon, tue, wed, thu, fri, sat:

anytime:local
IP Endpoint Authentication Method Policy

Any Other Network 1

Note: In this example, the only valid index values are: 0,1,2. If any other index
value is configured, WebSEAL presents an error page whenever a client
requests any object with that has the POP attached.

Specifying network-based access restrictions

About this task

Security Access Manager supports an optional POP configuration setting that
enables the application of authentication strength levels to client requests
originating from specified network addresses. The network addresses can be
defined as either a single IP address, or as a range of IP addresses.

Note: In most deployments, user access is not restricted based on the IP address
within POPs. In most deployments, this configuration section can be skipped.

The pdadmin pop modify set ipauth command is used to specify IP addresses.
Note that this is the same pdadmin command used to specify authentication
levels.

The default usage of pdadmin pop modify set ipauth does not impose any
network-based access restrictions. This usage consists of specifying the command
line argument anyothernw as the value for the IP Endpoint Authentication Method
Policy attribute. This setting applies to all user access, regardless of the IP address
of the requestor, and requires all users to authenticate at the specified level.

The syntax is:
pdadmin> pop modify pop-name set ipauth anyothernw level_index

For example, in “Creating a protected object policy” on page 181 above, the
following command created a POP that required all users to authenticate at
authentication level 1, and did not impose any network-based access requirements:
pdadmin> pop modify test set ipauth anyothernw 1

182 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Procedure

The following network-based access restrictions can be applied:
v Require a specific authentication strength level when the IP address of the

requesting client is within a defined range of IP addresses.

Syntax:
pdadmin> pop modify pop_name set ipauth add network netmask level_index

Note that the pdadmin pop modify set ipauth add command specifies both the
network addresses and the required authentication level in the IP Endpoint
Authentication Method attribute.
For example, to require users from IP address range 9.1.2.[0–255] to use
authentication strength level 1:
pdadmin> pop modify test set ipauth add 9.1.2.1 255.255.255.0 1

Note that the value specified for the netmask determines the range of network
addresses affected. The number 0 in the netmask serves as a wildcard to mean
all IP addresses for that subnet. See the example that follows.

Table 24. Using netmask to specify a network range (IPv4)

Example usage

IPv4 Address Netmask Network range affected

9.1.2.3 255.255.255.0 9.1.2.[0–255]

9.1.2.3 255.255.0.0 9.1.[0–255].[0–255]

9.1.2.3 255.0.0.0 9.[0–255].[0–255].[0–255]

Table 25. Using netmask to specify a network range (IPv6)

Example usage

IPv6 Address Netmask Network range affected

fec0::1 fff0:: fec[0-f]:[0-ffff]:[0-ffff]:[0-ffff]:[0-ffff]:[0-ffff]:[0-ffff]:[0-ffff]

fec0:ffff::1 ffff:fff0:: fec0:fff[0-f]:[0-ffff]:[0-ffff]:[0-ffff]:[0-ffff]:[0-ffff]:[0-ffff]

v Require requests from one specific IP address to use a specified
authentication strength level.

For example, to require requests from IP address 9.1.2.3 to use authentication
strength level 1:
pdadmin> pop modify test set ipauth add 9.1.2.3 255.255.255.255 1

To require requests from all IP addresses on subnet 9.1.2.x to use authentication
strength level 1:
pdadmin> pop modify test set ipauth add 9.1.2.3 255.255.255.0 1

v Disable use of authentication strength level step-up by all requests from a
range of network addresses.

The syntax is:
pdadmin> pop modify pop_name set ipauth remove network netmask

For example, to disable all requests from the range of IP addresses on the 9.1.2.x
subnet:
pdadmin> pop modify test set ipauth remove 9.1.2.1 255.255.255.0

v Allow access to the protected resource based solely on IP address, or range of
IP addresses, regardless of the authentication strength level.

Chapter 9. Advanced authentication methods 183

This restriction is enforced by specifying the IP address or addresses, and
assigning an authentication level of zero (0). For example, to allow requests from
IP address 9.1.2.3, regardless of authentication strength level:
pdadmin> pop modify test set ipauth add 9.1.2.3 255.255.255.255 0

Likewise, to allow requests from all IP addresses on the 9.1.2.x subnet, regardless
of authentication strength level:
pdadmin> pop modify test set ipauth add 9.1.2.3 255.255.255.0 0

v Deny access based solely on IP address, or range of IP addresses, regardless of
authentication strength level.

This restriction is enforced by using the key word forbidden as the final
parameter.
For example, to restrict only the client at IP address 9.1.2.3 from accessing the
protected resource:
pdadmin> pop modify test set ipauth 9.1.2.3 255.255.255.255 forbidden

Likewise, to restrict requests from all IP addresses on the 9.1.2.x subnet from
accessing the resource:
pdadmin> pop modify test set ipauth 9.1.2.3 255.255.255.0 forbidden

v Prevent requests from all IP addresses from accessing the protected object,
unless the IP address has been enabled by a previous pop modify set ipauth
add command.

For example, in a use case above, a range of IP addresses were required to
access the protected resource by using authentication strength level 1:
pdadmin> pop modify test set ipauth add 9.1.2.3 255.255.255.0 1

The administrator can, in addition, specify that requests from all other IP
addresses will be denied, regardless of authentication strength level, in the
following pdadmin command:
pdadmin> pop modify test set ipauth anyothernw forbidden

The option anyothernw means any other network address, and the option
forbidden enforces the denial policy.

Attaching a protected object policy to a protected resource

About this task

After a protected object policy (POP) has been defined and created, it must be
attached to the protected resources to which it applies. The syntax for attaching a
POP is:
pdadmin pop attach object_name pop_name

For example, an authentication policy for a WebSEAL deployment could be
defined as follows:
v The deployment will use forms authentication and certificate authentication.

Forms authentication is the first authentication strength level (1) and certificate
authentication is the second (stronger) authentication level (2).

v Users must authenticate using forms authentication or stronger to access the
following protected resource (a WebSEAL junction):
/WebSEAL/hostA/junction

v Users must authenticate using certificate authentication to access the following
protected resource (an application):
/WebSEAL/hostA/junction/applicationA

184 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

To implement this policy, the following configuration steps must take place.

Procedure
1. Modify the WebSEAL configuration file to grant forms authentication an

authentication strength of 1 and certificate authentication a strength of 2:
[authentication-levels]
level = unauthenticated
level = password
level = ssl

2. Create a POP for authentication level 1 (forms authentication).
pdadmin> pop create test1
pdadmin> pop modify test1 set ipauth anyothernw 1

3. Create a POP for authentication level 2 (certificate authentication).
pdadmin> pop create test2
pdadmin> pop modify test2 set ipauth anyothernw 2

4. Attach the POP test1 to /WebSEAL/hostA/junction.
pdadmin> pop attach /WebSEAL/hostA/junction test1

5. Attach the POP test2 to /WebSEAL/hostA/junction/application.
pdadmin> pop attach /WebSEAL/hostA/junction/applicationA test2

Results

Note: For more information on the administration of POPs, see the IBM Security
Access Manager for Web: Administration Guide. For information on pdadmin syntax,
see the IBM Security Access Manager for Web: Command Reference.

Enforcing user identity match across authentication levels

About this task

By default, WebSEAL requires the user identity that performs the authentication
strength (step-up) operation to match the user identity used to perform the initial
authentication operation.

WebSEAL verifies that the user identity in the new user credential matches the
user identity in the original credential. If the user identities do not match,
WebSEAL denies the authentication step-up, logs an error and returns an error
page to the user.

Procedure

This function is enabled by default.

To disable this function, edit the WebSEAL configuration file, and set the value of
verify-step-up-user to no:
[step-up]
verify-step-up-user = yes

Controlling the login response for unauthenticated users

About this task

You can control the login prompt response for an unauthenticated user who
requests an object protected by a step-up authentication POP attribute.

Chapter 9. Advanced authentication methods 185

By default, WebSEAL presents only the login prompt for the specific authentication
level required by the POP. The show-all-auth-prompts stanza entry in the
[step-up] stanza of the WebSEAL configuration file controls this response. The
default value is "no":
[step-up]
show-all-auth-prompts = no

Procedure

In previous versions of WebSEAL, multiple login prompts—one for each enabled
authentication method—were presented to the unauthenticated user on one login
page. To support this previous behavior, set the value of the show-all-auth-
prompts stanza entry to "yes":
[step-up]
show-all-auth-prompts = yes

Note: The show-all-auth-prompts function is triggered only by a POP on an
object. If an unauthenticated user is asked to authenticate for reasons that do not
involve a POP on an object, the functionality of show-all-auth-prompts is not used.

Stepping up authentication at higher levels

About this task

You can configure WebSEAL to accept authentication mechanisms that are
configured at a higher level than the level specified in the POP. With this
configuration, the user can authenticate directly at the higher level.

Procedure
v To accept higher authentication levels during step-up operations, you must set

the value of the step-up-at-higher-level stanza entry to "yes".
[step-up]
step-up-at-higher-level = yes

v To disallow higher authentication levels during step-up operations, set the value
of the step-up-at-higher-level stanza entry to "no".
[step-up]
step-up-at-higher-level = no

Results

The default value is "no" if you do not configure this configuration entry. That is,
by default WebSEAL does not accept higher authentication levels.

External authentication interface

Security Access Manager provides an external authentication interface that enables
you to extend the functionality of the WebSEAL authentication process. The
external authentication interface allows third-party systems to supply an
authenticated identity to WebSEAL and Web-server plug-ins. The identity
information is then used to generate a credential.

This extended authentication functionality is similar to the existing custom
authentication module capability provided by the Web security external

186 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

authentication C API. However, the external authentication interface allows the
user identity to be supplied in HTTP Response headers rather than through the
authentication module interface.

For complete information on configuring external authentication interface
authentication, refer to Chapter 13, “External authentication interface,” on page
229.

Client Certificate User Mapping

This section introduces the advanced Client Certificate User Mapping functionality,
describes key concepts and components, and details how to deploy the
functionality within a Security Access Manager environment.

Introduction
WebSEAL uses the Cross Domain Authentication Service (CDAS) to authenticate a
user and provide a Security Access Manager user identity.

The client certificate user-mapping CDAS provides a mechanism by which
WebSEAL can use the details of a client certificate to determine the corresponding
Security Access Manager user identity. The rules that govern the mapping of the
client certificate are defined in XSL style notation.

The CDAS supports all user registries that Security Access Manager supports.

The rules evaluation can return an LDAP search string. This string representation
of the LDAP search filter must be in accordance with the format described in RFC
2254.

Example Rules
The new CDAS gives the user more flexibility in mapping attributes contained
within the certificate to the Security Access Manager user identity.

The following list illustrates some of the mapping functionality supported by this
CDAS.
1. If issuer DN = X, and subject DN = Y, then Security Access Manager DN also =

Y.
2. The certificate itself is stored as a userCertificate attribute on the

inetOrgPerson entry, and a search is done for the Base64 encoded version of
the certificate within the user registry.

3. Take the issuer DN and the subject DN from the certificate, and combine them
to look like this:
<certDN>subjectName</certDN><issuerDN>issuerName</issuerDN>

Then look for an entry with this value for the attribute:
ibm-certificateSubjectAndIssuer

4. If issuer DN = X, the subjectAltName is the same as the DN of the
inetOrgPerson entry.

5. If issuer DN = X, the serialNumber maps to the secCertSerialNumber attribute
of the inetOrgPerson.

6. If issuer DN = X, the cn from the subjectDN field will map to the cn of the
inetOrgPerson entry.

Chapter 9. Advanced authentication methods 187

7. If issuer DN = X, the subjectDN maps to secCertDN in the inetOrgPerson
entry.

Certificate User Mapping Rule language

Extensible Style Language (XSL) is the language used to specify rules, while
Extensible Markup Language (XML) is the language used for the data that forms
an input to the rules. The combination of XML and XSL provides a
platform-independent way to express both the inputs to the rules evaluator and
the rules themselves.

XML also provides the ability to express complex data types in a structured and
standard manner in text format. This text format allows rules for processing the
XML data to be written without having to cater to platform and programming
language specifics.

XSL is a functional stylesheet language that can be used to perform simple or
complex tasks, depending on your needs. XSL possesses an inherent ability to
analyze and evaluate XML data, which is becoming the standard for data
representation. XSL is built on other XML-based standards such as XPath, which is
the expression language at the core of a Certificate User Mapping Rule.

To implement the user mapping rules, it is necessary to impose a number of
constraints on the XSL rules, including the requirements that the output of the rule
evaluation be simple text, and that the output conforms to one of a known set of
result strings. For more information about the format and constraints of user
mapping rules, see “Format and constraints of rules” on page 192.

UMI XML document model

The Universal Management Infrastructure XML document model (or UMI XML
model) is a set of restrictions placed on the XSL/XML model by the user mapping
rules implementation, which enables the interface to be simple and yet functional
for certificate purposes. The model constrains the certificate rules to function
within a predetermined XML document format, with the same top-level XML
document element for all rules. The XML UMI that is imported by the rules
evaluator from certificate attributes must be inserted into this XML document
before the data can be used by the certificate. Similarly, to simplify the process of
defining rules, the certificate rules must operate within the confines of the UMI
XML model.

The UMI XML model requires the XML document to contain the following
top-level XML element, into which all target UMI for a particular rule evaluation is
inserted. The XMLUMI element is created automatically as part of the rule evaluation
process by the user mapping engine.
<XMLUMI>
<!--XML formatted UMI are inserted here. -->
</XMLUMI>

As a result of this restriction, the XPath to the data used in a Certificate User
Mapping Rule must include the prefix /XMLUMI in order to access a particular data
element within the model. For example, if a UMI item of
stsuuser:STSUniversalUser is added to the document, you must specify the XPath
/XMLUMI/stsuuser:STSUniversalUser in order to access the data contained in the
XML object stsuuser:STSUniversalUser.

188 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

An XPath is the path to a particular child element within the hierarchy of a
structured XML data object. Much like a directory path on a hard drive is used to
access a specific file, an XPath designation starts from the root of the document (in
this case /XMLUMI) and traces a path from this root down through its child elements
to the specific element that is being referenced. For example, using the example
entitlement stsuuser:STSUniversalUser in the “XML certificate model” on page
190 as a reference, you would use the following XPath to access the Version
element of /XMLUMI/stsuuser:STSUniversalUser:
"/XMLUMI/stsuuser:STSUniversalUser/stsuuser:AttributeList/stsuuser:
Attribute[@name=’Version’]/stsuuser:Value"

XPaths like this example are the means by which user mapping rules access the
UMI data values that are needed to make attribute-based user mapping decisions.

Because all data elements are restricted to work within the UMI XML model, the
user mapping rules must also be restricted to operate on or match XPaths within
the model. Therefore, XSL template match statements are also restricted to
matching XPaths starting from /XMLUMI within the UMI XML document. For
additional information, see “Format and constraints of rules” on page 192.

Containers and XML UMI container names

When data is requested from a resource manager, the granularity of the XML data
returned is at the level of a single container of information. The container is
normally also the smallest data element (for example, elements that might be
considered for billing purposes). This convention also applies to the UMI XML
model. The UMI that is used in user mapping rules is also defined and
manipulated as containers of XML data. For example, the
stsuuser:STSUniversalUser XML object defined in “XML certificate model” on
page 190 is an example of a UMI container.

The topmost element in the definition of an item of UMI is referred to as the
container name of that item of UMI. When defining a Certificate User Mapping
Rule, the XPath to the XML definition of data in any UMI container must always
be referenced using the name of the container as the first element following
/XMLUMI in the XPath specification for the data element.

Returning to the example UMI item stsuuser:STSUniversalUser, to access any
element within the stsuuser:STSUniversalUser container, the XPath specification
must be prefixed with stsuuser:STSUniversalUser. For example,
"/stsuuser:STSUniversalUser/stsuuser:AttributeList/
stsuuser:Attribute[@name=’SerialNumber’]/stsuuser:Value" refers to the
SerialNumber value. To access this information from within a Certificate User
Mapping Rule, this XPath must also be prefixed by the top-level element of the
XML target UMI input document, which is XMLUMI (for example,
"/XMLUMI/stsuuser:STSUniversalUser/stsuuser:AttributeList/
stsuuser:Attribute[@name=’SerialNumber’]/stsuuser:Value").

A template match statement can be used to remove the need to completely specify
the entire path. The example rule file contains a template match statement of
/XMLUMI/stsuuser:STSUniversalUser/stsuuser:AttributeList, which means that
all attributes of the certificate can be specified without a prefix. For example,
"/XMLUMI/stsuuser:STSUniversalUser/stsuuser:AttributeList/
stsuuser:Attribute[@name=’SerialNumber’]/stsuuser:Value" is the same as
"stsuuser:Attribute[@name=’SerialNumber’]/stsuuser:Value". For additional
information, see “Format and constraints of rules” on page 192.

Chapter 9. Advanced authentication methods 189

XML certificate model

The following UMI XML document shows the data that is passed to the XSL
processor from the rules evaluator during the evaluation of a Certificate User
Mapping Rule.

The document contains one container named stsuuser. The attribute value of the
container stsuuser:STSUniversalUser is defined in XML.

The certificate evaluator automatically encompasses all of the data under the XML
top-level node declaration XMLUMI when the UMI XML document is created, so this
top-level element is added for clarity.

The XML document is automatically created by the CDAS, based on the attributes
available within the client certificate. The XML document that is passed to the
evaluation routines by the user mapping rules evaluator is as follows:
<XMLUMI>
<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal>
<stsuuser:Attribute name="name">
<stsuuser:Value>
-- Subject DN from certificate --
</stsuuser:Value>
</stsuuser:Attribute>
</stsuuser:Principal>
<stsuuser:AttributeList>
<stsuuser:Attribute name="--attr-name--" type="urn:ibm:security:gskit">
<stsuuser:Value>--attr-value--</stsuuser:Value>
</stsuuser:Attribute>
...
</stsuuser:AttributeList>
</stsuuser:STSUniversalUser>
</XMLUMI>

For example:
<?xml version="1.0" encoding=’UTF-8’?>

<XMLUMI>
<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal>
<stsuuser:Attribute name="name">
<stsuuser:Value>
CN=testuser,O=ibm,C=au
</stsuuser:Value>
</stsuuser:Attribute>
</stsuuser:Principal>
<stsuuser:AttributeList>
<stsuuser:Attribute name="SubjectDN" type="urn:ibm:security:gskit">
<stsuuser:Value>CN=testuser,O=ibm,C=au</stsuuser:Value>
</stsuuser:Attribute>

<stsuuser:Attribute name="IssuerDN" type="urn:ibm:security:gskit">
<stsuuser:Value>CN=ca,O=ibm,C=au</stsuuser:Value>
</stsuuser:Attribute>

<stsuuser:Attribute name="ValidFromEx" type="urn:ibm:security:gskit">
<stsuuser:Value>00:29:26 08-06-2009</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:AttributeList>
</stsuuser:STSUniversalUser>
</XMLUMI>

190 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

For a full list of available attributes, see “Valid certificate attributes” on page 195.

When referencing a particular UMI item within the XMLUMI document available
to a rule, the XPath path specifier can begin from the container name of the XML
element (for example, stsuuser:STSUniversalUser) . If the callers want to specify
their own template match statement explicitly, they can do so.

For additional information, see “Format and constraints of rules” on page 192.

User mapping rules evaluator

The user mapping rules evaluator evaluates user mapping rules within the
constraints that are required by the user mapping engine. Pre-configured rules are
supplied in a configuration file to the new CDAS.

The user mapping rules evaluator takes the rule policy along with the XML
representation of the certificate and passes this to the XSL processor for evaluation.

The input for the transformation is the XML version of the client certificate (as
defined above). XSL transformation rules decide how the Security Access Manager
user name is mapped from the supplied certificate information. Two inputs are
used when making the decision:
v the XML representation of the client certificate, and
v the XSL rule, which determines how the XML is interpreted.

The output from the decision is a single string which is used to determine the
Security Access Manager user identity.

The user mapping engine expects the rules evaluation to result in the return of one
of the string identifiers listed below. These identifiers ensure uniqueness in the
event that an XSL rule is written incorrectly and the evaluation returns incorrect
information. Delimiting the identifiers with an exclamation point (!) enables the
evaluator to identify errant cases.

The string must conform to one of the following definitions:

!free format text!
Free format text, which could also include elements from the source XML.
This string will be used as the Security Access Manager user identity. For
example:
!cn=testuser,o=ibm,c=au!
!<xsl:value-of select="stsuuser:Attribute[@name=’SerialNumber’]/
stsuuser:Value"/>!

!userreg base='%base%' attr='%name%'!%ldap-search-filter%!
Indicates that the user registry should be searched for the Security Access
Manager user identity, based on the supplied search string. The attr value
is used to define the name of the LDAP attribute which holds the Security
Access Manager user identity. The search string should conform to RFC
2254. For example:
!userreg base=’o=ibm,c=au’ attr=’cn’! (&(objectClass=ePerson)
(serialNum=<xsl:value-of select="stsuuser:Attribute[@name=
’SerialNumber’]/stsuuser:Value"/>))!

Chapter 9. Advanced authentication methods 191

!no-matching-rule!
Indicates that no matching rule was found for the supplied client
certificate. If this string is returned from the rule evaluation the CDAS will
return an error. For example:
!no-matching-rule!

Note: The ampersand (&) character cannot be used in XSLT documents or it will
produce errors when processed. This character must be transcribed as &.

Format and constraints of rules

A Certificate User Mapping Rule must be defined as an XSL template in an XSL
stylesheet. The rule must be written in a valid XSL template rule format. It must
return a text document that contains one of the string identifiers shown in “User
mapping rules evaluator” on page 191.

The identifiers must be the only text in the output document, although they can be
surrounded by white space. If a value other than the defined values or an empty
document is returned, the user mapping fails and an error code is returned to the
CDAS to indicate that the rule is not compliant.

The result of the XSL transformation performed by an XSL Certificate User
Mapping Rule must be a text output document that contains only one of the
supported string identifiers.

The following Certificate User Mapping Rule example references the XML data
item that is defined in stsuuser:STSUniversalUser. The condition that the rule
evaluates is expressed as follows:
<?xml version="1.0" encoding=’UTF-8’?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:stsuuser=
"urn:ibm:names:ITFIM:1.0:stsuuser" version="1.0">

<!-- Required to constrain output of rule evaluation -->
<xsl:output method="text" omit-xml-declaration="yes" encoding=’UTF=8’ indent=
"no"/>

<!-- Need this to ensure default text node printing is off -->
<xsl:template match="text()"></xsl:template>

<!-- Let’s make it easier by matching the constant part of our XML name -->
<xsl:template match="/XMLUMI/stsuuser:STSUniversalUser/stsuuser:AttributeList">

<!-- If this certificate was issued by our CA, just use the subject dn -->
<xsl:when test=’stsuuser:Attribute[@name="IssuerDN"]/stsuuser:Value =
"cn=ca,o=ibm,c=au"’>
!<xsl:value-of select="stsuuser:Attribute[@name=’SubjectDN’]/
stsuuser:Value"/>!
</xsl:when>

<!-- If this certificate was issued by the tivoli CA, search for the
certificate serial number -->
<xsl:when test=’stsuuser:Attribute[@name="IssuerDN"]/stsuuser:Value =
"cn=ca,o=tivoli,c=au"’>
!userreg base=’o=ibm,c=us’ attr=’cn’!secCertSerialNumber=<xsl:
value-of select="stsuuser:Attribute[@name=’SerialNumber’]/
stsuuser:Value"/>!
</xsl:when>

<!-- Otherwise we don’t have a matching rule.’no-matching-rule’ is a
special string. -->

192 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

<xsl:otherwise>
!no-matching-rule!
</xsl:otherwise>

</xsl:template>

</xsl:stylesheet>

Note: Everything up to and including the template match is static for all rules.
Remaining parts of the XSL rule can be customized.

To reference any data item in the document, the XPath to each node must include
the XMLUMI node. When a rule is built, the rule writer must understand what the
correct XPath is from the current point in the tree, in order to access the XML data
nodes and subnodes. The current point in the tree is selected by using the template
match statement. The template match statement allows an XSL programmer to
shorten the XPath to each data element by specifying that the XPath processing
must occur further down the XML document tree.

The <xsl:template match="/XMLUMI/stsuuser:STSUniversalUser/
stsuuser:AttributeList"> statement tells the XSL processor that all relative XPaths
within the bounds of the template statement should be assumed to be relative to
the node "/XMLUMI/stsuuser:STSUniversalUser/stsuuser:AttributeList". For
example, "/XMLUMI/stsuuser:STSUniversalUser/stsuuser:AttributeList/
stsuuser:Attribute[@name=’IssuerDN’]/stsuuser:Value" can be referred to as
simply "stsuuser:Attribute[@name=’IssuerDN’]/stsuuser:Value".

Examples of user mapping rules

This section provides two examples of output XSLT evaluation, first using a free
format text string and then searching the user registry for the user DN.

In the first example, the rule works on a string from the client certificate: if the
string matches then it selects the Distinguished Name (DN) from the client
certificate.

Rule:
<!-- Test a valid ’free format’ string. -->
<xsl:when test=’stsuuser:Attribute[@name="SubjectDN"]
/stsuuser:Value = "cn=testuser,o=ibm,c=au"’>
!<xsl:value-of select="stsuuser:Attribute[@name=’SubjectDN’]/
stsuuser:Value"/>!
</xsl:when>

Details from Client Certificate:
<stsuuser:STSUniversalUser xmlns:stsuuser=
"urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal>
<stsuuser:Attribute name="name">
<stsuuser:Value>
CN=testuser,O=ibm,C=au
</stsuuser:Value>
</stsuuser:Attribute>
</stsuuser:Principal>
<stsuuser:AttributeList>
<stsuuser:Attribute name="SubjectDN" type=
"urn:ibm:security:gskit">
<stsuuser:Value>CN=testuser,O=ibm,C=au</stsuuser:Value>

Chapter 9. Advanced authentication methods 193

</stsuuser:Attribute>
...
</stsuuser:AttributeList>
</stsuuser:STSUniversalUser>

String returned by CDAS:
CN=testuser,O=ibm,C=au

In the second example, the rule searches the user registry for an attribute and
returns the user Common Name (CN) from the registry. In this case the search of
the registry is on the e-mail address from the client certificate.

Rule:
<!-- Test a matching ’userreg’ string. -->
<xsl:when test=’stsuuser:Attribute[@name="SubjectDN"]
/stsuuser:Value = "cn=testuser3,o=ibm,c=au"’>
!userreg base=’o=ibm,c=au’ attr=’cn’!(description=<xsl:value-of
select="stsuuser:Attribute[@name=’SubjectEmail’]/
stsuuser:Value"/>)!
</xsl:when>

Details from Client Certificate:
<stsuuser:STSUniversalUser xmlns:stsuuser=
"urn:ibm:names:ITFIM:1.0:stsuuser">
<stsuuser:Principal>
<stsuuser:Attribute name="name">
<stsuuser:Value>
cn=testuser3,o=ibm,c=au
</stsuuser:Value>
</stsuuser:Attribute>
</stsuuser:Principal>
<stsuuser:AttributeList>
<stsuuser:Attribute name="SubjectDN" type=
"urn:ibm:security:gskit">
<stsuuser:Value>cn=testuser3,o=ibm,c=au</stsuuser:Value>
</stsuuser:Attribute>
<stsuuser:Attribute name="SubjectEmail" type=
"urn:ibm:security:gskit">
<stsuuser:Value>testuser3@ibm.com</stsuuser:Value>
</stsuuser:Attribute>
...
</stsuuser:AttributeList>
</stsuuser:STSUniversalUser>

String returned from user registry:
cn=testuser3

How to manage the CDAS

This section describes how to add the CDAS into WebSEAL, and how to configure
the CDAS.

Enabling the CDAS functionality
You can enable the extended CDAS functionality.

About this task

To enable the extended CDAS functionality:

Procedure
1. You must update the [cert-map-authn] stanza in the WebSEAL configuration

file as follows:

194 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

[cert-map-authn]
rules-file = file
debug-level = level

where:

file The name of the rules file for the certificate mapping CDAS to use.

level Controls the trace level for the module.
For example:
[cert-map-authn]
rules-file = cert-rules.txt
debug-level = 5

Note: The level variable indicates the trace level, with 1 designating a minimal
amount of tracing and 9 designating the maximum amount of tracing. You can
also use the Security Access Manager pdadmin trace commands to modify the
trace level by using the trace component name of pd.cas.certmap. This trace
component is only available after the first HTTP request is processed.

2. You can use the Local Management Interface (LMI) to modify the rules file (for
example, cert-rules.txt) as required:
a. Select Secure Reverse Proxy Settings > Global Settings > Client Certificate

Mapping from the top menu. The Client Certificate Mapping management
page displays.

b. (Optional) If no rules files exist, you can click New to create a new rules file.
Enter a name for the new file such as cert-rules.txt and click Save. A
new file is generated that is based on the default template.

c. Click the file that you want to manage, such as cert-rules.txt, from the
available list of File Names.

d. Click Edit.
e. Update the file.
f. Click Save.

Valid certificate attributes
The client certificate attributes that are made available to the mapping rules are
defined by the GSKit toolkit.

For WebSEAL, this can be any of the following attributes:
* Base64Certificate
* SerialNumber
* SubjectCN
* SubjectLocality
* SubjectState
* SubjectCountry
* SubjectOrganization
* SubjectOrganizationalUnit
* SubjectDN
* SubjectPostalCode
* SubjectEmail
* SubjectUniqueID
* IssuerCN
* IssuerLocality
* IssuerState
* IssuerCountry
* IssuerOrganization
* IssuerOrganizationUnit
* IssuerDN
* IssuerPostalCode
* IssuerEmail
* IssuerUniqueID

Chapter 9. Advanced authentication methods 195

* Version
* SignatureAlgorithm
* ValidFrom
* ValidFromEx
* ValidTo
* ValidToEx
* PublicKeyAlgorithm
* PublicKey
* PublicKeySize
* FingerprintAlgorithm
* Fingerprint
* BasicConstraintsCA
* BasicConstraintsPathLength
* DerCertificate
* CertificatePolicyID
* CRLDistributionPoints
* DerSubjectDN
* DerIssuerDN
* KeyUsage
* AlternativeDirectoryName
* AlternativeDNSName
* AlternativeIPAddress
* AlternativeURI
* AlternativeEmail

For more information about GSKit, see the IBM Secure Sockets Layer Introduction and
iKeyman User's Guide.

Configuring WebSEAL to use the certificate mapping module

Before you begin

Assume the following filepaths:
v $WEBSEAL_HOME refers to the WebSEAL installation directory. The typical filepath

is /opt/pdweb.
v $WEBRTE_HOME refers to the installation directory for the Security Access Manager

Web Security Runtime Environment. The typical filepath is /opt/pdwebrte.
The typical file paths for Unix and Windows platforms are:
– Unix

/opt/pdwebrte

– Windows
C:\Program Files\Tivoli\PDWebRTE

Procedure
1. Edit the WebSEAL instance configuration file to enable the authentication

module. This file is in $WEBSEAL_HOME/etc/webseald-instance.conf, where
instance is the name of the WebSEAL instance to be configured. In the
[authentication-mechanisms] stanza, change the cert-ssl entry so it looks like
the following example:
cert-ssl = library-name & rule=rule-file [debug=level]

Where:
v library-name is the path to the shared library for the module, found in

$WEBRTE_HOME/lib/. It has the form [lib-prefix]amwcertmapauthn[lib-
suffix] where [lib-prefix] and [lib-suffix] are platform-dependent.

196 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v rule-file is the path to the XSLT mapping file. A customizable template is
in $WEBRTE_HOME/etc/cert-rules-template.txt. You can modify it to suit
your requirements.

v level is an optional parameter that defines the trace level for the module.
For example, the entry might be defined (on one line) as follows:
cert-ssl = /opt/pdwebrte/lib/libamwcertmapauthn.so & rule=/opt/pdwebrte/
etc/cert-rules.txt debug=5

2. Check the accept-client-certs entry within the [certificate] stanza. The
value of this entry should be required, optional, or prompt_as_needed. This
determines if and when a user is prompted to provide a client certificate by the
browser.
For more details about the different values for this entry, see “Client-side
certificate authentication modes” on page 143 in the IBM Security Access
Manager for Web Information Center: http://pic.dhe.ibm.com/infocenter/
tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome/html

3. Save the configuration file.
4. Restart WebSEAL to implement the updates.

Constructing the XSLT rules file
You can use the mapping module to define flexible rules that allow mapping of
certificate attributes to a user identity. The user identity can be a Security Access
Manager user ID. For example, testuser. Alternatively, the user identity can be the
user DN as found in the registry. For example, cn=testuser, o=ibm,c=au.

Upon receiving a user certificate, the module creates an XML document that lists
all of its attributes. The XML document conforms to the Universal Management
Infrastructure (UMI) XML document model. For example, the module could create
a document that looks like this:
<?xml version="1.0" encoding=’UTF-8’?>

<XMLUMI>
<stsuuser:STSUniversalUser xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser">

<stsuuser:Principal>
<stsuuser:Attribute name="name">

<stsuuser:Value>
CN=testuser,O=ibm,C=au

</stsuuser:Value>
</stsuuser:Attribute>

</stsuuser:Principal>
<stsuuser:AttributeList>

<stsuuser:Attribute name="SubjectDN" type="urn:ibm:security:gskit">
<stsuuser:Value>CN=testuser,O=ibm,C=au</stsuuser:Value>

</stsuuser:Attribute>

<stsuuser:Attribute name="IssuerDN" type="urn:ibm:security:gskit">
<stsuuser:Value>CN=ca,O=ibm,C=au</stsuuser:Value>

</stsuuser:Attribute>

<stsuuser:Attribute name="ValidFromEx" type="urn:ibm:security:gskit">
<stsuuser:Value>00:29:26 08-06-2009</stsuuser:Value>

</stsuuser:Attribute>

</stsuuser:AttributeList>
</stsuuser:STSUniversalUser>

</XMLUMI>

The XSLT file defines how to transform the XML document. The result of the
transformation must be in one of these forms:

Chapter 9. Advanced authentication methods 197

http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome/html
http://pic.dhe.ibm.com/infocenter/tivihelp/v2r1/topic/com.ibm.isam.doc_70/welcome/html

v !identifier!

A Security Access Manager user ID or user DN. This form is used when no
registry search is required, such as when the identifier can be retrieved directly
from the certificate.

v !userreg base=’baseDN’ attr=’attrName’! ldapSearchFilter !

baseDN is the base distinguished name, attrName is the LDAP attribute name
that corresponds to a user identity, and ldapSearchFilter is the LDAP search
filter.
This form is used when certificate information is used to search the registry for
the corresponding user. You can also use the module with Active Directory.

v !no-matching-rule!

This form indicates that you cannot use any rule to find the required
information to authenticate the user.

The following example is the cert-rules-template.txt file installed in the
$WEBRTE_HOME/etc/ directory:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser" version="1.0">

<!-- Required to constrain output of rule evaluation -->
<xsl:output method="text" omit-xml-declaration="yes" encoding=’UTF=8’

indent="no"/>

<!-- Need this to ensure default text node printing is off -->
<xsl:template match="text()"></xsl:template>

<!-- Let’s make it easier by matching the constant part of our XML name -->
<xsl:template match="/XMLUMI/stsuuser:STSUniversalUser/stsuuser:

AttributeList">
!<xsl:value-of select="stsuuser:Attribute[@name=’SubjectDN’]/stsuuser:

Value"/>!
</xsl:template>

</xsl:stylesheet>

This XSLT document transforms the UMI XML document created by the
authentication module and outputs the subject DN of the certificate it receives
between ! characters. For example, !cn=testuser,o=ibm,c=au!.

In this case, no user registry search is performed. This <xsl:output> element is
required to indicate that text, not an XML document, is the output of the
transformation.

This first <xsl:template> element ensures that any remaining text nodes in the
document are not copied to the output.

The next example shows how to direct the mapping module to perform a user
registry, for example, LDAP, search with data from the certificate. It extracts the
value of the SubjectEmail attribute from the certificate and searches for a user with
an LDAP mail attribute equal to this address.

The base DN for the search is o=ibm,c=au. The value of the cn attribute is printed
in the output. In this case, the result will probably be a Security Access Manager
user ID, rather than a user DN.

198 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:stsuuser="urn:ibm:names:ITFIM:1.0:stsuuser" version="1.0">

<!-- Required to constrain output of rule evaluation -->
<xsl:output method="text" omit-xml-declaration="yes" encoding=’UTF=8’

indent="no"/>

<!-- Need this to ensure default text node printing is off -->
<xsl:template match="text()"></xsl:template>

<!-- Let’s make it easier by matching the constant part of our XML name -->
<xsl:template match="/XMLUMI/stsuuser:STSUniversalUser/stsuuser:

AttributeList">
!userreg base=’o=ibm,c=au’ attr=’cn’!(mail=<xsl:value-of

select="stsuuser:Attribute[@name=’SubjectEmail’]/stsuuser:
Value"/>)!

</xsl:template>

</xsl:stylesheet>

Note: Because the & character is used in XML to demarcate the start of an entity, it
cannot be used as is in the LDAP search filter. If an LDAP query contains multiple
terms that need to be joined, the & entity needs to be used instead.

Validating a successful module mapping
To confirm a successful module mapping for users, ensure that a Security Access
Manager policy is set for a protected resource to refuse unauthenticated users and
allow authenticated ones.

Before you begin

Before accessing this resource in a browser, ensure that the client certificate is
imported into the browser. This process is browser-dependent.

Follow these steps if you use Mozilla Firefox, version 3.6:
1. Click the Tools menu.
2. Select Options.
3. Click Advanced from the toolbar.
4. Click the Encryption tab.
5. Click View Certificates.
6. Click Import.
7. Choose the file representing the client certificate that you want to send to

WebSEAL for authentication.
8. Create a new master password for the Software Security Device, or enter the

existing one.
9. Enter the password for the client certificate.

Follow these steps if you use Mozilla Firefox, version 10:
1. Select Options from the menu.
2. Click Advanced from the toolbar.
3. Click the Encryption tab.
4. Click View Certificates.
5. Click Import.

Chapter 9. Advanced authentication methods 199

6. Choose the file representing the client certificate that you want to send to
WebSEAL for authentication.

Follow these steps if you use Microsoft Internet Explorer, version 8:
1. Click Tools from the menu bar.
2. Select Internet Options.
3. Select the Content tab.
4. In the Certificates section, click the Certificates button.
5. Click Import.
6. Follow the instructions in the Certificate Import Wizard to import the file that

contains the client certificate.

Procedure
1. When attempting to access a protected resource, the browser prompts you to

select a client certificate. Select the client certificate which you just imported
into the browser. The WebSEAL log contains trace messages pertinent to the
mapping module, indicating success or failure, assuming that the debugging
level was set appropriately in the WebSEAL configuration file as described in
“Configuring WebSEAL to use the certificate mapping module” on page 196.

2. The result of the XSLT transformation dictates whether the mapping module
must perform a user registry search or not. The mapping module conducts a
user registry search if the result is in the following form:
!userreg base=’baseDN’ attr=’attrName’ ! ldapSearchFilter!

Otherwise, the mapping module does not conduct a user registry search. The
result of the search is a Security Access Manager user ID or a DN of a user.
If the mapping is successful and a search was performed in the user registry,
the following message displays in the WebSEAL log. The WebSEAL log is
typically at /var/pdweb/log/msg_webseal-instance.log on UNIX machines. It is
at C:\Program Files\Tivoli\PDWeb\log\msg_webseal-instance.log on Windows
machines:
2012-06-07-16:37:11.113+10:00I----- thread(2) trace.pd.cas.certmap:5
/sandbox/amwebrte611/src/pdwebrte/authn/modules/certmapauthn/
AMWCertLDAPUserRegistry.cpp:146: ISAM user identity: testuser

If no search was performed in the registry, only a message similar to the
following is displayed:
2012-06-07-18:34:29.200+10:00I----- thread(2) trace.pd.cas.certmap:3
/sandbox/amwebrte611/src/pdwebrte/authn/modules/certmapauthn/
AMWCertRulesEngine.cpp:219: result: CN=testuser,O=IBM,C=AU

200 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 10. Post-authentication processing

This chapter discusses supplemental post-authentication processes.

Topic Index:
v “Automatic redirection after authentication”
v “Server-side request caching” on page 205

Automatic redirection after authentication

This section contains the following topics:
v “Overview of automatic redirection”
v “Enabling automatic redirection” on page 202
v “Disabling automatic redirection” on page 202
v “Limitations” on page 203

Overview of automatic redirection
When a user makes a request for a resource in a WebSEAL domain, WebSEAL
sends the resource to the user upon successful authentication and policy checks. As
an alternative to this standard response, you can configure WebSEAL to
automatically redirect the user to a specially designated home or welcome page.

The customized redirection can be further configured with a range of macros
specifying the user's authorization level, username, host name and so forth.

This forced redirection after login is appropriate, for example, when users enter the
WebSEAL domain through a portal page. Automatic redirection also overrides user
attempts to directly access specific pages within the domain by selecting user
bookmarks.

The automatic redirection process flow is as follows:
1. The user sends a request and successfully authenticates.
2. WebSEAL builds a custom response and returns it to the browser as a redirect.

This redirect response contains the URL value specified by the
login-redirect-page stanza entry in the WebSEAL configuration file.

3. The browser follows the redirect response (containing the configured URL).
4. WebSEAL returns the page located at the configured URL.

Automatic redirection after login is enabled and disabled independently for each
authentication method. Automatic redirection is supported for the following
authentication methods:
v Forms authentication
v Basic authentication
v External authentication interface

© Copyright IBM Corp. 2002, 2013 201

Enabling automatic redirection

About this task

To configure automatic redirection, complete the following steps:

Procedure
1. Open the WebSEAL configuration file for editing.
2. Enable automatic redirection for each of the applicable authentication methods

by uncommenting the entry for each method in the [enable-redirects] stanza:
[enable-redirects]
redirect = forms-auth
redirect = basic-auth
redirect = cert-auth
redirect = ext-auth-interface

The example above enables automatic redirection for forms authentication,
basic authentication, certificate authentication, and EAI authentication.

3. Specify the URL to which the user is redirected after login. The URL can be
expressed as either an absolute URL or a server-relative URL, with or without
an embedded macro. For example:
[acnt-mgt]
login-redirect-page = http://www.ibm.com

or:
[acnt-mgt]
login-redirect-page = /jct/intro-page.html

or:
[acnt-mgt]
login-redirect-page = /jct/intro-page.html?level=%AUTHNLEVEL%&url=%URL%

4. Stop and restart the WebSEAL server.

Disabling automatic redirection

About this task

To disable automatic redirection, complete the following steps:

Procedure
1. Open the WebSEAL configuration file for editing.
2. Disable automatic redirection for each of the applicable authentication methods

by commenting or removing the entry for each authentication method in the
[enable-redirects] stanza:
[enable-redirects]
#redirect = forms-auth
#redirect = basic-auth
#redirect = cert-auth
#redirect = ext-auth-interface

Note that the hash character (#) is added to the start of each line. The
example above disables automatic redirection for forms authentication, basic
authentication, certificate authentication, and EAI authentication.

3. Stop and restart the WebSEAL server.

202 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Limitations

WebSEAL does not support automatic redirection at login under the following
conditions:
v During reauthentication.
v When the browser is reopened while using basic authentication.

Redirection works as expected the first time a user visits a page with a browser
and authenticates with a valid user name and password. However, if that
instance of the browser is closed and another opened, the redirected page is not
displayed after the user is authenticated.

Macro support for automatic redirection

Automatic redirection provides support for a subset of the macros provided by
WebSEAL to customize the static redirect URL. Macros allow dynamic substitution
of information from WebSEAL.

Macros are specified as an argument in the query string of the redirection URL.
Specific characters in the macro values are URI-encoded (see “Encoding of macro
contents” on page 204).

Valid WebSEAL macros for use in automatic redirection are:

Macro Description

AUTHNLEVEL
Authentication level required by authentication strength policy
(step-up).

HOSTNAME
Fully qualified host name.

PROTOCOL
The client connection protocol used. Can be HTTP or HTTPS.

URL
The URL requested by the client.

USERNAME
The name of the logged in user. The value "unauthenticated" is used
for users who are not logged in. (See also “Customization of login
forms for reauthentication” on page 175.)

HTTPHDR{name}
Used to include the contents of a specified HTTP header. If the
specified HTTP header does not exist within the request, the macro
contains the text: Unknown.

For example, the macro name to include the "Host" HTTP header is
HTTPHDR{Host}.

CREDATTR{name}
Used to include the contents of a specified attribute in the user
credential. If the specified credential attribute does not exist in the
request, the macro contains the text: 'Unknown'.

For example, use the following macro name to include the
tagvalue_session_index attribute, which contains the secret token for
the session: CREDATTR{tagvalue_session_index}.

Chapter 10. Post-authentication processing 203

Encoding of macro contents

Some macro content contains user-provided data such as the requested URI or the
Referer header of that request. It is important for security reasons to ensure that
reserved, or special characters in client-supplied data are encoded.

WebSEAL URI encodes macro contents to ensure that the content does not return
reserved, or special characters back to the client. URI encoding is an international
standard that allows you to map the wide range of characters used worldwide into
the limited character-set used by a URI.

Notes on encoding macro contents:

v WebSEAL always applies URI encoding to macro contents, even if the original
data has already been encoded.

v Encoded macro contents must be decoded using standard URI decoding rules.
v URI encoding increases the string length of macro content, and therefore the

Location header (where the content is embedded in the query string). For a
discussion of Location header length issues, see “Macro content length
considerations.”

Macro content length considerations

Information supplied by macros increases the string length of the Location URI
header. URI encoding of macro content further increases this string length.

Some client applications (such as WAP browsers on cellular phones) have URI
length limitations due to the small memory capacity of the device. If a URI exceeds
the length limitation on such a client device, errors can occur and the link will
likely fail.

WebSEAL does not impose any length restrictions on the Location URI header.
Therefore, when configuring macros for local response redirection, you must
carefully consider the possible limitations of client devices that access your site.
You can estimate the length of the Location header by determining the fixed
lengths of the URI and the TAM_OP values, and factor in expected sizes of any
macros used in the query string.

The following table provides information about the possible lengths of the content
provided by the macros used for local response redirection:

Macro Size of Content

AUTHNLEVEL No more than 10 characters.

HOSTNAME The length of the HOST header of the corresponding request, or the
fully qualified host name of the WebSEAL system if the HOST header
is not present.

PROTOCOL No more than 10 characters.

URL Length of the request URI.

USERNAME Maximum length defined by user name length policy for this
implementation of WebSEAL.

HTTPHDR{name} Length of the specified HTTP header.

CREDATTR{name} Length of the contents for the specified attribute in the user credential.

204 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Server-side request caching

This section contains the following topics:
v “Server-side request caching concepts”
v “Process flow for server-side request caching”
v “Configuration of server-side caching” on page 206

Server-side request caching concepts

In past versions of WebSEAL, WebSEAL created a cache entry for the URL of a
user request whenever authentication was required. Upon successful
authentication, WebSEAL sent an HTTP redirect to the browser that included this
URL. The browser then followed the redirect to the original resource location.

A limitation of this implementation became apparent when, for example, a POST
request was interrupted by a session timeout that required the user to login again.
Because WebSEAL only cached the URL of the original request, the POST data
(including the Method and Message-body) were lost during the HTTP redirect. The
user had to rebuild the POST request.

WebSEAL now caches a more complete set of request data and uses this cached
data to rebuild the request during the HTTP redirect whenever the request
processing is interrupted and the user is required to login again. This solution
particularly benefits POST and PUT requests, because these requests types can
include a message body in the request.

Server-side request caching is supported for forms, external authentication
interface, e-community single signon, and certificate authentication methods
whenever the request processing is interrupted by a login requirement, a
reauthentication requirement, or an authentication strength (step-up) requirement.

Process flow for server-side request caching

When an additional authentication requirement interrupts a request, the user is
prompted to login again.

After successful authentication, WebSEAL sends a redirect to the browser for the
original resource. Upon receiving this request, WebSEAL rebuilds the request using
the cached data and processes the request with that data.

Cached request data includes URL, Method, Message-body, query strings, and all
other HTTP headers (including cookies). This data is temporarily stored in the
WebSEAL session cache.

The following diagram illustrates a typical server-side request caching process
flow:
1. The user successfully logs in and submits an HTTP request for a resource

involving a CGI-generated data form. WebSEAL creates a session cache entry
for the user.

2. The back-end application server returns the form to the user.
3. During the time it takes the user to fill in the form, the configured session

timeout for the user expires. WebSEAL removes the user's cache entry
(including credentials) and session ID.

Chapter 10. Post-authentication processing 205

4. Not aware of the session timeout, the user eventually submits the completed
form (POST). WebSEAL finds no session cache entry for the user and creates a
new cache entry.

5. Because WebSEAL finds no credentials for this user, the user must authenticate.
WebSEAL temporarily caches the complete information contained in the POST
request and sends a login form to the user.

6. The user submits the completed login form to WebSEAL. Authentication is
successful. The cache now contains the user's credentials, as well as the data
from the originally cached request.

7. WebSEAL returns a redirect response to the browser containing the URL of the
originally requested resource.

8. The browser follows the redirect. WebSEAL intercepts the redirect and rebuilds
the original request (the CGI-generated data form) using the cached POST data.
The restored form is delivered to the URL destination.

Configuration of server-side caching

You can modify settings in the [server] stanza of the WebSEAL configuration file to
specify limits to the size of the requests that WebSEAL reads and caches.

Usage notes for server-side request caching:

v Server-side caching helps protect WebSEAL from denial of service attack types
that could cause WebSEAL to cache more data than it can handle.

v Server-side request caching does not function correctly if the user session time
out value expires during the login process. In this situation, the cache entry is
lost.

WebSEAL

Web
Application

Server

junction

login and request request

application form

session time out

submit form cache
request data

Forms login page

authenticate

HTTP redirect

browser follows
redirect (GET)

original request
data received

WebSEAL intercepts
and supplies
cached data

1

2

4

5

6

7

8

3

Client

Figure 17. Example WebSEAL request caching process flow

206 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v Server-side request caching can cause limitations with the browser's ability to
manipulate the resource. The browser is unaware that WebSEAL has rebuilt the
HTTP redirect. Therefore the browser's reload/refresh function and caching
ability can be hindered.

The following sections describe the settings that you can modify:
v “Modification of request-body-max-read”
v “Modification of request-max-cache” on page 208

Modification of request-body-max-read
The request-body-max-read stanza entry specifies the maximum number of bytes
of content to read from the body of POST requests.

This configuration is used for dynurl, authentication, and request caching. The
request-body-max-read stanza entry affects the request body only. It does not
impose limits on other components of a request, such as request line and headers.
(See the max-client-read configuration entry in the IBM Security Web Gateway
Appliance: Web Reverse Proxy Stanza Reference).

The value of the request-body-max-read stanza entry affects the amount of data
that WebSEAL caches for users who must authenticate before their request can be
fulfilled. For example, a user name and password submitted with a login form
must fit into the request-body-max-read limit. This stanza entry affects all requests
that have body content, such as POST and PUT requests.

This stanza entry impacts forms authentication, because it limits the size of the
POST data that is processed when performing such authentication. To maintain a
request body size sufficient for forms authentication, WebSEAL sets an absolute
minimum of 512 bytes on request-body-max-read. If you specify a value below
that minimum, the setting is ignored and the value 512 is used. There is no
maximum value limit.

This stanza entry also impacts dynamic URL processing because the query portion
of a POST request URI is contained in the request body.

Note: This setting does not limit the maximum POST size. The maximum POST
size is unlimited.

The default value is 4096 bytes:
[server]
request-body-max-read = 4096

When the server-side cache setting for request-body-max-read is exceeded during a
request, WebSEAL ends the request caching process. WebSEAL returns a Request
Caching Failed error message to the browser, and writes the error to the log file.
You can customize this error message. See “Guidelines for customizing HTML
response pages” on page 76.

The value of request-body-max-read also affects the value specified for
request-max-cache. See “Modification of request-max-cache” on page 208.

Chapter 10. Post-authentication processing 207

Modification of request-max-cache

When a user is prompted to authenticate before a request can be fulfilled, the data
from that request is cached for processing after the completion of the
authentication. The maximum amount of data cached per request is specified by
the request-max-cache stanza entry.

To ensure that you cache the full value of request-body-max-read, you must
account for the maximum size of all the other request components in this value.
For example, if you want to cache 2048 bytes of request body content, and you
anticipate that the maximum size of all request headers and cookies is 4096 bytes:
1. Set request-body-max-read = 2048
2. Set request-max-cache = 2048 + 4096 = 6144

The default value for request-max-cache is 8192.
[server]
request-max-cache = 8192

When the server-side cache setting for request-max-cache is exceeded during a
request, WebSEAL ends the request caching process. WebSEAL returns a Request
Caching Failed error message to the browser, and writes the error to the log file.
You can customize this error message. See “Guidelines for customizing HTML
response pages” on page 76.

There is no maximum size for this value other than the maximum imposed by the
data type. However, increasing the size can possibly adversely affect performance
and system security. Allocating larger buffers increases memory usage and
therefore could possibly decrease performance. More importantly, allocating very
large buffers increases the risk of a successful denial-of-service attack by a
malicious user. The risk is increased simply because WebSEAL is loading and
holding more data into memory, which provides the user with a larger buffer from
which to attempt an attack.

208 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 11. Password processing

This chapter discusses password processing options available during WebSEAL
authentication.

Topic Index:
v “Login failure policy ("three strikes" login policy)”
v “Password strength policy” on page 213

Login failure policy ("three strikes" login policy)

This section contains the following topics:
v “Login failure policy concepts”
v “Setting the login failure policy” on page 210
v “Setting the account disable time interval” on page 210
v “Configuring the account disable notification response” on page 211
v “Login failure policy with replicated WebSEAL servers” on page 212

Login failure policy concepts

The login failure ("three strikes") policy, available for Security Access Manager
installations using an LDAP-based user registry, enables you to specify a maximum
number of failed login attempts (n) and a penalty lockout time (x), such that after
"n" failed login attempts a user is locked out for "x" seconds (or, alternatively, the
account is disabled).

The login failure policy can help prevent computer password attacks. The policy
creates a condition where a user must wait a period of time before making
additional login attempts. For example, a policy could dictate 3 failed attempts
followed by a 180 second lockout penalty. This type of login policy can prevent
random computer-generated login attempts that occur many times a second.

The login failure policy requires the joint contribution of two policy settings:
v Maximum number of failed login attempts:

max-login-failures

v Penalty for reaching or exceeding the failed login attempt setting:
disable-time-interval

The penalty setting can include a temporary account lockout time interval or a
complete disabling of the account.

WebSEAL returns a server response error page (acct_locked.html) that notifies the
user of the penalty. The late-lockout-notification stanza entry in the [server] stanza
of the WebSEAL configuration file specifies whether this notification occurs when
the user reaches the max-login-failures limit, or at the next login attempt after
reaching the limit.

See also “Removal of a user session at login failure policy limit” on page 174.

© Copyright IBM Corp. 2002, 2013 209

Setting the login failure policy

About this task

Login failure policy controls the maximum number of failed login attempts
allowed before an account lockout penalty is imposed.

Procedure
v Use the pdadmin policy command to set the login failure policy. Use the

following syntax to set the login failure policy:
policy set max-login-failures {number|unset} [-user username]

v Use the following syntax to display the current login failure policy setting:
policy get max-login-failures [-user username]

The number argument specifies the number of failed login attempts allowed
before the penalty is applied. By default, the policy is enabled with a setting of
10 login attempts. For example:
pdadmin> policy get max-login-failures
Maximum login failures: 10

The unset argument disables the policy. With this setting, the policy contains no
value and the policy is not checked or enforced.

v You can apply max-login-failures policy to a specific user or apply the policy
globally to all users listed in the user registry.

Example

Example global setting:
pdadmin> policy set max-login-failures 3

Example user-specific setting:
pdadmin> policy set max-login-failures 5 -user laura

The account lockout penalty value is specified by the disable-time-interval policy.
See “Setting the account disable time interval.”

Setting the account disable time interval

About this task

Login failure policy controls the maximum number of failed login attempts
allowed before an account lockout penalty is imposed.

Procedure
v Use the pdadmin policy command to set the penalty time interval for the login

failure policy. Use the following syntax to set the penalty time interval:
policy set disable-time-interval {number|unset|disable} [-user username]

v Use the following syntax to display the current penalty time interval setting:
policy get disable-time-interval [-user username]

The number argument specifies the number of seconds that an account is locked
out if the maximum number of failed login attempts is reached or exceeded. By
default, the lockout time interval is 180 seconds. For example:
pdadmin> policy get disable-time-interval
Disable time interval: 180

210 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The unset argument disables the policy. With this setting, the policy contains no
value and the policy is not checked or enforced.
The disable argument permanently locks the user out of the account after
reaching or exceeding the login attempt limit and the LDAP account valid
attribute for this user is set to "no". An administrator can re-enable the account
through the Web Portal Manager or by using the pdadmin utility.

Note: Setting the disable-time-interval to "disable" results in additional
administration overhead, because the account must be manually re-enabled by
the administrator. After the account is re-enabled, the updated account valid
LDAP attribute information might not be immediately available. This situation
can occur when using WebSEAL with an LDAP environment that includes
replicated LDAP servers. In this case, the updated information is propagated to
the LDAP replicas according to the LDAP configuration settings that specify the
time interval for performing updates.
You can apply disable-time-interval policy to a specific user or apply the policy
globally to all users listed in the user registry.

Example

Example global setting:
pdadmin> policy set disable-time-interval 60

Example user-specific setting:
pdadmin> policy set disable-time-interval disable -user laura

The late-lockout-notification stanza entry in the [server] stanza of the WebSEAL
configuration file specifies whether this account lockout notification occurs when
the user reaches the max-login-failures limit, or at the next login attempt after
reaching the limit. See “Configuring the account disable notification response.”

Configuring the account disable notification response

About this task

WebSEAL returns a server response error page (acct_locked.html) that notifies the
user of the penalty for reaching or exceeding the max-login-failures limit.

The late-lockout-notification stanza entry in the [server] stanza of the WebSEAL
configuration file specifies whether this error page is returned when the user
reaches the max-login-failures limit, or at the next login attempt after reaching the
limit.

The action of account lockout or account disable does not remove the session cache
entry of the user, but it does prevent future logins by that user until the account is
unlocked.

Procedure
v The default late-lockout-notification setting for new installations of WebSEAL is

"no". Upon reaching the maximum value set by the max-login-failures policy,
WebSEAL immediately sends the account disabled error page to the user. For
example:
[server]
late-lockout-notification = no

Chapter 11. Password processing 211

v The default setting for migrated installations of WebSEAL is "yes". Upon
reaching the maximum value set by the max-login-failures policy, WebSEAL
returns another login prompt to the user. WebSEAL does not send the account
disabled error page to the user until the next login attempt. This setting
represents the pre-version 6.0 behavior for the max-login-failures policy. For
example:
[server]
late-lockout-notification = yes

v If the disable-time-interval policy is set to a number of seconds, the error
message indicates that the account is temporarily locked out.

v If the disable-time-interval policy is set to "disable", the error message indicates
that the account has been disabled and that an administrator is required to reset
(unlock) the account.

Login failure policy with replicated WebSEAL servers

You use the login failure policy to ensure that an account is locked after a specified
number of failed login attempts. This policy performs as expected in a
configuration involving one WebSEAL server. In a configuration involving multiple
front-end WebSEAL servers with a load-balancing mechanism, the results of the
policy are affected by the fact that each WebSEAL server maintains its own local
count of failed login attempts by default.

For example, if the max-login-failures value is set to three (3) attempts, and the
client fails the first three attempts, the account on this server is locked. However,
as the client continues login attempts, the load-balancing mechanism—detecting a
failure to connect to the first server—redirects the request to another available
replicated WebSEAL server. Now the client has three more opportunities to attempt
a successful login.

For "n" attempts configured on each WebSEAL server, and "m" front-end replicated
WebSEAL servers, you are guaranteed an initial account lock on one server after
"n" attempts. You are also guaranteed "n" x "m" total attempts to log in across all
configured servers. However, after "n" attempts, it is not clear whether subsequent
authentication failures are due to the lock on a particular server, or due to
continuing incorrect login attempts across the remaining replicated servers.

The "n" x "m" calculation provides a fixed maximum upper limit on the total
number of consecutive login attempts before a complete lockout occurs. A case can
be made that this number is still probably far less than the number of attempts
statistically required to "break" a password.

If your business security solution requires a login failure policy, you should
understand the implications of a load-balanced, multiple front-end WebSEAL
configuration on this policy.

Decreasing the number of possible login attempts
Use the login-failures-persistent stanza entry to decrease the upper limit on the
total number of consecutive login attempts.

About this task

The login-failures-persistent entry is located in the [ldap] stanza of the WebSEAL
configuration file. This entry controls whether login failures are tracked in the local
cache of the WebSEAL system or in the LDAP registry. If the failures are tracked in

212 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

the registry, all replicas that share the registry share the count. This configuration
reduces the maximum number of attempts to “n” instead of “n” x “m”. There is a
minor performance impact as a result of enabling login-failures-persistent because
a write operation to the LDAP server has to occur for each login attempt.

Password strength policy
Password strength policy refers to the stipulations placed on the construction of a
password by password policy rules.

This section contains the following topics:
v “Password strength policies”
v “Syntax for password strength policy commands”
v “Default password strength policy values” on page 215
v “Valid and not valid password examples” on page 215
v “Specifying user and global settings” on page 215

Password strength policy concepts
You can control the password strength policy.

Security Access Manager provides five pdadmin policy commands to control the
password strength policy. See the IBM Security Access Manager for Web: Command
Reference for information on these pdadmin policy commands.

Password strength policies

The five password strength policies implemented through the pdadmin policy
command include:
v Minimum password length (min-password-length)
v Minimum alphabetic characters (min-password-alphas)
v Minimum non-alphabetic characters (min-password-non-alphas)
v Maximum repeated characters (max-password-repeated-chars)
v Spaces allowed (password-spaces)

These policies are enforced when you create a user with the pdadmin utility or the
Web Portal Manager, and when a password is changed with the pdadmin utility,
the Web Portal Manager, or the pkmspasswd utility.

Syntax for password strength policy commands
The following pdadmin policy commands, used to set password strength policy,
are appropriate for use only with an LDAP type of user registry.

The unset option disables this policy attribute—that is, the policy is not enforced.

Command Description

policy set min-password-length {number|unset} [-user username]

policy get min-password-length [-user username]

Chapter 11. Password processing 213

Command Description

Manages the policy that controls the minimum length of a
password.

As the administrator, you can apply this policy to a specific user or
apply the policy globally to all users listed in the default registry.

The default setting is 8.

policy set min-password-alphas {number|unset} [-user username]

policy get min-password-alphas [-user username]

Manages the policy controlling the minimum number of alphabetic
characters allowed in a password.

As the administrator, you can apply this policy to a specific user or
apply the policy globally to all users listed in the default registry.

The default setting is 4.

policy set min-password-non-alphas {number|unset} [-user username]

policy get min-password-non-alphas [-user username]

Manages the policy controlling the minimum number of
non-alphabetic (numeric) characters allowed in a password.

As the administrator, you can apply this policy to a specific user or
apply the policy globally to all users listed in the default registry.

The default setting is 1.

policy set max-password-repeated-chars {number|unset} [-user username]

policy get max-password-repeated-chars [-user username]

Manages the policy controlling the maximum number of repeated
characters allowed in a password.

As the administrator, you can apply this policy to a specific user or
apply the policy globally to all users listed in the default registry.

The default setting is 2.

policy set password-spaces {yes|no|unset} [-user username]

policy get password-spaces [-user username]

Manages the policy controlling whether a password can contain
spaces.

As the administrator, you can apply this policy to a specific user or
apply the policy globally to all users listed in the default registry.

The default setting is unset.

214 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Default password strength policy values

The following table lists the password strength policies and the default values:

Policy Default Value

min-password-length 8

min-password-alphas 4

min-password-non-alphas 1

max-password-repeated-chars 2

password-spaces not set

To create the password policy behavior found in earlier releases of Security Access
Manager, apply the unset option to each of the five password policies listed above.

Valid and not valid password examples

The following table illustrates several password examples and the results based on
the default values for the five password strength policies:

Example Result

password Not valid: must contain at least one non-alphabetic character.

pass Not valid: must contain at least 8 characters.

passs1234 Not valid: contains more than two repeated characters.

12345678 Not valid: must contain at least four alphabetic characters.

password3 Valid.

Specifying user and global settings

About this task

The pdadmin policy commands can be set for a specific user (with the - user
option) or globally (by not using the - user option). Any user-specific setting
overrides a global setting for the policy.

You can also disable a policy (with the unset argument). The policy contains no
value and the policy is not checked or enforced.

Example

A global minimum password length policy of 8 characters is created. As an
exception to this policy, user matt is given a minimum password length policy of 4
characters.
pdadmin> policy set min-password-length 8
pdadmin> policy set min-password-length 4 -user matt
pdadmin> policy get min-password-length
Minimum password length: 8
pdadmin> policy get min-password-length -user matt
Minimum password length: 4

Chapter 11. Password processing 215

The specific minimum password length policy for user matt is unset. User matt is
now governed by the global minimum password length policy of 8 characters.
pdadmin> policy set min-password-length unset -user matt
pdadmin> policy get min-password-length -user matt
Minimum password length: 8

The global minimum password length policy is unset. All users, including user
matt, now have no minimum password length policy.
pdadmin> policy set min-password-length unset
pdadmin> policy get min-password-length
Minimum password length: unset

216 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 12. Credential processing

This chapter discusses features that affect processing of the WebSEAL user
credential.

Topic Index:
v “Extended attributes for credentials”
v “Credential refresh” on page 221

Extended attributes for credentials

This section contains the following topics:
v “Mechanisms for adding registry attributes to a credential”
v “Configure a registry attribute entitlement service” on page 218
v “Junction handling of extended credential attributes” on page 219

Mechanisms for adding registry attributes to a credential
You can configure an external service to add attributes to a user credential.

The WebSEAL authentication process accesses the Security Access Manager user
registry and builds a credential for the user. The credential contains user
information that is needed to make access decisions such as the user name and the
list of groups to which the user belongs.

WebSEAL supports several different mechanisms (services) that allow
administrators and application developers to extend the authentication process.
When WebSEAL conducts the authentication process, it checks to see if any
external services have been implemented and configured. When they have,
WebSEAL calls those services. The services can do their own processing to build a
list of extended attributes about the user identity. These extended attributes are
added to the user credential.

The following service is supported:

Registry attribute entitlement service

This entitlement service is built-in to Security Access Manager by default.
This service is an implementation of a class of Security Access Manager
entitlement services known as credential attribute entitlement services. The
registry attribute entitlement service obtains specified user information from a
user registry (such as an LDAP user registry) and inserts the data into an
attribute list in the user credential. This built-in registry attribute
entitlement service is a generic entitlement service that can be used by
many resource managers. This service takes the place of a previous method
that required administrators to add "tag/value" entries to the
[ldap-ext-creds-tag] stanza in the pd.conf configuration file. For
configuration information, see “Configure a registry attribute entitlement
service” on page 218.

Note: Note that Security Access Manager provides additional built-in
entitlement services that can be used to add additional information. These
additional services, however, obtain the additional information from

© Copyright IBM Corp. 2002, 2013 217

sources other than user registry entries. For example, the extended attribute
entitlement service obtains information from ACLs and POPs in the
protected resource object space. For more information, see the description
of entitlement services in the IBM Security Access Manager for Web:
Authorization C API Developer Reference.

Configure a registry attribute entitlement service

Complete the instructions in the following sections:
1. “Determine the attributes to add to the credential”
2. “Specify the attributes to add to the credential”

Determine the attributes to add to the credential
You must determine which attributes you want added to the user credential.

About this task

You must define each user attribute that you want to add to the user credential in
a Security Access Manager configuration file. Typically, this configuration is done
in the WebSEAL configuration file.

Procedure
v Go to the Security Access Manager user registry (for example, an LDAP user

registry).
v Make a list of the names of each user registry entry that you want the credential

attributes entitlement service to extract from the registry and place into the user
credential. You also need the user DN and group DN.

Specify the attributes to add to the credential
The attributes to add to the credential are configured in several stanzas.

About this task

Add this information to the WebSEAL configuration file.

Review the following example entry.
[TAM_CRED_ATTRS_SVC]
eperson = azn_cred_registry_id
group = cn=enterprise, o=tivoli

[TAM_CRED_ATTRS_SVC:eperson]
tagvalue_credattrs_lastname = sn
tagvalue_credattrs_employeetype = employeetype
tagvalue_credattrs_address = homepostaladdress
tagvalue_credattrs_email = mail

[TAM_CRED_ATTRS_SVC:group]
tagvalue_credattrs_businesscategory = businesscategory

The stanza name [TAM_CRED_ATTRS_SVC] is the Service ID. Inside this stanza are
sources of attributes to be retrieved. The source names, such as eperson and group
are used to identify the source location in the registry. You need to define these.
The values for these sources are registry identifiers that exist in the registry. The
values can be existing credential attribute names. If this is the case, the service
automatically finds and uses the respective values.

218 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Procedure

Configure the registry attributes for each of the sources under the service stanza in
a separate stanza. The syntax of the separate stanza is the service ID library name
followed by a colon (:) and then the source name. This connection is necessary
because more than one service can be configured in the same file. The
configuration file entries contain mappings of user registry attributes to
user-defined credential attributes.
For example, in an LDAP user registry, the DN for a user might be
cn=joeuser, o=tivoli

For this user, the LDAP user registry entries might be:
sn=Smith
employeetype=bankteller
homepostaladdress="3004 Mission St Santa Cruz CA 95060"
mail=joeuser@bigco.com

For the group cn=enterprise,o=tivoli, the LDAP group registry entry might be:
businesscategory=finance

Using these example configuration entries, the attribute list returned has the
following entries:

Attribute name Attribute value

credattrs_lastname Smith

credattrs_employeetype bankteller

credattrs_address 3004 Mission St Santa Cruz CA 95060

credattrs_email joeuser@example.com

credattrs_businesscategory finance

Note that the service, source, and attributes can be multi-valued. If you specify the
same attribute name as a stanza entry keyword, then the attributes retrieved will
be added as a multi-valued attribute even when they come from different sources.
For example, more than one entitlement service can be chained together. This
enables values retrieved from one service to be used as input values for another
service. Likewise, attributes can be retrieved from more than one DN in the user
registry. Thus, using the example above, you could add values from multiple users
(DNs) to one credattrs_businesscategory attribute, if you wanted a list of all the
businesscategory entries for a group of users.
For example, if you want to build an attribute called myemployeeinfo to add to the
credential, and you want this attribute to contain the last name and employee type
of everyone that authenticates, you could then define the following:
[myID]
source = azn_cred_authzn_id

[myID:source]
myemployeeinfo = lastname
myemployeeinfo = employeetype

Junction handling of extended credential attributes

The user-defined credential information created in the previous section can be
placed in an HTTP header of the request that is sent across a junction to a
back-end server.

Chapter 12. Credential processing 219

You must configure the junction to extract extended attribute data from the
credential and insert the data into the HTTP header of the request. This
functionality is achieved by setting a junction extended attribute, called
HTTP-Tag-Value, on the junction object in the WebSEAL protected object space.

You use the pdadmin object modify set attribute command to set extended
attributes on a junction object in the WebSEAL protected object space.
pdadmin> object modify object_name set attribute attr_name attr_value

Note: The above command must be entered as one continuous command line.

An extended attribute (attr_name) enables the junction to perform a specific type of
functionality. The HTTP-Tag-Value extended attribute instructs the junction to
extract a particular value from a user's credential and send the value to the
back-end server in an HTTP header. The value of the HTTP-Tag-Value extended
attribute uses the following format:
credential_extended_attribute_name = http_header_name

The credential_extended_attribute_name entry is the same as the attribute specified in
the WebSEAL configuration file but without the "tagvalue_" prefix. The entry is not
case-sensitive. The http_header_name entry specifies the name of the HTTP header
used to deliver the data across the junction.

For example (entered as one line):
pdadmin> object modify /WebSEAL/WS1/junctionA set attribute
HTTP-Tag-Value credattrs_lastname=surname

When WebSEAL processes a user request to a back-end application server, it looks
for any HTTP-Tag-Value attributes configured on the junction object.

In this example, the configured junction looks at the credential of the user making
the request, extracts the value of the tagvalue_credattrs_lastname credential extended
attribute, and places it in an HTTP header as:
surname:Smith

In summary:

Value of HTTP-Tag-Value attribute
set on the junction object:

credattrs_lastname=surname

Attribute name and value as they
appear in the user credential
(since tagvalue_credattrs_lastname=sn):

tagvalue_credattrs_lastname:Smith

HTTP header name and value: surname:Smith

If the back-end application is a CGI application, the CGI specification dictates that
HTTP headers are made available to CGI programs as environment variables in the
form:
HTTP_http_header_name

For example:
HTTP_surname=Smith

220 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Multiple user attribute data can be passed to the junctioned server in HTTP
headers by using multiple pdadmin object modify set attribute commands to
specify multiple HTTP-Tag-Value junction attributes (one attribute is specified per
command).

HTTP-Tag-Value extended attributes must be attached directly to
the junction

When an evaluation is performed to determine what credential attributes should
be passed for a particular object below a junction point, the evaluation is
performed not for the child object, but for the junction object. For example, if you
create HTTP-Tag-Value extended attributes for a junction object named
/WebSEAL/myinstance/jct1

and you also create HTTP-Tag-Value extended attributes for a child object of the
junction named
/WebSEAL/myinstance/jct1/child

then when a client accesses /WebSEAL/myinstance/jct1/child only the attributes
attached to /WebSEAL/myinstance/jct1 will be used; the child attributes will be
ignored. Therefore, the HTTP-Tag-Value extended attributes must be attached
directly to the junction.

It is important to understand that this is due not to inheritance but to the fact that
WebSEAL determines the junction object associated with a child and finds the
HTTP-Tag-Value attributes for the junction object itself. In fact, while inheritance
of extended attributes was introduced in version 6.0, the processing of the
HTTP-Tag-Value attributes does not use this inheritance. So, for example, if you
create a junction at
/WebSEAL/myinstance/jct1

with no HTTP-Tag-Value attributes attached to it, and instead attach the attributes
to the parent at
/WebSEAL/myinstance/

then those attributes will not be used for jct1 or any of its children. You must
attach the HTTP-Tag-Value extended attributes directly to /WebSEAL/myinstance/
jct1.

Credential refresh

This section contains the following topics:
v “Credential refresh concepts”
v “Configure credential refresh” on page 225
v “Credential refresh usage” on page 227

Credential refresh concepts

This section contains the following topics:
v “Credential refresh overview” on page 222
v “Credential refresh rules” on page 222
v “Refresh of cached credential information” on page 223
v “Configuration file syntax and usage” on page 224

Chapter 12. Credential processing 221

v “Default settings for preserve and refresh” on page 224
v “Limitations” on page 225

Credential refresh overview
You can configure the credential refresh feature in WebSEAL.

When a user authenticates to WebSEAL, the authentication process accesses the
Security Access Manager user registry and builds a credential for the user. The
credential contains information about the user that is needed by Security Access
Manager to decide whether to grant the user access to the requested resource. An
example of credential information is a list of groups to which the user belongs.

During a user session, changes in user information can take place. For example, the
user might be added to a new group. When this occurs, there might be a need to
update or refresh the contents of the user credential, to reflect the new user
information. WebSEAL provides a mechanism to enable a credential refresh
without requiring the user to log out and then authenticate again.

You can control how the credential refresh feature occurs. WebSEAL provides
configuration settings that enable you to specify credential attributes to refresh
(update) and credential attributes to preserve (retain). This ability enables you to
have precise control over how user credentials are manipulated during a user
session.

Use of the credential refresh configuration settings can be important when the
authentication process on your WebSEAL server includes call outs to mechanisms
that provide additional or extended information about a user. These mechanisms
include:
v Credential attribute entitlement service.

This service is built into Security Access Manager by default.

For more information on the credential attribute services listed above, see
“Mechanisms for adding registry attributes to a credential” on page 217.

When credential refresh occurs, the default credential attribute entitlement services
is run.

The credential refresh configuration settings enable you to preserve attributes
obtained during the initial use of an entitlement service. For example, if an
attribute contained a timestamp for the start of the user session, you might want to
preserve the timestamp even though the credential was refreshed.

The credential refresh configuration settings also enable you to preserve attributes
obtained from a credential extended attribute authentication module. Because
custom authentication modules are not run again during the rebuilding of the
credential, you use the configuration file settings to specify attributes to be added
to the new credential.

Credential refresh rules

Credential refresh involves the generation of a new credential for user identity,
followed by an evaluation of the contents of the new credential against the
contents of the old credential that was obtained during initial user authentication.
The contents of the two credentials are combined into a merged credential according
to the following rules:

222 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

1. When an attribute occurs in the new credential but not the old credential, it is
added to the merged credential.

2. The following attributes are added to the merged credential based only on their
value in the old credential. These attributes are used by the authorization API.
They are not changed by values in the new credential.
AZN_CRED_AUTHNMECH_INFO
AZN_CRED_BROWSER_INFO
AZN_CRED_IP_ADDRESS
AZN_CRED_PRINCIPAL_NAME
AZN_CRED_AUTH_METHOD
AZN_CRED_USER_INFO
AZN_CRED_QOP_INFO

3. For each attribute in the old credential for which there is a corresponding
attribute in the new credential, the following rules apply:
v When there is an entry in the configuration file that matches it, the attribute

in the merged credential is preserved or refreshed according to the value of
the entry in the configuration file.

v When there is not an entry in the configuration file that matches it, the
attribute in the merged credential is assigned the value from the new
credential.

4. For each attribute in the old credential for which there is not a corresponding
attribute in the new credential, the following rules apply:
v When there is a configuration file entry for the attribute specifying refresh,

the attribute is not added to the merged credential.
v When there is a configuration file entry for the attribute specifying preserve,

the attribute is added to the merged credential.
v When the configuration file does not contain an entry for the attribute, the

attribute is not added to the merged credential.

Refresh of cached credential information
Some user registries maintain cached information. Cached data is kept for a
specific amount of time, and is then discarded. After the cached data has expired,
it is not reloaded into the cache until the next time the user registry is accessed.
Therefore, when changes are made to user registry data, the data is not
immediately cached in memory. Likewise, when using a replicated LDAP user
registry, the updates to the replicated registries do not occur immediately.

The default lifetime of data in the WebSEAL user cache is 30 seconds. This lifetime
begins when the data first enters the cache, such as when a user first authenticates,
or when the cached data has expired and WebSEAL contacts the registry to update
the data. WebSEAL contacts the registry to update the data during a credential
refresh event. The cached information is valid for 30 seconds after it is first
obtained from the registry. After 30 seconds, any credential refresh operations go
directly to the user registry. The access to the user registry also causes the user data
to be reloaded into the cache.

The following example shows the algorithm for updating the user cache:
1. The user authenticates at time auth_time.
2. The user is added to a group at time auth_time + 120 seconds

3. The user's credential is refreshed at time auth_time + 130 seconds

Because the user cache data expired at time auth_time + 30 seconds, the new
group membership will be added to the user's credential.

4. User is then added to another group at time auth_time + 135 seconds

Chapter 12. Credential processing 223

5. User's credential is refreshed at time auth_time + 140 seconds

When the user credential is refreshed at auth_time + 140 seconds, it does not pick up
the new group membership. This is because the user credential is built off cached
user data when the cached user data is considered valid (has not expired). Because
the user cache data was updated at time auth_time + 130 seconds, it is not
scheduled to be updated until auth_time + 160 seconds. Therefore, the administrator
must wait until time auth_time + 160 seconds to run the refresh command. At that
time, the user credential will pick up the new group memberships.

Configuration file syntax and usage

The credential refresh behavior is controlled by entries in the [credential-refresh-
attributes] stanza in the WebSEAL configuration file. The format is:
attribute_name_pattern = {preserve|refresh}

The attribute name pattern is used to select a given set of attributes. Wildcard
matching is supported.

A particular attribute can possibly be matched by many different wildcard
patterns. Therefore, the order of elements in the configuration file is important. The
firs pattern that matches a given attribute is the only pattern that applies to that
attribute.

Attribute names in attribute_name_pattern should not be case-sensitive because
attribute names in credentials are not case-sensitive.

Example – Preserve all of the tag value attributes added by an extended attribute
external authentication C API module:
[credential-refresh-attributes]
tagvalue_* = preserve

Example – Update the tagvalue_last_refresh_time attribute with the value from
the new credential, but preserve all other attributes that begin with tagvalue_:
[credential-refresh-attributes]
tagvalue_last_refresh_time = refresh
tagvalue_* = preserve

Note that the ordering of attributes in the file is important. In the following
example, tagvalue_last_refresh_time will not be refreshed because it is first
matched by the tagvalue_* entry, which is set to preserve:
[credential-refresh-attributes]
tagvalue_* = preserve
tagvalue_last_refresh_time = refresh

Avoid preserving attributes that begin with the letters AZN_. Such attributes are
typically used internally by the authorization API during authorization decisions.
These attributes are discussed in more detail in the IBM Security Access Manager for
Web: Authorization C API Developer Reference. In that book, see the discussion on
obtaining attribute lists from credentials.

Default settings for preserve and refresh

The default settings in the WebSEAL configuration file are:
[credential-refresh-attributes]
authentication_level = preserve
tagvalue_* = preserve

224 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

These settings result in the following behavior:
v The user authentication level is preserved when credentials are refreshed.

During a user session, the user authentication level can change when
authentication strength policy (step-authentication) is applied. In most cases, you
want to preserve the modified authentication level during a credential refresh.
If you do not want to preserve the authentication level, change the configuration
file entry:
authentication_level = refresh

v The tagvalue_* entry preserves all credential attributes whose name begins with
the characters tagvalue_.
Attributes with the prefix tagvalue_ are typically supplied by external
authentication C API services that want to add user information to the
credential. The prefix is needed to ensure that the credentials are included when
WebSEAL inserts credential data into an HTTP header to send across a junction.

Limitations
v It is not possible to avoid calling the credentials attribute entitlement service

during credential refresh. When you have an attribute that should be set only
once (during initial authentication) use an extended attribute external
authentication C API module to set the attribute.

Configure credential refresh

To configure credential refresh, complete the following steps:
v “1. Specifying attributes to preserve or refresh”
v “2. Enabling user session IDs” on page 226
v “3. Enabling placement of server name into junction header” on page 226

1. Specifying attributes to preserve or refresh

Procedure
1. Stop the WebSEAL server.
2. Edit the WebSEAL configuration file.

v Add entries for attributes to preserve. For example:
[credential-refresh-attributes]
my_cred_attribute1 = preserve
my_cred_attribute2 = preserve

v Add entries to refresh:
[credential-refresh-attributes]
my_cred_attribute3 = refresh
my_cred_attribute4 = refresh

v When appropriate, use the order of the entries to handle both specific entries
and groups of entries. For example, to preserve the attribute
special_cred_attr1, but refresh all other attributes with the naming
construct of special_cred_attr*, add the following entries:
[credential-refresh-attributes]
special_cred_attr1 = preserve
special_cred_attr* = refresh

Chapter 12. Credential processing 225

2. Enabling user session IDs

About this task

Ensure that user session IDs are enabled for the WebSEAL instance. The credential
refresh administration command does not work when user session IDs are not
enabled.
[session]
user-session-ids = yes

3. Enabling placement of server name into junction header
You can configure WebSEAL to add the server name in the junction header.

Use the [header-names] <header-data> stanza entry to configure WebSEAL to add a
header with the URI-encoded authorization API administration server name to
requests for junctioned applications. If you do not configure this entry, WebSEAL
does not add any headers to the request.

The <header-data> entry has the following format:
[header-names]
<header-data> = <header-name>

where:

<header-data>
The type of data that WebSEAL adds to the <header-name> header of the
request.

Note: Use the value server-name to add the Security Access Manager
authorization server name for the WebSEAL server.

<header-name>
The name of the header that holds the data.

The following value is set in the default WebSEAL configuration file.
[header-names]
server-name = iv_server_name

This setting adds a header that is called iv_server_name to pass the name of the
server to junctioned applications. For this example, if the WebSEAL instance is
default-webseald-diamond.subnet1.ibm.com, WebSEAL passes the following
header to the junction:
iv_server_name:default-webseald-diamond.subnet1.ibm.com

Typically, the default value iv_server_name is used. However, you can replace it
with any valid string. Valid strings are limited to the following characters: A-Z, a-z,
0–9, hyphen (-), or underscore (_).
1. Ensure that the <header-data> stanza entry is set with a <header-data> value of

server-name in the configuration file for the WebSEAL instance. For example:
[header-names]
server-name = iv_server_name

2. Restart the WebSEAL server.

226 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Credential refresh usage

This section contains the following topics:
v “Refreshing credentials for a specified user”
v “Troubleshooting for credential refresh”

Refreshing credentials for a specified user

Note: The refresh all_sessions command is not supported in an SMS environment.
Use the sms-session refresh command instead.

Send a command to the WebSEAL server, instructing it to perform a credential
refresh operation for all of the sessions of the specified user on the WebSEAL
server. The syntax is (entered as one line):
pdadmin> server task instance_name-webseald-host_name
refresh all_sessions user_name

Enter the above command as one continuous command line.

To obtain the server name in the correct format, use the pdadmin server list
command. Then enter the pdadmin command to refresh all sessions. For example,
when logged in to pdadmin as the administrative user sec_master:
pdadmin sec_master> server list
default-webseald-diamond.subnet1.ibm.com
default-webseald-cmd
pdadmin sec_master> server task default-webseald-diamond.subnet1.ibm.com
refresh all_sessions brian
DPWWA2043IThe user’s credential was updated.

Note that the pdadmin server task command must each be entered as one
continuous command line.

A warning message is returned if the user is not logged in to the WebSEAL server.

Usage notes:

v Configure credential refresh for WebSEAL before using this pdadmin command.
See “Configure credential refresh” on page 225.

v You must issue a separate pdadmin command for each user whose credentials
are to be refreshed. You cannot refresh credentials for more than one user at a
time.

v The user invoking this command must have server admin (the s ACL bit)
permission on the /WebSEAL/hostname_instance_name server object. This
permission prevents unauthorized users from performing credential refresh
operations.
Note that the name of the hostname_instance_name server object is different from
the server name. To determine the exact name of the server object, use pdadmin
object list. For example, when logged in to pdadmin as the administrative user
sec_master:
pdadmin sec_master> object list /WebSEAL
/WebSEAL/cmd-default
/WebSEAL/diamond.subnet1.ibm.com-default

Troubleshooting for credential refresh

Problem:

Chapter 12. Credential processing 227

When a new group entry is added to a user's information in a user registry, a
credential refresh command does not obtain the new entry.

Solution:

Some user registries maintain cached information. The cache is updated
periodically. The cache update must take place before the credential refresh can
succeed. Likewise, when using a replicated LDAP user registry, the updates to the
replicated registries do not occur immediately. Wait 30 seconds and try credential
refresh again. For more information, see “Refresh of cached credential information”
on page 223.

228 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 13. External authentication interface

This chapter discusses the external authentication interface (sometimes referred to
as EAI).

Topic Index:
v “External authentication interface overview”
v “External authentication interface process flow”
v “External authentication interface configuration” on page 232
v “External authentication interface HTTP header reference” on page 240
v “Use of external authentication interface with existing WebSEAL features” on

page 241

External authentication interface overview

Security Access Manager provides an external authentication interface that enables
you to extend the authentication process for WebSEAL. The external authentication
interface allows an independent remote service to handle the authentication
process for WebSEAL. The identity information returned by the external
authentication interface service is used to generate user credentials.

This extended authentication functionality is similar to the existing custom
authentication module capability provided by the Web security external
authentication C API. The difference, however, is that the external authentication
interface returns user identity information in HTTP response headers rather than
through the authentication module interface.

When using the external authentication interface, the authentication operation is
performed external to WebSEAL by a custom application located on a remote,
junctioned server. The design, methodology, and code for the custom
authentication application is entirely the responsibility of the application developer.
This developer reference document does not provide any instructions for the
construction of this custom authentication operation. However, the requirement of
this application is to return identity information resulting from the custom
authentication process in specially named HTTP response headers.

External authentication interface process flow

The following diagram and detailed steps illustrate the process flow for external
authentication interface authentication. The components of this example process
flow scenario include:
v WebSEAL.
v Junctioned server with an external authentication application that uses the

external authentication interface.

© Copyright IBM Corp. 2002, 2013 229

1. Authentication process is initiated.
There are many possibilities for initiating the authentication process. A typical
example:
a. An unauthenticated user requests a protected resource.
b. WebSEAL intercepts the request and returns a redirect to a customized

login.html response page.
The login.html page is customized to contain a submit link to the external
authentication application.

c. The user provides login information (user name and password) on the form
and clicks the submit link to send the data to the external authentication
application.

Other examples of initiating the authentication process can include:
v Manually typing an appropriate link to the external authentication

application.
v Signon requirement in a CDSSO environment.
v Cached page.
v In an IBM Tivoli Federated Identity Management scenario, the user is

redirected to the external authentication application from a service provider,
with the goal of having an identity provided for that user.

WebSEAL EAI Application

1

Client

Authentication process initiated

Request with trigger URL

()WebSEAL sets internal flag

Authentication response

()WebSEAL extracts authentication data from HTTP headers

WebSEAL builds credential

Response to user

junction

2

3

4

5

Authentication request/response exchange

Figure 18. External authentication interface process flow

230 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note: A hidden configuration option enables you to give priority to an EAI
header to redirect a successful login to a URL. To enable this feature, add the
following option and value to the [eai] stanza:
eai-redir-url-priority = yes

2. Authentication request and response exchange.
The process of authentication might require a number of exchanges between
the external authentication application and the client. Exchanges are streamed
through (not intercepted) by WebSEAL.
The final authenticating request to the external authentication application must
be directed to a distinct URL. This URL could, for example, include a query
string that indicates the login task, such as state=perform-login. This final
URL is specified, in part or whole, in the WebSEAL configuration file as the
trigger URL. WebSEAL examines each request for this trigger URL.
If the trigger URL is detected, WebSEAL examines the corresponding response
for authentication data located in HTTP headers (specified in the WebSEAL
configuration file).
WebSEAL supports EAI logout. An HTTP header returned from the EAI
enables it to instruct WebSEAL to logout a session. The header emulates the
pdadmin server task command line input, and therefore is analogous to the
hidden WebSEAL pdadmin command of the same name. The syntax for the
header is am-eai-server-task: terminate session <user-sess-id>, where
terminate session is a non-translatable keyword pair, and <user-sess-id> is a user
session ID of the same format and contents as that used to perform the
terminate session command using pdadmin.
Example exchange 1:

v The user clicks a submit link on a custom login page. This link is the trigger
URL.

v The recognition of the trigger URL in the request causes WebSEAL to look
for authentication data in the corresponding response.

v The external authentication application authenticates the user and, in its
response, populates the special HTTP headers with authentication data.

Example exchange 2:

v The external authentication application requires several exchanges with the
user to receive the required login information.

v Each request to the external authentication application uses the trigger URL.
Therefore, for each response, WebSEAL looks for authentication data.

v WebSEAL examines each corresponding response for authentication data
returned from the external authentication interface in HTTP headers.

v When no authentication takes place, these headers are empty in each
response. WebSEAL continues streaming the requests and responses without
taking any action.

v After several exchanges, the external authentication application receives all
the login information it needs. The external authentication application
authenticates the user and, in its final response, populates the special HTTP
headers with authentication data.

Example exchange 3:

v The external authentication application requires several exchanges with the
user to receive the required login information.

v Each request to the external authentication application uses a URL that does
not match the trigger URL. Therefore, for each corresponding response,
WebSEAL does not look for authentication data

Chapter 13. External authentication interface 231

v WebSEAL streams the requests and responses without taking any action.
v The final request to the external authentication application uses the trigger

URL.
v The recognition of the trigger URL in this final request causes WebSEAL to

look for authentication data in the corresponding response.
v The external authentication authenticates the user and, in its final response,

populates the special HTTP headers with authentication data.
3. Authentication response.

WebSEAL examines the corresponding response and finds the authentication
data in the HTTP headers.

4. WebSEAL uses the authentication data to build a credential for the user.
5. WebSEAL sends a response to the user using the following precedence:

a. If automatic redirection is enabled, the user is redirected to the location
specified in the WebSEAL configuration file.
See “WebSEAL-specified (automatic) redirection” on page 242.

b. If the response from the external authentication application contains the
streaming flag, WebSEAL streams the original response to the client.
See “External authentication interface - authentication flags” on page 239.

c. If the initial request was cached, the request is reprocessed for the user.
See “Request caching with external authentication interface” on page 241.

d. If the response from the external authentication application contains a
redirection URL header, the user is redirected to the location specified by
that URL.
See “External authentication interface-specified redirection” on page 242.

e. Otherwise, WebSEAL responds with the standard login_success.html page.
See “Static HTML server response pages” on page 69.

External authentication interface configuration

This section describes how to configure WebSEAL to use the external
authentication interface.
v “Enabling the external authentication interface”
v “Initiating the authentication process” on page 233
v “Configuration of the external authentication interface trigger URL” on page 234
v “HTTP header names for authentication data” on page 234
v “Extracting authentication data from special HTTP headers” on page 236
v “How to generate the credential” on page 236
v “External authentication interface credential replacement” on page 237
v “How to write an external authentication application” on page 238
v “External authentication interface HTTP header reference” on page 240

Enabling the external authentication interface

About this task

The eai-auth stanza entry, located in the [eai] stanza of the WebSEAL configuration
file, enables and disables the external authentication interface functionality. The
external authentication interface can be implemented over HTTP, HTTPS, or both.

232 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

External authentication interface authentication is disabled by default.

To configure the external authentication interface:

Procedure
1. Stop the WebSEAL server.
2. Edit the WebSEAL configuration file. In the [eai] stanza, specify the protocols to

support in your network environment. The protocols are shown in the
following table.

Table 26. Configuring the external authentication interface

Protocol to Support Configuration File Entry

HTTP eai-auth = http

HTTPS eai-auth = https

Both HTTP and HTTPS eai-auth = both

Disable external authentication interface
(default)

eai-auth = none

For example, to support both protocols:
[eai]
eai-auth = both

.
3. Restart the WebSEAL server.

Results

When eai-auth = none (disabled), all other configured external authentication
interface-related stanza entries have no effect.

Initiating the authentication process

About this task

Typically, external authentication interface authentication can be initiated from
redirection commands or custom links placed in external application pages. In an
external authentication interface scenario, WebSEAL does not provide any built-in
methods for initiating the authentication process. WebSEAL does not provide any
special prompts or login pages.

Procedure
v You can modify WebSEAL's existing login.html form to include a custom link to

the external authentication application. Modification of the login.html form is
necessary to support reauthentication and authentication strength (step-up).
See “Login page and macro support with external authentication interface” on
page 243.

v You can also implement local response redirection to handle server responses to
client requests. See “Local response redirection” on page 90

Chapter 13. External authentication interface 233

Configuration of the external authentication interface trigger
URL

The external authentication interface authentication process supports multiple
request-response exchanges. For efficiency and the security of the WebSEAL server,
these exchanges are typically streamed through WebSEAL. WebSEAL intercepts
this exchange only when there is an occurrence of a special trigger URL in a
request.

A trigger URL is a server-relative or absolute URL in the WebSEAL configuration
file. The trigger URL usually requests authentication from the external
authentication application. For example, the trigger URL might be the URL to the
external authentication application in a special link on a customized login page.

When WebSEAL detects the trigger URL in a request, it intercepts the
corresponding response and examines it for authentication data in special HTTP
headers.

Trigger URL strings
v Can use standard wildcard patterns. Pattern matching is appropriate only for

ASCII-based strings.
v Must be in ASCII format if they use pattern-matching. The matching URLs in

the requests must be in ASCII format.
v Must be as specific as possible in the configured URL to limit the number of

times that WebSEAL intercepts the request-response exchange.

Specify trigger URL strings in the trigger stanza entry in the [eai-trigger-urls]
stanza of the WebSEAL configuration file.

Virtual host junctions
v Match a trigger if their protocol, virtual host name, and port match the virtual

host definition.
v Do not use regular WebSEAL junction triggers, such as the ones that do not

match a virtual host definition. Regular WebSEAL junctions do not use virtual
host junction triggers.

Table 27. Examples of authentication requests to an external authentication application:

Junction
type URL Corresponding trigger URL

standard http://webseal.example.com/
eai-jct/login.asp?url=/
return_authn_data.asp

[eai-trigger-urls]
trigger = /eai-jct/login.asp*authn*

virtual
host

http://vhj.webseal.example.com/
login.asp?url=/return_authn_
data.asp

[eai-trigger-urls]
trigger = http://vhj.webseal.
example.com/login.asp*authn*

HTTP header names for authentication data

You must specify the names of the HTTP headers that contain the authentication
data returned from the external authentication application.

There are four categories of HTTP headers that hold authentication data:
v Privilege Attribute Certificate (PAC) format

234 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The PAC is an ASN.1 data structure used to express identity information.
Authentication data returned to WebSEAL in PAC format can be directly
converted to a credential.

v WebSEAL user identity structure

The WebSEAL user identity structure is the same structure generated by
WebSEAL's default built-in authentication modules. When the user identity
format type is used, the information is processed by the eaiauthn authentication
module and a credential is built by the Security Access Manager authorization
API.

v SMS session identifier

The SMS session identifier is for a distributed session that is managed by the
Session Management Server. See “Sharing sessions across multiple DNS
domains” on page 310.

v Common

The common header category holds additional information and can be used
with either the PAC or user identity formats.

Complete details about these special headers can be found in the “External
authentication interface HTTP header reference” on page 240.

Use the [eai] stanza of the WebSEAL configuration file to specify the names of the
HTTP headers that contain the authentication data returned from the external
authentication interface server. The header names can be customized. The custom
external authentication interface authentication module must be written to use the
header names as configured.

The following examples show the default header names used in the WebSEAL
configuration file:

PAC headers:
[eai]
eai-pac-header = am-eai-pac
eai-pac-svc-header = am-eai-pac-svc

User identity headers:
[eai]
eai-user-id-header = am-eai-user-id
eai-auth-level-header = am-eai-auth-level
eai-xattrs-header = am-eai-xattrs

SMS session identifier:
[eai]
eai-session-id-header = am-eai-session-id

Common headers:
[eai]
eai-flags-header = am-eai-flags
eai-redir-url-header = am-eai-redir-url

For more information about using the eai-flags-header common header, see
“External authentication interface - authentication flags” on page 239

For more information about using the eai-redir-url-header common header, see
“External authentication interface-specified redirection” on page 242.

Chapter 13. External authentication interface 235

Extracting authentication data from special HTTP headers

About this task

WebSEAL examines a response for special headers when a trigger URL is detected
in the corresponding request.

The special HTTP headers contain authentication data provided by the custom
external authentication application. The presence of either the PAC header or the
user identity header causes WebSEAL to extract the authentication data from the
headers and build a credential for the user. The session identifier header causes
WebSEAL to retrieve the specified session from the Session Management Server.

WebSEAL follows a specific sequence for processing the special HTTP
authentication headers:

Procedure
1. If the session identifier header is present, it takes precedence over the other

authentication headers.
2. If both headers are present, the PAC data takes precedence and any user

identity data is ignored.
3. If neither header is present, the response is streamed back to the client. This

behavior also allows the external authentication application to perform
authentication error handling.

4. If either the PAC or user identity header is present, but the header value is
NULL or corrupted, an error is returned. Such an error can occur if an external
authentication interface server is incorrectly configured.

How to generate the credential

WebSEAL can build a credential directly from PAC header data. The authorization
API builds the credential for user identity header data.

Other authentication data can be supplied by the WebSEAL system itself when
building a credential from user identity authentication data. WebSEAL has
additional information about the client system that is required to construct the
credential. This information is supplied when authentication data from the external
authentication interface is used to generate a credential.

Some of these values can be overridden by the eaiauthn module using extended
attributes to the header data.

Table 28. Supplemental credential data provided by WebSEAL

Field Source Can external
authentication

interface override
value?

Client IP Address Derived from the initial client request. yes

Browser Information Derived from the initial client request. yes

Registry Type Determined from the current WebSEAL
configuration.

no

Domain Determined from the current WebSEAL
configuration.

no

236 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

External authentication interface credential replacement

WebSEAL allows a previously authenticated user to request authentication again
through the external authentication interface trigger URL and establish a new
session. WebSEAL deletes the old session cache entry, builds a new session cache
entry containing a new credential for that user (credential replacement), and
provides the user with a new session key.

Operation conditions for external authentication interface credential
replacement:

v If a trigger URL is used by a previously authenticated user to make a request,
that request is allowed to pass through to the external authentication
application.

Note: In earlier versions of the external authentication interface, a previously
authenticated user was forced to log out and log in again when making a
request using a trigger URL.

v If the external authentication interface response to the user request contains
authentication data, and the user's session cache entry is flagged for
authentication strength policy (step-up) or reauthentication, then WebSEAL
enforces the step-up or reauthentication process. The existing session cache (and
credential) for the user is not replaced.

v If the external authentication interface response to the user request contains
authentication data, and the user's cache entry is not flagged as step-up or
reauthentication, then:
– The existing session cache entry is deleted and replaced with a new entry

containing a new credential for the user.
– If the user uses session cookies to maintain session state, a new session key is

created and returned to the user.
– If the user uses SSL session IDs or HTTP headers to maintain session state,

the existing session key is reused.
– If a failover cookie is used, a new failover cookie is created and returned to

the user.
– If user session IDs are used, the user session ID mapping to the WebSEAL

session ID is updated.
– If an LTPA cookie is used, a new LTPA cookie is created and returned to the

user.

The external authentication interface credential replace function is important to
support, for example, the account-linking features that the Liberty federate
function provides. A Tivoli Federated Identity Manager environment requires the
ability to reauthenticate a previously authenticated user to achieve the Liberty
federate function (Liberty Alliance Project). A federate operation allows a local
account at a service provider to be linked with an account at an identity provider.

To achieve this, a user must first sign into the user's service provider and consent
to linking the user's account with the identity provider. Once the federate
operation has occurred, the browser focus returns to the service provider where the
user's credential is updated with the new credential generated by the identity
provider.

Chapter 13. External authentication interface 237

Validating the user identity

EAI applications can re-authenticate a user by returning new authentication
information for a previously authenticated session. By default, WebSEAL does not
validate this new authentication information. However, you can configure
WebSEAL to verify that the user identity does not change during subsequent EAI
authentications.

WebSEAL uses the principal name (azn_cred_principal_name attribute) to validate
the user identity. The principal name that is contained in the newly constructed
credential is compared with the principal name contained in the existing credential.
If the two names differ, the validation process fails and WebSEAL returns an
authentication error to the user.

To validate user identities during subsequent EAI authentication operations, set the
eai-verify-user-identity stanza entry to yes. This entry is located in the [eai] stanza
of the WebSEAL configuration file:
[eai]
eai-verify-user-identity = yes

How to write an external authentication application

The design, methodology, and code for the external authentication application is
entirely the responsibility of the application developer. This developer reference
document does not provide any instructions for the construction of this
authentication operation.

However, the following conditions for the operation of external authentication
interface should be considered when developing the custom application:
v The external authentication interface server is junctioned to WebSEAL.
v Identity information resulting from the custom authentication process is returned

to WebSEAL in specially named HTTP response headers (as configured in the
WebSEAL configuration file).

v Multi-step authentications are allowed.
v The external authentication application must be available to unauthenticated

users.
v WebSEAL checks its user registry for credential information. Therefore, the

external authentication application must either share the same registry with
WebSEAL, or the external authentication application must return user
information that matches an entry in the WebSEAL user registry.

External authentication interface demonstration program
The external authentication interface demonstration program is a J2EE application
written for the WebSphere Application Server.

The program takes advantage of both external authentication interface and local
response redirection to demonstrate how an enterprise can create a custom
application to provide server response page handling and authentication services
through a WebSEAL junction. The program performs a simple user name mapping
function that generates a credential for the same user at every login.

The demonstration runs in two modes, simple and advanced. The simple
demonstration provides the user's authentication data using HTTP headers. The

238 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

advanced demonstration provides the user's authentication data in a PAC. The
choice of demonstration mode is left to the user upon logging in, by choosing the
appropriate radio button.

The demonstration program is distributed as part of the Security Access Manager
Web Security ADK (PDWebADK) and requires the Security Access Manager Web
Security Runtime and the Security Access Manager Application Development Kit
(ADK) as prerequisites. The demonstration program installs to the directory
C:\Program Files\Tivoli\PDWebRTE\eai_demo (Windows). For more information,
refer to the README.html file in the same directory.

For more information on PDWebADK, please see the IBM Security Access Manager
for Web: Web Security Developer Reference.

External authentication interface - authentication flags

When an EAI application performs a successful authentication, it constructs and
returns the response to a trigger URL. WebSEAL detects this authentication
information in the trigger URL response. You can provide authentication flags with
this response to help control the authentication processing by WebSEAL.

These authentication flags are contained in the HTTP header. Use the
eai-flags-header stanza entry in the [eai] stanza of the WebSEAL configuration file
to specify name of the flags header.

WebSEAL supports the following flags:

stream
By default, WebSEAL replaces the EAI-generated response with a
WebSEAL-generated response for the authentication operation. You can
override this default behavior and configure WebSEAL to stream the
EAI-generated response back to the client. That is, after a successful EAI
authentication, WebSEAL can strip the EAI-specific headers from the
response and stream it back to the client.

To achieve this EAI response streaming, the flags header must contain the
stream flag.

Example EAI flags header:
am-eai-flags: stream

The eai-flags-header configuration entry specifies the name of the HTTP header
that contains the flags. For example:
[eai]
eai-flags-header = am-eai-flags

Chapter 13. External authentication interface 239

External authentication interface HTTP header reference
Table 29. PAC headers

PAC Headers

Description
Stanza Entry Default

Header Name

Required Notes

PAC [eai]
eai-pac-header

am-eai-pac yes
Authentication data in PAC format.
Direct conversion to credential.

This header takes precedence over the
user identity header.

Place this header before others in the
response headers.

PAC Service ID [eai]
eai-pac-svc-header

am-eai-pac-svc no
The service ID that should be used to
convert the PAC into a credential.

If no service ID is specified the default
PAC service will be used.

Table 30. User identity headers

User Identity Headers

Description
Stanza Entry Default

Header Name

Required Notes

User Identity [eai]
eai-user-id-header

am-eai-user-id yes
The ID of the user to generate the
credential for.

This header should precede all others in
the HTTP response.

Authentication
Level

[eai]
eai-auth-level-header

am-eai-auth-
level

no
The authentication strength level for the
generated credential.

If no value is specified, a default value
of 1 is used.

Extended
Attribute List

[eai]
eai-xattrs-header

am-eai-xattrs no
A comma delimited list of HTTP header
names that should be added to the
credential as extended attributes.

If attributes of the same name are
specified by a custom authentication
module build with the external
authentication C API, the attributes from
the custom module take precedence
over the HTTP header attributes.

240 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Table 31. Session identifier headers

Session Identifier Headers

Description
Stanza Entry Default

Header Name

Required Notes

Session
Identifier

[eai]
eai-session-id-header

am-eai-session-
id

yes The identify of the distributed session
managed by the Session Management
Server.

Table 32. Common headers

Common Headers

Description
Stanza Entry Default

Header Name

Required Notes

Redirect URL [eai]
eai-redir-url-header

am-eai-redir-url no
Only used if WebSEAL does not have a
cached request or when automatic
redirection is not enabled.

Specifies the URI that the client is
redirected to upon successful
authentication.

If no URI is specified, the "login-success"
page is returned.

Flags header [eai]
eai-flags-header

am-eai-flags no The only supported flag is stream.

Example:

am-eai-flags: stream

Use of external authentication interface with existing WebSEAL
features

This section contains the following topics:
v “Request caching with external authentication interface”
v “Post-authentication redirection with external authentication interface” on page

242
v “Session handling with external authentication interface” on page 242
v “Authentication strength level with external authentication interface” on page

242
v “Reauthentication with external authentication interface” on page 243
v “Login page and macro support with external authentication interface” on page

243

Request caching with external authentication interface

Server-side request caching occurs for external authentication interface
authentication when WebSEAL returns a login prompt as a consequence of:
v An unauthenticated user requesting a protected resource.
v An authenticated user requesting a resource protected by reauthentication.

Chapter 13. External authentication interface 241

v An authenticated user requesting a resource protected by authentication strength
policy (step-up).

When one of these events occurs, WebSEAL caches the initial request. WebSEAL
retains the cached request during any authentication interaction with the external
authentication application. WebSEAL reprocesses the cached request only when an
authentication has succeeded.

No modifications are necessary to support standard request caching for
authentication using the external authentication interface.

See “Server-side request caching” on page 205.

Post-authentication redirection with external authentication
interface

WebSEAL-specified (automatic) redirection

If automatic redirection during user login is enabled through WebSEAL, clients are
redirected to the specified resource upon successful external authentication
interface authentication.
[enable-redirects]
redirect = ext-auth-interface

See “Automatic redirection after authentication” on page 201.

External authentication interface-specified redirection

The external authentication application can be written to send a special HTTP
header in the authentication response that specifies a redirection URL. Upon
successful authentication, the client is redirected to this URL.

This optional header is configured in the same manner as other special external
authentication interface headers (see “HTTP header names for authentication data”
on page 234).

For example:
[eai]
eai-redir-url-header = am-eai-redir-url

Session handling with external authentication interface

The existing options for maintaining sessions, handling session cookies, and
configuring session cache parameters apply for external authentication interface
authentication.

Authentication strength level with external authentication
interface

Authentication strength policy (step-up authentication) is supported for external
authentication interface authentication.
[authentication-levels]
level = ext-auth-interface

See “Authentication strength policy (step-up)” on page 176.

242 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

You can associate an authentication strength level with an authentication
performed by an external authentication interface module. An optional HTTP
header can be returned by the external authentication interface module to specify
this authentication level.

This header is configured in the same manner as other special external
authentication interface headers (see “HTTP header names for authentication data”
on page 234).

For example:
[eai]
eai-auth-level-header = am-eai-auth-level

The authentication strength level value becomes an attribute of the identity
structure and the resulting credential. The authentication strength level attribute
allows you to implement step-up authentication functionality by operating
multiple external authentication interface authentication modules on a single
external authentication interface server. Each module can process a different
authentication method.

If the authentication strength level does not exist or contains an empty value, the
default mechanisms for assigning an authentication level are used.

You must modify the standard WebSEAL login pages appropriately if you enable
step-up authentication with external authentication interface authentication. See
“Login page and macro support with external authentication interface.”

Reauthentication with external authentication interface

Reauthentication is supported for external authentication interface authentication.

Reauthentication requires that the method used by the client to reauthenticate is
the same as that used by the client to initially authenticate. When WebSEAL
receives the authentication response from the custom external authentication
application, a check is performed (as with other reauthentication processing) to
ensure:
v The authentication method used is the same as that used to create the initial

credential
v The user name matches
v Any external authentication interface-specified authentication level is verified to

match the existing level

You must modify the standard WebSEAL login pages appropriately if you enable
reauthentication with external authentication interface authentication. See “Login
page and macro support with external authentication interface.”

Login page and macro support with external authentication
interface

The WebSEAL login pages can be modified to cause a redirection to the external
authentication interface server to perform the authentication, or to contain a link
(or button) that a user can click to initiate the authentication exchange with the
external authentication interface server. This modified login page is required if you
enable reauthentication or step-up to external authentication interface.

Chapter 13. External authentication interface 243

An external authentication interface-specific macro (%EAIAUTHN%) is used to
selectively add or mask sections from the certlogin.html and stepuplogin.html
login forms. When the authentication method (indicated by the macro name) is
valid, the section in the form governed by the macro is displayed. When the
authentication method is not valid, the macro is replaced by a start comment
delimiter (<!--). All subsequent information in the form is commented out until a
comment closing delimiter (-->) is reached.

To facilitate the passing of the required authentication level for step-up as an
argument in a query string, WebSEAL passes another macro (%AUTHNLEVEL%)
to the stepuplogin.html login form.

Neither of these macros are present in the default login forms. The macros must be
manually added.

You can also implement local response redirection to handle server responses to
client requests.

Setting a client-specific session cache entry lifetime value

About this task

The timeout stanza entry, located in the [session] stanza of the WebSEAL
configuration file, globally sets the maximum lifetime timeout value for all client
session information stored in the WebSEAL session cache. You can override this
global lifetime value with a per-client lifetime value that is provided as a header in
the authentication response from an external authentication interface service. This
value is extracted by WebSEAL and stored as an extended attribute in the user's
credential.

WebSEAL receives the client-specific timeout information as the value of a header
in the authentication response from the external authentication interface. WebSEAL
uses the value of that header to set the lifetime timeout of the new session cache
entry for that client. This value overrides the value of the timeout stanza entry.

The value must represent an absolute time expressed as the number of seconds
since 00:00:00 UTC, January 1, 1970. The output of the UNIX time () function, for
example, represents the correct format of this absolute time value.

The following steps summarize the necessary configuration for setting a
client-specific cache entry lifetime timeout value:

Procedure
1. Configure the custom external authentication interface program to provide, in

its authentication response, an HTTP header containing the session cache
lifetime timeout value appropriate for that client. The required name of this
header is:
am_eai_xattr_session_lifetime

Note: The name of this particular header is not configurable.
For example:
am_eai_xattr_session_lifetime:1129225478

2. Configure the custom external authentication interface program to additionally
provide an HTTP header that specifies a comma-delimited list of HTTP header
names that contain extended attribute values.

244 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

You must configure WebSEAL to look for this header name (see step 4). The
default name for this header is am-eai-xattrs. (The am-eai-xattrs header name is
configurable.)

3. Configure the custom external authentication interface program to include the
am_eai_xattr_session_lifetime header name as a value to the am-eai-xattrs
header. For example:
am-eai-xattrs: am_eai_xattr_session_lifetime

4. Use the [eai] stanza of the WebSEAL configuration file to specify the names of
the HTTP headers that contain authentication data returned from the external
authentication interface server.
In the [eai] stanza, ensure that WebSEAL looks for the am-eai-xattrs header
name:
[eai]
eai-xattrs-header = am-eai-xattrs

Note: Header names used for the external authentication interface can be
customized. Ensure that the custom external authentication interface module is
written to use the header names as configured.

Results

If the am_eai_xattr_inactive_timeout header is present in a flagged response from
the external authentication interface, WebSEAL adds the value to the user’s
credential as an extended attribute. The entry in the credential for this example
appears as follows:
am_eai_xattr_session_lifetime:1129225478

After the credential is successfully built, WebSEAL creates and entry in the session
cache for that client and uses the value of the extended attribute to set the
inactivity timeout for that client’s session cache entry.

If the am_eai_xattr_session_lifetime header is not supplied. WebSEAL uses the
default timeout value provided by the timeout stanza entry.

Example:

For example, in a Tivoli Federated Identity Manager environment, there is an
optional element of a Liberty authentication response that is used by an identity
provider to dictate to a service provider the duration of a user’s session at the
service provider.

By modifying the external authentication interface used to authenticate users, a
single attribute (the value derived from the identity provider token) can be
returned to WebSEAL and used to set the lifetime timeout of session cache entry
for that user. The service provider should always request a new single signon
interaction with the identity provider once this cache entry lifetime value has
expired.

See also:

v “Customized responses for old session cookies” on page 293
v “Cache entry lifetime timeout value” on page 261
v “Setting a client-specific session cache entry inactivity timeout value” on page

246

Chapter 13. External authentication interface 245

Setting a client-specific session cache entry inactivity timeout
value

About this task

The inactive-timeout stanza entry, located in the [session] stanza of the WebSEAL
configuration file, globally sets the maximum lifetime of inactive entries contained
within the WebSEAL session cache. You can override this global inactivity timeout
value with a per-client value that is provided as a header in the authentication
response from an external authentication interface service. This value is extracted
by WebSEAL and stored as an extended attribute in the user's credential.

WebSEAL receives the client-specific inactivity timeout information as the value of
a header in the authentication response from the external authentication interface.
WebSEAL uses the value of that header to set the inactivity timeout of the new
session cache entry for that client. This value overrides the value of the
inactive-timeout stanza entry.

The value represents the maximum number of seconds that the session can be
inactive before it is removed from the WebSEAL session cache.

The following steps summarize the necessary configuration for setting a
client-specific cache entry inactivity timeout value:

Procedure
1. Configure the custom external authentication interface program to provide, in

its authentication response, an HTTP header containing the session cache
inactivity timeout value appropriate for that client. The required name of this
header is
am_eai_xattr_session_inactive_timeout

Note: The name of this particular header is not configurable. For example:
am_eai_xattr_session_inactive_timeout:120

2. Configure the custom external authentication interface program to additionally
provide an HTTP header that specifies a comma-delimited list of HTTP header
names that contain extended attribute values.
You must configure WebSEAL to look for this header name (see step 4). The
default name for this header is am-eai-xattrs. (The am-eai-xattrs header name is
configurable.)

3. Configure the custom external authentication interface program to include the
am_eai_xattr_session_inactive_timeout header name as a value to the
am-eai-xattrs header. For example:
am-eai-xattrs: am_eai_xattr_session_inactive_timeout

4. Use the [eai] stanza of the WebSEAL configuration file to specify the names of
the HTTP headers that contain authentication data returned from the external
authentication interface server.
In the [eai] stanza, ensure that WebSEAL looks for the am-eai-xattrs header
name:
[eai]
eai-xattrs-header = am-eai-xattrs

Note: Header names used for the external authentication interface can be
customized. Ensure that the custom external authentication interface module is
written to use the header names as configured.

246 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Results

If the am_eai_xattr_session_inactive_timeout header is present in a flagged
response from the external authentication interface, WebSEAL adds the value to the
user's credential as an extended attribute. The entry in the credential for this
example appears as follows:
am_eai_xattr_session_inactive_timeout:120

After the credential is successfully built, WebSEAL creates an entry in the session
cache for that client and uses the value of the extended attribute to set the
inactivity timeout for that client's session cache entry.

If the am_eai_xattr_session_inactive_timeout header is not supplied, WebSEAL
uses the default timeout value provided by the inactive-timeout stanza entry.

See also:

v “Customized responses for old session cookies” on page 293
v “Cache entry lifetime timeout value” on page 261
v “Setting a client-specific session cache entry lifetime value” on page 244

Chapter 13. External authentication interface 247

248 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Part 4. Session State

© Copyright IBM Corp. 2002, 2013 249

250 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 14. Session state overview

This chapter discusses basic concepts of how WebSEAL maintains session state.

Topic Index:
v “Session state concepts”
v “Supported session ID data types”
v “Information retrieved from a client request” on page 252
v “WebSEAL session cache structure” on page 252
v “Deployment considerations for clustered environments” on page 253
v “Options for handling failover in clustered environments” on page 254

Session state concepts

A client/server session is a series of related interactions between a single client and
a server that take place over a period of time. With an established session, the
server can identify the client associated with each request, and has the ability to
remember—over numerous requests—a specific client.

Without an established session, the communication between the client and the
server must be renegotiated for each subsequent request. Session state information
improves performance in the following ways:
v For client authentication methods such as basic authentication, where

authentication data is included with every request to the WebSEAL server,
session state information eliminates the need to validate the user name and
password with every request.

v For other client authentication methods that require prompting the user to log
in, session state information eliminates the need to prompt the user to log in
with every request to the WebSEAL server. The client can log in once and make
numerous requests without performing a separate login for each request.

Supported session ID data types

WebSEAL can maintain session state with both HTTP and HTTPS clients. The SSL
transport protocol is specifically designed to provide a session ID to maintain
session state information. In contrast, HTTP is a "stateless" protocol and does not
provide any means of distinguishing one request from another. (HTTP
communication can be encapsulated over SSL to become HTTPS.)

However, WebSEAL must often handle HTTP communication from
unauthenticated clients. There are also times when the SSL session ID is not an
appropriate solution.

To maintain session state with clients over HTTP or HTTPS, WebSEAL can use one
of several data types to provide a client-identifying session key, known as the
WebSEAL session ID.

WebSEAL maintains the specific client identity and session information in a session
cache. Each session cache entry is indexed by a session key (the WebSEAL session
ID).

© Copyright IBM Corp. 2002, 2013 251

The following supported data types can provide the session key used by WebSEAL
to maintain session state with a client:
v SSL session ID (defined by the SSL protocol)
v Server-specific session cookie

When WebSEAL examines a client request, it searches for the session key in the
order specified in this list.

Information retrieved from a client request

Session identification is the process of examining the information associated with
an HTTP request (such as the URL, HTTP headers and cookies, IP address, and
SSL session ID) to retrieve a session ID that can be used to associate a particular
client with the request.

WebSEAL examines a client request for the following information:
v Session key

A session key is information that identifies a specific connection between the
client and the WebSEAL server. The session key is stored with the client and
accompanies subsequent requests by that client. It is used to re-identify the client
session to the WebSEAL server and avoid the overhead of establishing a new
session for each request. The session key is a locator index to the associated
session data stored in the WebSEAL server session cache. The session key is also
known as the WebSEAL session ID.

v Authentication data

Authentication data is information from the client that identifies the client to the
WebSEAL server. Examples of authentication data types include client-side
certificates, passwords, and token codes.

When WebSEAL receives a client request, WebSEAL always looks for the session
key and associated session data first, followed by authentication data.

WebSEAL session cache structure

The WebSEAL session cache can be represented as an internal table where
WebSEAL stores information about all sessions established by authenticated users.
The session key, stored with the client, is a locator index to the associated session
data stored in the WebSEAL session cache.

252 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Each user session is represented by an entry in the cache table.

Each cache entry contains the following types of information:
v Session key

The session key (the WebSEAL session ID) is a unique identifier, or key, that is
sent with each request made by that user. The session key identifies the specific
cache entry for that user.

v Cache data

The most important data stored in the cache entry is the user credential. The
credential is required whenever the user requests protected resources. The
authorization service uses the credential information to permit or deny access to
the resource.
WebSEAL can mark, or "flag", a cache entry to support certain functionality. For
example, when session inactivity reauthentication is enabled, a cache entry is
"flagged" when the session inactivity value has expired.

v Timestamps

The creation timestamp for the cache entry becomes the reference point for the
session lifetime value. The "last active" timestamp for the cache entry becomes
the reference point for the session inactivity timer.

The user credential is an encoded opaque data structure representing the
authenticated user. The credential contents can include:
v User name
v Group memberships
v Extended attributes

Extended attributes allow you to store customized data in the user credential.

See the IBM Security Access Manager for Web: Authorization C API Developer Reference
for more details about credentials and how to work with them.

Deployment considerations for clustered environments

Consider the following topics when you deploy multiple replica WebSEAL servers
in a clustered environment for fault-tolerance or performance reasons:

Session Key Cache Data

1234
- user credential
- internal flags
- internal data

- creation time
- last active timecache

entry

Time-stamps

WebSEAL Session Cache

Figure 19. WebSEAL session cache

Chapter 14. Session state overview 253

Consistent configuration on all WebSEAL replica servers
To maintain a consistent user experience regardless of which WebSEAL server a
client accesses, all WebSEAL replica servers must be identically configured.

For example, if a junction exists on one WebSEAL server and not on another,
clients can receive errors when they access the WebSEAL server that does not have
the proper junction definition. All configuration (for example, dynamic URLs,
junction mapping table, authentication, and authorization) must be identical across
all the WebSEAL servers in the cluster.

The server-name configuration option in the [server] stanza of the WebSEAL
configuration file can be used to force all WebSEAL servers to perform
authorization checks on the same protected object space. This configuration allows
you to apply ACLs and POPs only once.Most other WebSEAL configuration
options must be set individually for every server in the cluster.

See “WebSEAL server name in the configuration file” on page 31.

Client-to-server session affinity at the load balancer
Whenever possible, load balancers should be configured to maintain session
affinity.

Session affinity provides improved performance, improved user experience, and
simplifies WebSEAL configuration.

Failover to a new master

If the cluster master becomes unavailable for an extended period, re-configure the
slaves to use a different master. To configure the new master, modify the
master-name configuration entry in the [cluster] stanza for each slave WebSEAL
server. Ensure that the newly designated master has the most up-to-date
configuration.

Failover from one WebSEAL server to another
When clients failover from one WebSEAL server to another, there must be some
mechanism for the new WebSEAL server to identify the client.

Security architects must choose from several possible options for handling failover
events. Each option involves different trade-offs in complexity, security, and
performance.

In addition, some options for handling failover events can provide additional
functionality, such as single-signon or more flexible session management tools for
use by software support personnel and WebSEAL administrators.

Options for handling failover in clustered environments

WebSEAL offers several solutions to the challenge of providing secure sharing of
session state across multiple servers in a clustered environment. The following
sections describe the options available for handling failover events in clustered
environments:

254 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Option 1: No WebSEAL handling of failover events
If the load balancer in front of the WebSEAL cluster is able to maintain session
affinity for long periods of time, failover events can be very rare.

When failover events do occur, clients are forced to log in again.

This option is relatively easy to configure, but contains the risk of a poor user
experience if a WebSEAL server becomes unavailable for any reason or if the load
balancer is unable to maintain session affinity.

Option 2: Authentication data included in each request
Some authentication methods such as basic authentication or client-side certificates
provide authentication data with every request.

If the WebSEAL servers in the cluster are configured to use such an authentication
method, then failover events result in automatic authentication of the user without
prompting the user to login again.

This method of handling failover events is relatively easy to configure and
provides a good user experience. However, this method does not allow the use of
certain WebSEAL features such as reauthentication and pkmslogout.

Option 3: Failover cookies

The failover cookie is a mechanism for transparently reauthenticating the user and
is not actually a mechanism for maintaining sessions. Failover cookies contain
encrypted user authentication data that a WebSEAL server can use to validate a
user's identity. A failover cookie maintains the following information:
v User credential information
v Session inactivity timeout value
v Session lifetime timeout value

All other session state data, however, is not captured or maintained by failover
cookies.

Failover cookie configuration requires the distribution of a shared secret key to all
of the WebSEAL servers in the cluster, and requires more configuration than the
first two options discussed.

Failover cookies pose a greater security risk than normal session cookies. If an
attacker hijacks a session cookie, the session cookie is only valid until the
WebSEAL server deletes the associated session. Failover cookies are valid until the
lifetime or inactivity timeout in the failover cookie is reached.

Failover cookies do allow the enforcement of session lifetime timeouts, inactivity
timeouts, and pkmslogout. Failover cookies can also provide single-signon across
multiple WebSEAL clusters in the same DNS domain.

For further information on the failover cookie mechanism, see Chapter 16,
“Failover solutions,” on page 267.

Chapter 14. Session state overview 255

Option 4: The Session Management Server

The session management server (SMS) is used for session storage by all WebSEAL
servers in the cluster. When a client fails over, the new WebSEAL server can
retrieve the user's session data from the SMS and therefore avoid prompting the
user to login again.

Like failover cookies, the SMS allows consistent inactivity and lifetime timeout
tracking across all of the WebSEAL servers in the cluster. Also like failover cookies,
the SMS allows for single-signon across multiple WebSEAL clusters in the same
DNS domain.

The SMS reduces the security risk posed by the failover cookie, since only a
normal session cookie is used.

The SMS also provides additional features that are not available with any other
method of maintaining session state across server clusters. For example, the SMS
allows customer support personnel and WebSEAL administrators to view all of the
users who are logged in to the cluster at a given time.

The SMS also supports a max-concurrent-web-sessions policy that limits the
number of concurrent sessions allowed per user.

The SMS provides a login history database that can be used to:
v Show users the last time they logged in to the WebSEAL server.
v Show users the number of times since the last login that their user ID failed in

attempts to authenticate to the WebSEAL server.

The SMS provides many benefits, but requires additional configuration and risks to
the WebSEAL deployment. In particular, if no SMS is available, the WebSEAL
servers are not able to handle requests from users. The SMS must be replicated to
avoid a single-point-of-failure in the deployment.

For further information on the session management server, see Chapter 20,
“Configuration for WebSEAL using SMS,” on page 319.

Option 5: LTPA cookie

The failover cookie is primarily a mechanism for transparently authenticating the
user and is not actually a mechanism for maintaining sessions. LTPA cookies
contain encrypted user authentication data that a WebSEAL server can use to
validate a user’s identity. An LTPA cookie maintains the following information:
v User name
v Session lifetime timeout value

All other session state data, however, is not captured or maintained by LTPA
cookies. LTPA cookie configuration requires the distribution of a shared secret key
to all of the servers in the cluster, and requires more configuration than the first
two options discussed.

LTPA cookies pose a greater security risk than normal session cookies. If an
attacker hijacks a session cookie, the session cookie is only valid until the
WebSEAL server deletes the associated session. LTPA cookies are valid until the
lifetime timeout in the LTPA cookie is reached.

256 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

LTPA cookies do allow the enforcement of session lifetime timeouts, and
pkmslogout. LTPA cookies can also provide single-signon across multiple
WebSEAL clusters in the same DNS domain, along with single-signon across other
LTPA-enabled servers in the same DNS domain (for example, WebSphere
Application Server, DataPower).

If you are using a cookie-based failover approach, you should use the failover
cookie, mentioned in option 3, over the LTPA cookie option. The LTPA cookie is
mostly designed to enable single-signon to third-party servers (for example
WebSphere Application Server, DataPower).

For further information on the LTPA cookie mechanism, see “LTPA authentication”
on page 155.

Chapter 14. Session state overview 257

258 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 15. Session cache configuration

This chapter talks about configuring the SSL session cache and the WebSEAL
session cache.

Topic Index:
v “Session cache configuration overview”
v “SSL session ID cache configuration” on page 260
v “WebSEAL session cache configuration” on page 260

Session cache configuration overview

A session cache allows a server to store session information from multiple clients.
WebSEAL uses two types of session caches to accommodate both HTTPS and
HTTP session state information between clients and WebSEAL:
v WebSEAL session cache

The WebSEAL session cache stores information about all sessions established by
authenticated and unauthenticated users. The session key, stored with the client,
is a locator index to the associated session data stored in the WebSEAL session
cache.
The WebSEAL session cache stores, among other data, the credential information
obtained for each client. Credential information is cached to eliminate repetitive
queries to the user registry database during authorization checks.

v SSL session ID cache

The SSL session cache stores the SSL session ID used to maintain SSL session
state.
SSL session IDs can be used as the session index for the WebSEAL session cache.

Configuration file entries for configuring the WebSEAL session cache and the SSL
session ID cache are summarized in the following diagram:

For an overview of session state concepts, see Chapter 14, “Session state overview,”
on page 251.

WebSEAL

SSL Cache
Configuration file entries
- ssl-v2-timeout
- ssl-v3-timeout
- ssl-max-entries

Maintains:
- WebSEAL session ID
- Credential information
- Time-stamps

SSL
Session Cache

WebSEAL
Session Cache

WebSEAL Cache
Configuration file entries
- timeout
- inactive-timeout
- max-entries

Maintains:
- SSL session ID
- Time-stamps

Client

Figure 20. Session cache configuration file entries

© Copyright IBM Corp. 2002, 2013 259

SSL session ID cache configuration

The following configuration tasks are available for the SSL session ID cache:
v “Cache entry timeout value”
v “Maximum concurrent SSL sessions value”

Cache entry timeout value

The stanza entries for setting the maximum lifetime timeout for an entry in the SSL
session ID cache are located in the [ssl] stanza of the WebSEAL configuration file.
There are two stanza entries: one for SSL v2 connections (ssl-v2-timeout) and one
for SSL v3 connections (ssl-v3-timeout). The SSL v3 session timeout is also used for
TLS v1 connections.

The default SSL v2 session timeout (in seconds) is 100 (with a possible range of
1-100):
[ssl]
ssl-v2-timeout = 100

The default SSL v3 session timeout (in seconds) is 7200 (with a possible range of
1-86400):
[ssl]
ssl-v3-timeout = 7200

Maximum concurrent SSL sessions value

The ssl-max-entries stanza entry, located in the [ssl] stanza of the WebSEAL
configuration file, sets the maximum number of concurrent SSL sessions in the SSL
session ID cache.

This value limits the number of SSL sessions the WebSEAL server tracks at any
given time. When the cache size reaches this value, entries are removed from the
cache according to a least recently used algorithm. If a client whose SSL session
was discarded contacts the WebSEAL server again, WebSEAL automatically
negotiates a new SSL session with the client.

If SSL session IDs are being used as the session index for the WebSEAL session
cache, the client's WebSEAL session ID changes because of the renegotiation. The
client must reauthenticate to WebSEAL.

The default number of concurrent SSL sessions is 4096:
[ssl]
ssl-max-entries = 4096

For performance considerations, see the IBM Security Access Manager for Web:
Performance Tuning Guide.

WebSEAL session cache configuration

WebSEAL maintains two separate session caches, one for authenticated users and
the other for users who are in the process of authenticating. Once a user is
authenticated, their session cache entry is moved from the unauthenticated session
cache to the authenticated session cache.

260 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The following sections describe configuration and use of WebSEAL session caches:
v “Maximum session cache entries value”
v “Cache entry lifetime timeout value”
v “Setting a client-specific session cache entry lifetime value” on page 244
v “Cache entry inactivity timeout value” on page 264
v “Concurrent session limits” on page 265
v “Session cache limitation” on page 266

Maximum session cache entries value

The max-entries stanza entry, located in the [session] stanza of the WebSEAL
configuration file, specifies the maximum number of session cache entries in the
WebSEAL unauthenticated and authenticated session caches.

This value corresponds to the number of concurrent login sessions. When the cache
size reaches this value, entries are removed from the cache according to a least
recently used algorithm to allow new incoming logins.

The following conditions affect the specified value:
v If the specified value is less than or equal to 0, the cache size becomes unlimited.
v If the specified value is between 0 and 8192, the actual number of entries

allowed is rounded up to the next multiple of 32.
v Any specified value greater than 8192 is accepted as given.

WebSEAL does not impose a maximum value. See the guidelines on maximum size
of integer values in Appendix A, “Guidelines for changing configuration files,” on
page 611.

The default number of concurrent login sessions is 4096:
[session]
max-entries = 4096

The value for a particular session cache (either unauthenticated or authenticated)
can be supplied by prefixing the configuration entry with the session cache name
(either unauth or auth). For example:
unauth-max-entries = 1024

For performance considerations, see the IBM Security Access Manager for Web:
Performance Tuning Guide.

Cache entry lifetime timeout value

The timeout stanza entry, located in the [session] stanza of the WebSEAL
configuration file, sets the maximum lifetime timeout value for all user session
information stored in the WebSEAL authenticated or unauthenticated session
caches.

WebSEAL caches credential information internally, so the session cache timeout
stanza entry dictates the length of time authorization credential information
remains in memory on WebSEAL.

Chapter 15. Session cache configuration 261

The stanza entry is not an inactivity timeout. The value maps to a "credential
lifetime" rather than a "session inactivity timeout". Its purpose is to enhance
security by forcing the user to reauthenticate when the specified timeout limit is
reached.

The default session cache entry lifetime timeout (in seconds) is 3600:
[session]
timeout = 3600

The value for a particular session cache (either unauthenticated or authenticated)
can be supplied by prefixing the configuration entry with the session cache name
(either unauth or auth). For example:
unauth-max-entries = 1024

WebSEAL does not impose a maximum value for this stanza entry.

A value of "0" disables this timeout feature (lifetime value is unlimited). The
control of cache entries is then governed by the inactive-timeout and max-entries
stanza entries.

When a cache is full, the entries are cleared based on a least-recently-used
algorithm. See “Maximum session cache entries value” on page 261.

Note: This stanza entry is ineffective for authentication methods that include
authentication data in every request to the WebSEAL server, such as basic
authentication (BA), SPNEGO, and some forms of certificate authentication. Those
authentication methods automatically reauthenticate the user to the WebSEAL
server if the user's session has been deleted due to inactivity or lifetime timeouts.
The result is repeated resetting of the inactive and lifetime timeout values.

See also:
v “Customized responses for old session cookies” on page 293
v “Setting a client-specific session cache entry lifetime value” on page 244

Setting a client-specific session cache entry lifetime value

About this task

The timeout stanza entry, located in the [session] stanza of the WebSEAL
configuration file, globally sets the maximum lifetime timeout value for all client
session information stored in the WebSEAL session cache. You can override this
global lifetime value with a per-client lifetime value that is provided as a header in
the authentication response from an external authentication interface service. This
value is extracted by WebSEAL and stored as an extended attribute in the user's
credential.

WebSEAL receives the client-specific timeout information as the value of a header
in the authentication response from the external authentication interface. WebSEAL
uses the value of that header to set the lifetime timeout of the new session cache
entry for that client. This value overrides the value of the timeout stanza entry.

The value must represent an absolute time expressed as the number of seconds
since 00:00:00 UTC, January 1, 1970. The output of the UNIX time () function, for
example, represents the correct format of this absolute time value.

262 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The following steps summarize the necessary configuration for setting a
client-specific cache entry lifetime timeout value:

Procedure
1. Configure the custom external authentication interface program to provide, in

its authentication response, an HTTP header containing the session cache
lifetime timeout value appropriate for that client. The required name of this
header is:
am_eai_xattr_session_lifetime

Note: The name of this particular header is not configurable.
For example:
am_eai_xattr_session_lifetime:1129225478

2. Configure the custom external authentication interface program to additionally
provide an HTTP header that specifies a comma-delimited list of HTTP header
names that contain extended attribute values.
You must configure WebSEAL to look for this header name (see step 4). The
default name for this header is am-eai-xattrs. (The am-eai-xattrs header name is
configurable.)

3. Configure the custom external authentication interface program to include the
am_eai_xattr_session_lifetime header name as a value to the am-eai-xattrs
header. For example:
am-eai-xattrs: am_eai_xattr_session_lifetime

4. Use the [eai] stanza of the WebSEAL configuration file to specify the names of
the HTTP headers that contain authentication data returned from the external
authentication interface server.
In the [eai] stanza, ensure that WebSEAL looks for the am-eai-xattrs header
name:
[eai]
eai-xattrs-header = am-eai-xattrs

Note: Header names used for the external authentication interface can be
customized. Ensure that the custom external authentication interface module is
written to use the header names as configured.

Results

If the am_eai_xattr_inactive_timeout header is present in a flagged response from
the external authentication interface, WebSEAL adds the value to the user’s
credential as an extended attribute. The entry in the credential for this example
appears as follows:
am_eai_xattr_session_lifetime:1129225478

After the credential is successfully built, WebSEAL creates and entry in the session
cache for that client and uses the value of the extended attribute to set the
inactivity timeout for that client’s session cache entry.

If the am_eai_xattr_session_lifetime header is not supplied. WebSEAL uses the
default timeout value provided by the timeout stanza entry.

Example:

Chapter 15. Session cache configuration 263

For example, in a Tivoli Federated Identity Manager environment, there is an
optional element of a Liberty authentication response that is used by an identity
provider to dictate to a service provider the duration of a user’s session at the
service provider.

By modifying the external authentication interface used to authenticate users, a
single attribute (the value derived from the identity provider token) can be
returned to WebSEAL and used to set the lifetime timeout of session cache entry
for that user. The service provider should always request a new single signon
interaction with the identity provider once this cache entry lifetime value has
expired.

See also:

v “Customized responses for old session cookies” on page 293
v “Cache entry lifetime timeout value” on page 261
v “Setting a client-specific session cache entry inactivity timeout value” on page

246

Cache entry inactivity timeout value

The inactive-timeout stanza entry, located in the [session] stanza of the WebSEAL
configuration file, sets the timeout value for user session inactivity.

For example, if a user is inactive for a period of time longer than the inactivity
timeout, WebSEAL either deletes the user's session entirely or flags the session as
requiring re-authentication. For information on requiring re-authentication for
inactive sessions, refer “Reauthentication with external authentication interface” on
page 243.

The default login session inactivity timeout (in seconds) is 600:
[session]
inactive-timeout = 600

The value for a particular session cache (either unauthenticated or authenticated)
can be supplied by prefixing the configuration entry with the session cache name
(either unauth or auth). For example:
unauth-inactive-timeout = 300

WebSEAL does not impose a maximum value for this stanza entry.

A value of "0" disables this inactivity timeout feature (inactivity timeout value is
unlimited). The control of cache entries is then governed only by the timeout and
max-entries stanza entries.

When a cache is full, the entries are cleared based on a least-recently-used
algorithm. See “Maximum session cache entries value” on page 261.

Note: This stanza entry is ineffective for authentication methods that include
authentication data in every request to the WebSEAL server, such as basic
authentication (BA), SPNEGO, and some forms of certificate authentication. Those
authentication methods automatically reauthenticate the user to the WebSEAL
server if the user's session has been deleted due to inactivity or lifetime timeouts.
The result is repeated resetting of the inactive and lifetime timeout values.

264 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Preserve inactivity timeout

In some circumstances, you might not want the requests for a particular resource
to affect the inactivity timeout for a session. For example, you might want to
preserve the inactivity timeout when a server is polled by an Ajax script running
in the background of a client browser.

You can create security policies to specify the resources that must not affect the
inactivity timeout of the user session. To define this security policy, you must
create a protected object policy (POP) with an extended attribute named
preserve-inactivity-time. You can attach this POP to any object that requires the
inactivity timeout to be unaffected by a request. Remember that all children of the
object with the POP also inherit the POP conditions.

Use the following commands to create and apply the preserve-inactivity-time POP:
v pdadmin pop create

v pdadmin pop modify

v pdadmin pop attach

The following example creates a POP called robot with the preserve-inactivity-
time extended attribute and attaches it to the status.html object:
pdadmin> pop create robot
pdadmin> pop modify robot set attribute preserve-inactivity-time true
pdadmin> pop attach /WebSEAL/hostA/junction/status.html robot

When this policy is in place, requests made to status.html will not impact the
inactivity timeout for the user session.

See the IBM Security Access Manager for Web: Command Reference for more details
about the pdadmin pop commands.

See also “Customized responses for old session cookies” on page 293.

See also “Adjustment of the last access time update frequency for SMS” on page
325.

See also “Setting a client-specific session cache entry lifetime value” on page 244.

Concurrent session limits
You can configure WebSEAL to limit the number of concurrent requests for a single
user session.

Concurrent session threads hard limit

The hard limit is the maximum number of concurrent threads that a single user
session can consume. When a user session reaches its thread limit, WebSEAL stops
processing any new requests for the user session and returns an error to the client.

Use the concurrent-session-threads-hard-limit configuration entry in the [server]
stanza to configure the session hard limit.

If you do not specify a value for this entry, there is no limit to the number of
concurrent threads that a user session can consume.

Chapter 15. Session cache configuration 265

For example, the following configuration results in a maximum of 10 concurrent
threads for a single user session:
[server]
concurrent-session-threads-hard-limit = 10

Concurrent session threads soft limit

You can use the concurrent-session-threads-soft-limit configuration entry in the
[server] stanza to configure the session soft limit.

The soft limit is maximum number of concurrent threads that a single user session
can consume before WebSEAL generates warning messages. WebSEAL continues
processing requests for this session until it reaches the configured
concurrent-session-threads-hard-limit.

For example, if the following entries are set then WebSEAL generates warnings
when the number of threads for a user session exceeds the soft limit of five.
WebSEAL continues to process requests until the hard limit of 10 is reached. Any
further requests cause WebSEAL to return an error to the client.
[server]
concurrent-session-threads-soft-limit = 5
concurrent-session-threads-hard-limit = 10

Session cache limitation

Limitation:

When you delete a user from the registry, the credentials of that user in the
WebSEAL session cache are not removed. If the user has a browser session active
at the time the account is deleted, the user can continue to browse, based on the
existing session cache entry.

The credentials of the user are not reevaluated, based on the current information in
the user registry, until either a new login occurs or the session cache entry expires.
The contents of the WebSEAL session cache are cleared when the user logs out of
the browser session.

Workaround:

As the administrator, you can force an immediate halt to user activity in a domain
by adding an explicit entry to the default WebSEAL ACL policy for the deleted
user with the traverse (T) permission removed. You can also terminate the session
manually, using either from a command line or using a Security Access Manager
administration API function. See “Terminating user sessions” on page 590.

266 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 16. Failover solutions

This chapter discusses the failover cookie solution for maintaining session state in
clustered environments.

Topic Index:
v “Failover authentication concepts”
v “Failover authentication configuration” on page 274
v “Failover for non-sticky failover environments” on page 282
v “Change password operation in a failover environment” on page 284

Failover cookies and the session management server (SMS) are alternate solutions
to the same challenge of maintaining session state in clustered server
environments. See also Chapter 20, “Configuration for WebSEAL using SMS,” on
page 319.

Failover authentication concepts

WebSEAL provides an authentication method that preserves an authenticated
session between a client and WebSEAL when the WebSEAL server becomes
unavailable in a replicated server (fault-tolerant) environment. The method is
called failover authentication.

This section contains the following topics:
v “The failover environment”
v “Failover cookie” on page 268
v “Failover authentication process flow” on page 269
v “Example failover configuration” on page 269
v “Addition of data to a failover cookie” on page 270
v “Extraction of data from a failover cookie” on page 272
v “Domain-wide failover authentication” on page 273

See also “Failover authentication configuration” on page 274.

The failover environment

The failover cookie is not actually a mechanism for maintaining sessions; it is a
mechanism for transparently reauthenticating the user. Failover authentication is
most commonly used in a scenario where client requests are directed by a load
balancing mechanism to two or more replicated WebSEAL servers.

The replicated servers have identical configuration. They contain replica copies of
the WebSEAL protected object space, junction database, and (optionally) dynurl
database.

The client is not aware of the replicated front-end server configuration. The load
balancing mechanism is the single point of contact for the requested resource. The
load balancer connects the client with an available server.

© Copyright IBM Corp. 2002, 2013 267

If the server where the client is connected suddenly becomes unavailable, the load
balancer redirects the request to one of the other replicated servers. This action
causes the loss of the original session-to-credential mapping. The client is new to
this substitute server and is normally forced to login again.

The purpose of failover authentication is to prevent forced login when the
WebSEAL server that has the original session with the client suddenly becomes
unavailable. Failover authentication enables the client to connect to another
WebSEAL server, and create an authentication session containing the same user
session data and user credentials.

Failover authentication in a replicated server deployment provides two useful
features:
v Performance improvements through load balancing
v Failover of client sessions between WebSEAL servers

References:

v For more information on the replication of WebSEAL servers, see “Replicating
front-end WebSEAL servers” on page 579.

v For information on failover solutions in an environment without session affinity
(non-sticky), see “Failover for non-sticky failover environments” on page 282.

Failover cookie

WebSEAL supports failover authentication of a user through a failover cookie. The
failover cookie can be a server-specific cookie or a domain cookie. The failover
cookie contains encrypted client-specific data, such as:
v User name
v Cookie-creation time stamp
v Original authentication method
v Attribute list

By default, the attribute list contains the user's current authentication level.
WebSEAL can be configured to add additional extended attributes to the attribute
list. See “Failover for non-sticky failover environments” on page 282 for a failover
solution that stores the client's session ID as an extended attribute.

Client

Load-balancing
mechanism

WS1

WS2

WS3

Replicated Front-end
WebSEAL Servers

Back-end
Resources

Figure 21. Failover for replicated WebSEAL servers

268 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The cookie is placed on the browser when the client first connects. If the initial
WebSEAL server becomes temporarily unavailable, the cookie is presented to the
substitute server.

The replicated WebSEAL servers share a common key that can decrypt the cookie
information. When the substitute replica WebSEAL server receives this cookie, it
decrypts the cookie, and uses the user name and authentication method to
regenerate the client's credential. WebSEAL can also be configured to copy any
extended attributes from the cookie to the user credential.

The client can now establish a new session with a replica WebSEAL server without
being prompted to log in.

The failover cookie is not a mechanism for maintaining session state. The failover
cookie is a mechanism for transparently reauthenticating a user.

Note: Failover cookies can be used over either HTTP or HTTPS.

Failover authentication process flow

The following steps explain the sequence of events for a failover authentication
event:
1. The client (browser) attempts to access a protected resource. The client request

goes to a load balancer that controls access to the replicated WebSEAL servers.
2. The load balancer selects a target WebSEAL server and forwards the user

request.
3. The client successfully authenticates to WebSEAL using one of the supported

authentication methods.
4. WebSEAL creates a failover authentication cookie that contains client

authentication information, and sends the cookie to the client browser.
5. The browser sends the cookie through the load balancer to WebSEAL with each

subsequent request. The WebSEAL server processes each request.
6. If the load balancer finds that the original WebSEAL server is no longer

available, the client request is directed to another replicated WebSEAL server.
7. The replicated WebSEAL server is configured to check for the existence of a

failover authentication cookie every time it attempts to authenticate a user.
8. The replicated WebSEAL server uses the information in the cookie to establish a

session with the client, without requiring the client to manually log in again.
The client's session data and user credential are built, and the request for the
protected resource is processed.

9. The change of session from one WebSEAL server to another WebSEAL server is
transparent to the client. Because the WebSEAL servers contain identical
resources, the client session continues uninterrupted.

Example failover configuration
In this example, a WebSEAL server is configured to support forms authentication
and failover authentication.
1. The user authenticates to WebSEAL using forms authentication.
2. The WebSEAL server sends a failover authentication cookie to each client

(browser).
The cookie data specifies that the cookie was created in a forms authentication
environment.

Chapter 16. Failover solutions 269

3. When the WebSEAL server becomes unavailable, the failover cookie is sent to a
second WebSEAL server.

4. The second WebSEAL server receives the failover cookie, and examines it to
determine the user's previous authentication method.

5. The second WebSEAL server uses data from the cookie to authenticate the user
and build a user credential.

Configuration instructions in this chapter:
v “Adding the authentication strength level” on page 277

Addition of data to a failover cookie

WebSEAL automatically adds specific data from the user session to each failover
authentication cookie. WebSEAL can be configured to add additional information
from the client data maintained in the credential cache.

By default WebSEAL adds the following data to each cookie:
v User name

This name corresponds to the name used to identify the user in the user registry

Note: When an authenticated user has used the WebSEAL switch user function
to obtain the effective identity of another user, the identity of the other user is
not added to the cookie. Only the original authenticated user identity is added
to the cookie.

v Authentication method

The authentication method used to authenticate the user to WebSEAL.
v Cookie creation time

The system time when the cookie was created.

WebSEAL also creates an attribute list containing additional data. By default, the
attribute list contains one value:
v Authentication strength level

An integer value that corresponds to the WebSEAL authentication strength level
(also an integer value) that is assigned on the local WebSEAL server to the
current authentication method. Authentication strength, also known as step-up
authentication, enables a user to authenticate to a different authentication
method without having to logout.

WebSEAL defines additional user data that can be added to the cookie attribute
list:
v Session lifetime timestamp

When a user authenticates, WebSEAL tracks the age or lifetime of the user entry
in the WebSEAL session cache. The session lifetime timestamp consists of the
current time, advanced by the number of seconds configured for the maximum
time that a user's session data can remain in the session cache. When the current
system time exceeds the timestamp value, WebSEAL invalidates the user's entry
in the session cache (including the user credentials).
WebSEAL can be configured to add the session lifetime timestamp to the cookie.
When this timestamp is added to the cookie, the session lifetime timer can be
preserved across failover events. WebSEAL administrators can choose whether or
not to reset the client's session timer when the client session is established on a
replicated server.

270 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note that successful use of this feature is dependent on synchronization of
clocks between replicated WebSEAL servers. If clock skew becomes great,
sessions can expire at unintended times.

v Session activity timestamp

The session activity timestamp is a time value placed as an attribute in the
failover cookie when it is created at the server that responds to the initial
request.
This timestamp differs from the session inactivity timeout maintained for the
WebSEAL session cache. The system activity timestamp for failover cookies is
calculated by combining the Current system time with the Maximum time. The
timestamp is updated at a frequency determined by the Time interval.

Current® system time
The current time on the WebSEAL server in the HH:MMformat.

Example value: 13:30.

Maximum time
The number of seconds that a user's session can remain inactive
([session], inactive-timeout).

Example value: 600

Time interval
The number of seconds between updates to the failover authentication
cookie ([failover], failover-update-cookie).

Example value: 300
The timestamp value in the failover cookie in the preceding example is 13:40. If
a future request during this session is failed-over from Server 1 to Server2,
Server2 accepts the request only if the time on Server2 is less than 13:40. If the
time on Server2 is greater than or equal to 13:40, Server2 rejects the request and
prompts the user to login to Server2.
The setting for the interval between failover cookie updates affects performance.
Administrators must choose a balance between optimal performance and
absolute accuracy of the timestamp in the cookie. To keep the timestamp most
accurate, failover cookies should be updated every time the user makes a
request. However, frequent updating of cookie contents incurs overhead and
decreases performance.
Each administrator must choose an interval that best fits the WebSEAL
deployment. In some cases, an update of the failover cookie with every user
request is appropriate. In other cases, the administrator might choose to never
update the timestamp in the failover cookie.

v Additional extended attributes

Administrators can configure WebSEAL to insert a customized set of attributes
into a failover cookie. Attributes can be specified individually or in a group. To
specify a group of attributes, use wildcard pattern matching in configuration file
entries.
This feature is useful in deployments that also use customized authentication
modules to insert special attributes into a user credential. By specifying those
attributes in the WebSEAL configuration file, the administrator can ensure that
the attributes are available to add to the recreated user credential during failover
authentication.

Note: The maximum size of a failover authentication cookie is 4 kilobytes (4096
bytes)

Chapter 16. Failover solutions 271

Configuration instructions in this chapter:
v “Adding the authentication strength level” on page 277
v “Addition of session lifetime timestamp” on page 277
v “Adding the session activity timestamp” on page 278
v “Addition of an interval for updating the activity timestamp” on page 279
v “Addition of extended attributes” on page 279

Extraction of data from a failover cookie

When a failover authentication event occurs, a replica WebSEAL server receives a
failover authentication cookie and by default extracts the following data from each
cookie:
v User name
v Authentication method
v Cookie creation time

WebSEAL first determines if the cookie is valid by subtracting the cookie creation
time from the system time, and comparing this value against the WebSEAL
configuration file entry for failover cookie lifetime.

If the cookie lifetime has been exceeded, the cookie is not valid, and failover
authentication is not attempted. If the cookie lifetime has not been exceeded,
WebSEAL uses the user name and authentication method to authenticate the user
and build a user credential.

WebSEAL next checks configuration settings to determine if additional cookie data
should be extracted and evaluated. Note that the WebSEAL server does not by
default extract any other attributes from the failover authentication cookie. Each
additional attribute to be extracted must be specified in the WebSEAL
configuration file. Wildcard pattern matching can be used to obtain groups of
attributes.

WebSEAL can be configured to extract the following defined attributes:
v Authentication strength level

When this value is extracted, WebSEAL uses it to ensure that the user is
authenticated with the authentication method necessary to maintain the specified
authentication level.
Note that WebSEAL can obtain authentication strength levels from several
different places:
– Failover cookie
– Failover authentication library
– Cross-domain authentication service
– Entitlements service
The authentication strength level extracted from the failover cookie takes
precedence over levels obtained from the other places.

v Session lifetime timestamp

WebSEAL can use this timestamp to determine if the user's entry in the original
server's session cache would have expired. If it would have, WebSEAL discards
the cookie and all its potential credential attributes. The session lifetime is not
preserved, and the user is prompted to log in.

v Session inactivity timestamp

272 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

WebSEAL can use this timestamp to determine if the user's entry in the original
server's session cache would have been inactive for too long. If it would have,
WebSEAL discards the cookie and all its potential credential attributes. The
session lifetime is not preserved, and the user is prompted to log in.

Note: Successful use of these timestamps requires synchronization of clocks
between replicated WebSEAL servers. If clock skew becomes great, sessions will
expire or become inactive at unintended times.

v Additional extended attributes

These include user-defined customized attributes, such as those generated by
cross-domain authentication services. WebSEAL adds the attributes to the user
credential.

Attributes that are not specified in the WebSEAL configuration file will be ignored
and not extracted. In addition, administrators can specify that certain attributes
must be ignored during failover cookie extraction. Although ignore is the default
behavior, this specification can be useful, for example, to ensure that user attributes
are obtained from the user registry instead of from the failover cookie.

Domain-wide failover authentication

WebSEAL supports an optional configuration that enables failover authentication
cookies to be marked as available for use during failover authentication to any and
all other WebSEAL servers in the DNS domain. This configuration option enables
failover authentication cookies to be used in deployments that do not necessarily
have a load balancer and replicated WebSEAL servers.

When a client session goes through a failover authentication event to a replicated
WebSEAL server, the client continues to access the same set of protected resources.
When a client session goes through a failover authentication event to a WebSEAL
server that is not replicated, it is possible that a different set of resources will be
available to the client. In large deployments, this partitioning of resources within
the DNS domain is common. This partitioning can be done for performance
reasons and for administrative purposes.

Domain-wide failover authentication can be used to redirect a client to another
WebSEAL server at a time when the client's requests have led it to request a
resource that is not available through the local WebSEAL server. In this case, the
client (browser) is redirected to another WebSEAL server. The receiving WebSEAL
server can be configured to look for failover authentication cookies. The WebSEAL
server attempts to authenticate the client and recognizes the failover authentication
cookie. By using the cookie, the WebSEAL server does not need to prompt the
client for login information, but instead can establish a session with the client and
construct a valid set of user credentials.

Note: Enabling domain-wide failover authentication introduces additional security
risks to the WebSEAL deployment, because the failover cookie can be sent to any
server that is in the same DNS domain as the WebSEAL server. If an attacker
controls any Web server in the domain or can compromise the DNS server for the
domain, they can hijack failover cookies and impersonate users.

Configuration instructions in this chapter:
v “Enabling domain-wide failover cookies” on page 280

Chapter 16. Failover solutions 273

Failover authentication configuration

This section contains the following topics:
v “Configuring failover authentication”
v “Protocol for failover cookies” on page 275
v “Generating a key pair to encrypt and decrypt cookie data” on page 275
v “Specifying the failover cookie lifetime” on page 276
v “Specifying UTF-8 encoding on cookie strings” on page 276
v “Adding the authentication strength level” on page 277
v “Reissue of missing failover cookies” on page 277
v “Addition of session lifetime timestamp” on page 277
v “Adding the session activity timestamp” on page 278
v “Addition of an interval for updating the activity timestamp” on page 279
v “Addition of extended attributes” on page 279
v “Attributes for extraction” on page 280
v “Enabling domain-wide failover cookies” on page 280
v “Validation of a lifetime timestamp” on page 281
v “Validation of an activity timestamp” on page 281

See also “Failover authentication concepts” on page 267.

Configuring failover authentication
You can configure WebSEAL for failover authentication.

About this task

To configure failover authentication, complete the following tasks:

Note:

For more information about the configuration entries that are related to these tasks,
see IBM Security Web Gateway Appliance: Web Reverse Proxy Stanza Reference.

Procedure
1. Stop the WebSEAL server.
2. To enable failover authentication, complete each of the following tasks:

a. “Protocol for failover cookies” on page 275
b. “Generating a key pair to encrypt and decrypt cookie data” on page 275
c. “Specifying the failover cookie lifetime” on page 276
d. “Specifying UTF-8 encoding on cookie strings” on page 276
e. “Adding the authentication strength level” on page 277
f. “Reissue of missing failover cookies” on page 277

3. Optionally, you can configure WebSEAL to maintain session state across
failover authentication sessions. If this configuration is appropriate for your
deployment, complete the following instructions:
a. “Addition of session lifetime timestamp” on page 277
b. “Adding the session activity timestamp” on page 278
c. “Addition of an interval for updating the activity timestamp” on page 279

274 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

4. Optionally, you can configure WebSEAL to add extended attributes to the
failover cookie:
v “Addition of extended attributes” on page 279

5. When WebSEAL is configured to add attributes to the failover cookie, you must
configure WebSEAL to extract the attributes when reading the cookie:
v “Attributes for extraction” on page 280

6. Optionally, you can enable failover authentication cookies for use on any
WebSEAL server in the domain. If this configuration is appropriate for your
deployment, see:
v “Enabling domain-wide failover cookies” on page 280

7. If you want to maintain compatibility with failover authentication cookies
generated by WebSEAL servers from versions before Version 6.0, complete the
following instructions:
a. “Specifying UTF-8 encoding on cookie strings” on page 276
b. “Validation of a lifetime timestamp” on page 281
c. “Validation of an activity timestamp” on page 281

8. After completing all the instructions applicable to your deployment, restart the
WebSEAL server.

Protocol for failover cookies

Failover authentication cookies are disabled by default. To enable failover cookies,
edit the WebSEAL configuration file.

In the [failover] stanza, specify a value that instructs WebSEAL how to handle
requests with failover cookies. The following table shows the valid values.

Table 33. Supported protocols for failover cookies

Stanza Entry Description

failover-auth = http Failover cookies enabled over HTTP protocol.

failover-auth = https Failover cookies enabled over HTTPS (SSL) protocol.

failover-auth = both Failover cookies enabled over both HTTP and HTTPS
(SSL) protocol.

Note: Enabling failover authentication to either HTTP or HTTPS causes cookies to
be written to clients connecting over all protocols. The value specified in the
failover-auth stanza entry dictates the protocol over which cookies will be
accepted for authentication during a failover authentication event.

Generating a key pair to encrypt and decrypt cookie data

About this task

Use the LMI to generate a key pair that can secure the cookie data. WebSEAL
provides this utility. You can generate a symmetric key pair that can encrypt and
decrypt the data in a failover cookie.

Note:

v Do not reuse key pairs (used to encrypt and decrypt cookie data) generated for a
specific load-balanced environment (configured for failover) in any other

Chapter 16. Failover solutions 275

load-balanced environments. Always generate unique key pairs for each
load-balanced environment configured for failover authentication.

v If you do not configure WebSEAL to encrypt failover authentication cookies, and
you have enabled failover authentication, WebSEAL generates an error and
refuses to start. Failover authentication cookies must be encrypted.

Procedure
1. Use the LMI to generate the key file, such as ws.key. Use the SSO Keys

management page to create the key file. To access this page, go to Secure -
Reverse Proxy Settings > Global Keys > SSO Keys.

2. Edit the WebSEAL configuration file. In the [failover] stanza, specify the key
file.
[failover]
failover-cookies-keyfile = keyfile_name

3. Manually copy the key file to each of the remaining replicated servers.
4. On each replicated server, edit the WebSEAL configuration file to supply the

correct path name to failover-cookies-keyfile in the [failover] stanza.

Specifying the failover cookie lifetime

About this task

Specify the failover cookie lifetime value in the WebSEAL configuration file.

Procedure

Edit the WebSEAL configuration file. Specify the valid lifetime (in minutes) for the
failover cookie. The default lifetime is 60 minutes. For example:
[failover]
failover-cookie-lifetime = 60

NOTE: WebSEAL does not utilize the expires attribute that is contained in a
standard HTTP failover cookie. Instead it utilizes an expiration value that is
contained within the token itself. As a result, the lifetime of the cookie expires
when the session ends, such as exiting the browser, or when the token expires.

Specifying UTF-8 encoding on cookie strings

About this task

Use UTF-8 when user names or credential attributes in the cookie are not encoded
in the same code page as the one that the WebSEAL server is using. By default,
WebSEAL servers use UTF-8 encoding. When all WebSEAL servers in the
WebSEAL deployment use UTF-8 encoding, leave this value at the default setting
of "yes".

Procedure

Edit the WebSEAL configuration file. Specify whether or not WebSEAL should use
UTF-8 encoding on strings within the failover cookies.
[failover]
use-utf8 = yes

The default value is "yes".

276 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Adding the authentication strength level

About this task

To specify authentication strength level in the failover authentication cookie, add
the authentication level to the WebSEAL configuration file.

Procedure

Use the AUTHENTICATON_LEVEL stanza entry as follows:
[failover-add-attributes]
AUTHENTICATION_LEVEL = add

The actual value for AUTHENTICATION_LEVEL is an integer that WebSEAL
tracks internally. You do not need to specify the integer in this stanza.

Reissue of missing failover cookies

In certain proxied environments, it is possible for a client with a valid session to
lose a failover cookie. Such a client can continue to maintain a session with the
initial WebSEAL system. However, without the failover cookie, the client cannot
failover to a new system.

You can use the reissue-missing-failover-cookie stanza entry in the [failover]
stanza of the WebSEAL configuration file to help ensure that a client always has a
failover cookie for the duration of the session when failover authentication is
enabled. Valid values are “yes” (enable) and “no” (disable).

The failover cookie reissue mechanism is disabled by default. For example:
[failover]
reissue-missing-failover-cookie = no

When reissue-missing-failover-cookie = yes, WebSEAL saves any failover
cookie generated for a client in the WebSEAL session cache entry for that client. If
previous cookie contents are already stored in the cache entry, they are removed
and replaced with the new cookie data.

If the client makes a subsequent request to that WebSEAL server and does not
supply the failover cookie in the request, WebSEAL reissues the cached original
failover cookie in the response to the client, based on the following conditions:
v The failover cookie reissue mechanism is enabled:

reissue-missing-failover-cookie = yes

v The client has a valid session.
v Failover authentication is enabled for this client type.
v A failover cookie for this client has been stored in the session cache entry for

that client.
v No other mechanism has generated a new failover cookie for this request.

Addition of session lifetime timestamp

WebSEAL calculates the session lifetime timestamp by combining the following
values:
v Current system time.

Chapter 16. Failover solutions 277

v Maximum lifetime in seconds that an entry is allowed to exist in the WebSEAL
credential cache.
This maximum lifetime in seconds is specified in the WebSEAL configuration file
[session] stanza:
[session]
timeout = 3600

To add this value to the failover authentication cookie, manually edit the WebSEAL
configuration file and add the following entry:
[failover-add-attributes]
session-lifetime-timestamp = add

When a failover incident occurs, the session lifetime value is used to determine the
time remaining for the life of the user's session (the session lifetime value is not
reset at failover). If the session lifetime has expired, the user must login.

Note that this attribute cannot be set by wildcard matching. The exact entry
session-lifetime-timestamp must be entered.

Adding the session activity timestamp

About this task

WebSEAL calculates the session activity timestamp by adding together the
following three values:
v Current system time.

For example: 13:30
v Maximum time (seconds) that a user's session can remain inactive.

The maximum lifetime for inactive cache entries is set in the [session] stanza in
the WebSEAL configuration file. For example
[session]
inactive-timeout = 600

The default value is 600 seconds.
v Time interval (seconds) between updates to the failover authentication cookie.

This value is set in the [failover] stanza in the WebSEAL configuration file. For
example:
[failover]
failover-update-cookie = 300

The default value is -1 seconds. For more information, see “Addition of an
interval for updating the activity timestamp” on page 279.

The timestamp value in this example is 13:50.

Procedure

Edit the WebSEAL configuration file and add the following entry:
[failover-add-attributes]
session-activity-timestamp = add

Note: The attribute cannot be set by wildcard matching. The exact entry
session-activity-timestamp must be entered.

278 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note: When you set failover-update-cookie to a number greater than zero, ensure
that you also set session-activity-timestamp = add. If you do not set
session-activity-timestamp = add, WebSEAL decodes the failover cookie on each
user access. This repetitive action could adversely affect performance.

Addition of an interval for updating the activity timestamp

Optionally, the session activity timestamp in the failover cookie can be updated
during the user's session.

This entry contains an integer value that specifies the interval (in seconds) used to
update the failover cookie's activity timestamp.

The default entry is:
[failover]
failover-update-cookie = -1

When failover-update-cookie is set to 0, the last activity timestamp is updated
with each request.

When failover-update-cookie is set to an integer less than 0 (any negative
number), the last activity timestamp is never updated.

When failover-update-cookie is set to an integer greater than 0, the session
activity timestamp in the cookie is updated at intervals of this number of seconds.

The value chosen for this stanza entry can affect performance. See “Addition of
data to a failover cookie” on page 270.

Note: When you set failover-update-cookie to a number greater than zero, ensure
that you also set session-activity-timestamp = add. If you do not set
session-activity-timestamp = add, WebSEAL will decode the failover cookie on
each user access. This repetitive action could adversely affect performance. See
“Adding the session activity timestamp” on page 278.

Addition of extended attributes

WebSEAL can optionally be configured to place a copy of specified extended
attributes from a user credential into a failover authentication cookie. No extended
attributes are configured by default.

To add extended attributes, add entries to the [failover-add-attributes] stanza in
the WebSEAL configuration file. The syntax is:
[failover-add-attributes]
attribute_pattern = add

The attribute_pattern can be either a specific attribute name, or a not case sensitive
wildcard expression that matches more than one attribute name. For example, to
specify all attributes with the prefix tagvalue_, add the following entry:
[failover-add-attributes]
tagvalue_* = add

The order of the stanza entries is important. Rules that appear earlier in the
[failover-add-attributes] stanza take priority over those placed later in the stanza.

Chapter 16. Failover solutions 279

Attributes that do not match any of the wildcard patterns, or are not explicitly
specified, are not added to the failover cookie.

Attributes for extraction

WebSEAL can optionally be configured to extract attributes from a failover
authentication cookie and place them into a user credential. No attributes are
configured for extraction by default.

Attributes to be extracted are declared in the [failover-restore-attributes] stanza in
the WebSEAL configuration file. The syntax is:
[failover-restore-attributes]
attribute_pattern = {preserve|refresh}

The value preserve tells WebSEAL to extract the attribute and add it to the
credential.

The value refresh tells WebSEAL to ignore the attribute, and not extract it from
the cookie.

The attribute_pattern can be either a specific attribute name, or a case-insensitive
wildcard expression that matches more than one attribute name. For example, to
extract all attributes with the prefix tagvalue_, add the following entry:
[failover-restore-attributes]
tagvalue_* = preserve

Attributes that do not match any patterns specified with the preserve value are not
extracted from the failover authentication cookie.

The order of the stanza entries is important. Rules that appear earlier in
[failover-restore-attributes] take priority over those placed later in the stanza.

The following attributes cannot be matched by a wildcard pattern, but must be
explicitly defined for extraction:
v Authentication level

[failover-restore-attributes]
AUTHENTICATION_LEVEL = preserve

v Session lifetime timestamp
[failover-restore-attributes]
session-lifetime-timestamp = preserve

v Session activity timestamp
[failover-restore-attributes]
session-activity-timestamp = preserve

Enabling domain-wide failover cookies

About this task

You can allow a failover authentication cookie to be used by any WebSEAL server
within the same domain as the WebSEAL server that creates the cookie. This
feature is controlled by a stanza entry in the [failover] stanza.

By default, domain-wide failover cookie functionality is disabled:
[failover]
enable-failover-cookie-for-domain = no

280 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Procedure

To enable the domain-wide failover cookie functionality, set enable-failover-
cookie-for-domain to "yes":
[failover]
enable-failover-cookie-for-domain = yes

For information on the effects of enabling this stanza entry, see “Domain-wide
failover authentication” on page 273.

Validation of a lifetime timestamp

WebSEAL servers can optionally be configured to require that each failover
authentication cookie contain a session lifetime timestamp. The session lifetime
timestamp is not required by default. The default configuration file entry is:
[failover]
failover-require-lifetime-timestamp-validation = no

This stanza entry is used primarily for compatibility with prior versions of
WebSEAL. Failover authentication cookies created by WebSEAL servers prior to
version 5.1 do not contain this timestamp. For compatibility with failover cookies
created by WebSEAL servers prior to version 5.1, set this entry to "no".
v When this value is "no", and the session lifetime timestamp is missing from the

failover cookie, the receiving server will view the cookie as valid.
v When this value is "yes", and the session lifetime timestamp is missing from the

failover cookie, the receiving server will view the cookie as not valid.
v When this value is either "no" or "yes", and the session lifetime timestamp is

present in the failover cookie, the receiving server evaluates the timestamp. If
the timestamp is not valid, the authentication fails. If the timestamp is valid, the
authentication process proceeds.

Note: The session lifetime timestamp is configured separately from the session
activity timestamp.

Validation of an activity timestamp

WebSEAL servers can optionally be configured to require that each failover
authentication cookie contain a session activity timestamp. The session activity
timestamp is not required by default. The default configuration file entry is:
[failover]
failover-require-activity-timestamp-validation = no

This stanza entry is used primarily for compatibility with prior versions of
WebSEAL.
v When this value is "no", and the session activity timestamp is missing from the

failover cookie, the receiving server will view the cookie as valid.
v When this value is "yes", and the session activity timestamp is missing from the

failover cookie, the receiving server will view the cookie as not valid.
v When this value is either "no" or "yes", and the session activity timestamp is

present in the failover cookie, the receiving server evaluates the timestamp. If
the timestamp is not valid, the authentication fails. If the timestamp is valid, the
authentication process proceeds.

Chapter 16. Failover solutions 281

Note: The session activity timestamp is configured separately from the session
lifetime timestamp.

Failover for non-sticky failover environments

This section contains the following topics:
v “Non-sticky failover concepts”
v “Configuring the non-sticky failover solution” on page 283
v “Use of failover cookies with existing WebSEAL features” on page 284

Non-sticky failover concepts

WebSEAL failover authentication is an appropriate solution for a fault-tolerant
environment where client requests are directed by a load balancing mechanism to
two or more replicated WebSEAL servers (see “Failover authentication concepts”
on page 267). Each replica server contains the same content and configuration. If
the server where the client is connected suddenly becomes unavailable, the load
balancer redirects the requests to one of the other replicated servers.

WebSEAL can handle such failover events by issuing an encrypted failover cookie
during the initial authentication of the user. The replica servers share a common
encryption key that is used to encrypt and decrypt this failover cookie. This cookie,
when presented to another WebSEAL replica, contains sufficient information (along
with proof of the replica's own identity) to authenticate the user, build a user
credential, and create a new session on the new replica. The user never receives an
additional login prompt when a failover occurs.

In a fault-tolerant environment, the load balancer manages the physical
distribution of the request load. This discussion uses the terms "sticky" and
"non-sticky" to describe the ability of the load balancing mechanism to maintain (or
not maintain) a connection between the client and a specific server.
v Sticky load distribution maintains a connection between the client and a specific

server. This condition is also described as stateful, or observing server affinity.
v Non-sticky distribution does not maintain a connection between the client and a

specific server. This condition is also described as stateless, or not maintaining
server affinity.

In a sticky environment scenario, the load-balancer keeps the client communicating
with one replica for the duration of the session. In the rare case of that replica
failing, all subsequent requests go to another replica, which is determined by the
load balancer.

In non-sticky environments, the load-balancer does not hold the client to one
replica. During the course of a user session, multiple requests can be directed to
any of the available replica servers at any time.

In either environment, the servers do not share session information and it is
WebSEAL's responsibility to maintain session state between the client and the
servers. WebSEAL maintains session state through use of a session cookie that is
placed on the client browser.

When a client request is switched to another replica server, the failover cookie
prevents an additional login. However, the new replica has no knowledge of any
session state on any other replica and builds a new session cookie that replaces the

282 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

previous session cookie. In a non-sticky load balancing environment, the task of
frequently issuing new cookies and establishing new sessions significantly
degrades both the responsiveness of the user's session and the performance of
WebSEAL.

This performance problem can be reduced by ensuring that all replicas reuse the
original session cookie issued to the client. WebSEAL can be configured to store the
user's original session ID as an extended attribute in the failover cookie.

Each replica involved in handling the client's requests builds a session cache entry
using the original session ID. During subsequent returns to a replica, the server ID
is verified in a secure manner by comparing the ID in the failover cookie attribute
to the ID in the session cookie. If the ID match is successful, the server uses the
existing session cache entry does not issue a new session cookie to the browser.

Note: Whenever possible, configure load balancers to maintain session affinity.
Session affinity provides improved performance, improved user experience, and
makes WebSEAL configuration simpler.

Configuring the non-sticky failover solution

About this task

The following configuration steps enable WebSEAL to reuse a client's original
session ID to improve failover authentication response and performance in a
non-sticky load-balancing environment. WebSEAL reuses the original session ID by
storing the ID as an extended attribute to the failover cookie.

To enable the functionality of including the user's original session ID in the failover
cookie, set the failover-include-session-id stanza entry in the [failover] stanza of
the WebSEAL configuration file to "yes":
[failover]
failover-include-session-id = yes

When you enable the non-sticky failover solution (failover-include-session-id =
yes), you must configure the following four stanza entries correctly. WebSEAL
reports a startup error and fails to start if any of these settings are incorrect:

Procedure
1. The non-sticky failover solution requires the use of the WebSEAL session

cookie, rather than the SSL session ID, to maintain session state over HTTPS.
Verify that the ssl-id-sessions stanza entry in the [session] stanza of the
WebSEAL configuration file is set to "no" (default):
[session]
ssl-id-sessions = no

2. To encode the user's original session ID as an extended attribute in the failover
cookie, set the tagvalue_failover_amweb_session_id stanza entry in the
[failover-add-attributes] stanza of the WebSEAL configuration file to "add":
[failover-add-attributes]
tagvalue_failover_amweb_session_id = add

3. When the user session is switched to another replica for the first time,
WebSEAL (on that replica) must build a credential and session cache entry for
the user, using the information contained in the failover cookie. To ensure that
the session ID (encoded in the failover cookie) is added to the user credential,

Chapter 16. Failover solutions 283

set the tagvalue_failover_amweb_session_id stanza entry in the
[failover-restore-attributes] stanza of the WebSEAL configuration file to
"preserve":
[failover-restore-attributes]
tagvalue_failover_amweb_session_id = preserve

4. The credential refresh feature allows you to update the contents of a user
credential on demand by issuing a pdadmin command (see “Credential
refresh” on page 221). To preserve the session ID attribute used in the
non-sticky failover performance solution during a credential refresh, you must
set the tagvalue_failover_amweb_session_id stanza entry in the
[credential-refresh-attributes] stanza of the WebSEAL configuration file to
"preserve":
[credential-refresh-attributes]
tagvalue_failover_amweb_session_id = preserve

Use of failover cookies with existing WebSEAL features

The following information discusses the impact of the non-sticky failover solution
to other WebSEAL features.
v Switch-user

Failover authentication is not supported for the switch user feature. Therefore,
the non-sticky failover solution is also not supported.

v Authentication methods

The non-sticky failover solution does not affect other supported WebSEAL
authentication methods.

v Reauthentication

The non-sticky failover solution does not affect reauthentication because
reauthentication does not change the user's session ID.

v Authentication strength (step-up)

The non-sticky failover solution does not affect authentication strength policy
(step-up) because authentication strength does not change the user's session ID.

v Credential refresh

The tagvalue_failover_amweb_session_id stanza entry in the
[credential-refresh-attributes] stanza of the WebSEAL configuration file allows
you to preserve the session ID information in a user's credential during a
credential refresh operation. However, the credential refresh command cannot be
used to control credential refresh across multiple replica servers. If you perform
a credential refresh operation in a server cluster environment, you must issue
the credential refresh command to each replica member of the replica set.

Change password operation in a failover environment

The password change operation during authentication can be adversely affected in
a non-sticky load balancing environment. For example, a user receives the expired
password form and completes the password change information required on the
form. When sending the completed form, the load balancer connects to a different
replica server. Because this new server is not aware of the previous contact with
the original server, it prompts the user to log in. The user provides the old
password and is again presented with the expired password form.

The change-password-auth stanza entry in the [acnt-mgt] stanza of the WebSEAL
configuration file allows you to prevent additional login requests during change

284 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

password operations. Setting change-password-auth = yes allows the new replica
server to use the existing authentication information in the change password
request (user name, original password, and new password) to authenticate the user
and change the user's password.

To enable this controlled change password operation in a failover environment, set:
[acnt-mgt]
change-password-auth = yes

For compatibility with versions of WebSEAL prior to version 6.0, the default
setting is "no".

Chapter 16. Failover solutions 285

286 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 17. Session state in non-clustered environments

This chapter discusses basic concepts and procedures for managing session state
between clients and a single WebSEAL server (non-clustered server environment).

For environments where more than one WebSEAL server provides protection to
resources, see Chapter 20, “Configuration for WebSEAL using SMS,” on page 319.

To terminate individual user sessions or all user sessions, see “User session
management for back-end servers” on page 586.

Topic Index:
v “Maintain session state in non-clustered environments”
v “Session cookies” on page 291
v “Customized responses for old session cookies” on page 293
v “Maintain session state with HTTP headers” on page 295
v “Share sessions with Microsoft Office applications” on page 297

Maintain session state in non-clustered environments

This section contains the following topics:
v “Control on session state information over SSL”
v “Use of the same session key over different transports” on page 288
v “Valid session key data types” on page 288
v “Effective session timeout value” on page 290
v “Netscape 4.7x limitation for use-same-session” on page 290

Control on session state information over SSL

The ssl-id-sessions stanza entry, located in the [session] stanza of the WebSEAL
configuration file, allows you to control whether the SSL session ID or another
session key data type is used to maintain the login session for clients accessing
over HTTPS.

If the stanza entry value is set to "yes", the SSL session ID is used for all
authentication methods. For example:
[session]
ssl-id-sessions = yes

If the stanza entry value is set to "no" (default), session cookies are used for most
authentication methods. For example:
[session]
ssl-id-sessions = no

A configuration setting of "no" for this stanza entry results in the following
conditions for clients accessing over HTTPS:
v The SSL session ID is never used to maintain session state.
v The HTTP header is used as session ID data for clients authenticating with

HTTP headers.

© Copyright IBM Corp. 2002, 2013 287

v The IP address is used as session ID data for clients authenticating with IP
addresses.

v Cookies is used to maintain sessions with clients authenticating with all other
methods.

See “Valid session key data types.”

Use of the same session key over different transports

You can configure WebSEAL to use the same session, or not, when a client
authenticates over one type of transport (HTTP, for example), establishes a session,
and then connects over another type of transport (HTTPS, for example).

The use-same-session stanza entry, located in the [session] stanza of the WebSEAL
configuration file, provides the following two choices:
v No

When a client authenticates over one transport, establishes a session, and then
connects over another transport, the client must authenticate again. A separate
session is created using a second session key. The two sessions are maintained
independently in the WebSEAL session cache. The appropriate session key used
for future connections is determined by the transport that the client uses.
[session]
use-same-session = no

v Yes

When a client authenticates over one transport, establishes a session, and then
connects over another transport, the client uses the same session and
corresponding session key that was created for the first transport. The client is
not required to authenticate a second time.
[session]
use-same-session = yes

A "yes" configuration setting for this stanza entry results in the following
conditions:
v The HTTP header is used to maintain sessions for clients accessing with HTTP

headers over all transport types.
v The IP address is used to maintain sessions for clients accessing with IP

addresses.
v Session cookies are used to maintain sessions for all other authentication

methods.
v The ssl-id-sessions configuration is ignored; the resulting behavior is the same

as if ssl-id-sessions were set to “no”.
This logic is important because HTTP clients do not have an SSL session ID
available as session data.

v Because the cookies are available to both HTTP and HTTPS clients, they are not
flagged with the "secure" cookie attribute.

See “Valid session key data types.”

Valid session key data types
You can configure the session key data type that WebSEAL uses for each
authentication method.

288 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The session key data type used with an authentication method is determined by
specific combinations of the following configuration items:
v Setting for the ssl-id-sessions stanza entry.
v Setting for the use-same-session stanza entry.
v Header names defined in the [session-http-headers] stanza.

Table legend:
v C (session cookie); H (HTTP header); IP (IP address); SSL (SSL session ID)
v S-I-S (ssl-id-sessions); U-S-S (use-same-session); S-H-H ([session-http-headers])
v If a stanza entry appears in the table header, the value of the entry is "yes".

Otherwise, the value is "no".

Valid Session Key Data Types for HTTPS Clients

Authn
Method

-
-
-

S-I-S
-
-

-
S-H-H

-

-
-

U-S-S

S-I-S
S-H-H

-

S-I-S
-

U-S-S

-
S-H-H
U-S-S

S-I-S
S-H-H
U-S-S

BA C SSL H C SSL C H H

CDSSO C SSL H C SSL C H H

Certificate C SSL H C SSL C H H

External
authn
interface

C SSL H C SSL C H H

Failover
cookie

C SSL H C SSL C H H

LTPA
cookie

C SSL H C SSL C H H

Forms C SSL H C SSL C H H

Valid Session Key Data Types for HTTP Clients

Authn Method

-
-
-

-
S-H-H

-

-
-

U-S-S

-
S-H-H
U-S-S

BA C H C H

CDSSO C H C H

Certificate C H C H

External
authentication
interface

C H C H

Failover cookie C H C H

LTPA cookie C H C H

Forms C H C H

Chapter 17. Session state in non-clustered environments 289

Effective session timeout value

When ssl-id-sessions is set to "yes", several different values can determine the
actual timeout for the session.

The session cache entry lifetime timeout is set in the timeout entry in the [session]
stanza.

The session inactivity timeout is set by the inactive-timeout entry in the same
stanza.

SSL timeouts are set in the [ssl] stanza, where both ssl-v2–timeout and
ssl-v3–timeout stanza entries are declared.

When ssl-id-sessions = yes, the actual effective session timeout is set to the
lowest of the values set for each of the following timeout settings:
[session]
timeout
inactive-timeout

[ssl]
ssl-v2-timeout
ssl-v3-timeout

Netscape 4.7x limitation for use-same-session

Problem:

The use-same-session feature fails on Netscape Navigator Version 4.7x when
requests made to WebSEAL include the port number in the URL, such as:
http://webseal:80

Explanation:

When WebSEAL is configured for the default HTTP/HTTPS ports, and the port
number is not included in the URL, the request succeeds. Requests fail when
WebSEAL is configured on non-default ports and the use-same-session = yes
configuration option is enabled.

Netscape 4.7x does not consider host names with non-standard port numbers to be
in the same domain as those with different port numbers. For example, when you
access:
https://hostname:443

WebSEAL sets a cookie. When you later access:
http://hostname:80

Netscape does not send the cookie because domain:80 is not the same as
domain:443.

Workaround:

Upgrade to Netscape Navigator version 6.2, or higher.

290 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Session cookies

This section contains the following topics:
v “Session cookies concepts”
v “Conditions for using session cookies”
v “Customization of the session cookie name” on page 292
v “Sending session cookies with each request” on page 292

Session cookies concepts

One method of maintaining session state between a client and a server is to use a
cookie to hold this session information. The server packages the session key for a
particular client in a cookie and sends it to the client's browser. For each new
request, the browser re-identifies itself by sending the cookie (with the session key)
back to the server.

Session cookies offer a possible solution for situations when the client uses a
browser that renegotiates its SSL session after very short periods of time. For
example, some versions of the Microsoft Internet Explorer browser renegotiate SSL
sessions every two or three minutes.

The session cookie is a server-specific cookie that cannot be passed to any machine
other than the one that generated the cookie. The session cookie allows the
browser to re-identify itself to the single, unique server to which the client had
previously authenticated. When using session cookies, WebSEAL does not need to
prompt the client for another login.

The session key stored in the session cookie contains only a random number
identifier (“key”) that is used to index the server's session cache. There is no other
information exposed in the session cookie.

Conditions for using session cookies

The following basic conditions apply to session cookies:
v The session cookie contains session information only; it does not contain identity

information.
v The session cookie is located only in the browser memory (it is not written to

the browser cookie jar on the disk).
v The session cookie has a limited lifetime.
v The session cookie is a server-specific cookie; the browser can send this cookie in

a request only to the same host where the cookie was created.
v Client browsers can be configured to either accept or reject cookies. If a client

browser rejects a session cookie and then successfully logs in, WebSEAL must,
for each additional request by the client, establish a new session by
reauthenticating the user. With basic authentication (BA) however, WebSEAL
uses BA header information to reauthenticate the user and the user never
experiences a prompt to re-login. However, the overhead of reauthentication and
session creation can reduce server performance.

Chapter 17. Session state in non-clustered environments 291

Customization of the session cookie name

You can customize the names of the WebSEAL session cookies. The WebSEAL
configuration file provides different default names for session cookies used over
TCP and SSL connections:
[session]
tcp-session-cookie-name = PD-H-SESSION-ID
ssl-session-cookie-name = PD-S-SESSION-ID

Conditions for modifying the default cookie names:
v Cookie names must be alphanumeric.
v Cookie names must be unique.
v To use the same cookie for both TCP and SSL communication, configure

use-same-session=yes.
v These stanza entries affect both host and domain type cookies.

Sending session cookies with each request

About this task

When you use cookies to maintain session state, the cookie is sent to the browser
only once, following a successful login. However, some browsers enforce a limit on
the number of in-memory cookies they can store concurrently.

In some environments, applications can place a large number of in-memory
cookies per domain on client systems. In this case, any configured WebSEAL
session cookie, failover cookie or LTPA cookie can be easily replaced by another
cookie.

When you configure WebSEAL to use session cookies, you can additionally set the
resend-webseal-cookies stanza entry, located in the [session] stanza of the
WebSEAL configuration file. This stanza entry instructs WebSEAL to re-send the
session cookie to the browser for all responses to requests that originally contained
a session cookie. This action helps to ensure that the session cookie remains in the
browser memory.

The resend-webseal-cookies stanza entry has a default setting of "no":
[session]
resend-webseal-cookies = no

Procedure

Enable WebSEAL to examine each request for a session cookie and include the
cookie in the corresponding response by configuring the stanza entry to "yes".
[session]
resend-webseal-cookies = yes

Note: The resend-webseal-cookies stanza entry produces the same results for
failover cookies, e-community cookies and LTPA cookies.

292 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Customized responses for old session cookies

This section contains the following topics:
v “Session removal and old session cookie concepts”
v “Enabling customized responses for old session cookies” on page 294

Session removal and old session cookie concepts
When a user uses the /pkmslogout command to log out of a session, the entry for
that user in the WebSEAL session cache is automatically removed.

If the session cookie for that session remains on the browser of the user, it becomes
an old, or stale cookie. A stale cookie no longer maps to an existing entry in the
WebSEAL session cache. When the user makes a subsequent request for a
protected object, WebSEAL requires authentication and returns a login form. The
response to the new request under these conditions must be expected by the user.

If the user session was removed from the WebSEAL session cache for unknown
reasons, the original session cookie remaining on the browser of the user becomes
a stale cookie. The stale cookie does not map to an existing entry in the WebSEAL
session cache. Session timeout, session displacement, or session termination are
some of the reasons which might cause the session removal from WebSEAL, and
might be unknown to the user.

When the user requests for a protected object, WebSEAL requires authentication,
and returns a login form. This response to the new request under these conditions
might be unexpected to the user.

You can customize the login response to contain additional information that helps
to explain the reason for an unexpected login prompt. Follow these steps to
provide a customized response:
1. Trigger a custom login response whenever WebSEAL receives a stale session

cookie that does not map to any existing entry in the session cache.
See “Triggering a custom login response.”

2. Configure WebSEAL to attempt to remove the session cookie from browsers
during standard logouts by using the /pkmslogout command.
See “Removing cookies from browsers during normal logout” on page 294.

Triggering a custom login response
The standard WebSEAL login forms contain a macro called OLDSESSION. The
OLDSESSION macro can be blank by default, or have a value of 1. When WebSEAL
receives a stale session cookie that does not map to any existing entry in the
session cache, the OLDSESSION macro value is set to 1.

You can cause the appropriate WebSEAL login form, such as login.html, to do the
following actions:
v Read the value of the OLDSESSION macro.
v Trigger a custom response to the user when the value of the macro equals 1.

The custom response informs the user that it is possible that their session was
terminated because of inactivity.

Chapter 17. Session state in non-clustered environments 293

Removing cookies from browsers during normal logout
By default, WebSEAL does not remove cookies from client systems during session
termination, regardless of the cause of the termination. The termination might
either be initiated by a client logout or by the server. This means that the value of
the OLDSESSION macro is always set to 1 when a user makes a subsequent request
after the session termination. The scenario makes it impossible to trigger a custom
login response.

Procedure

Configure WebSEAL to attempt to remove cookies from client systems when the
user logs out by sending a cookie in the corresponding response.
Typically, the only time WebSEAL receives stale cookies is when the terminated
sessions were not initiated by the user. The scenario requires a custom login
response.

Important: While typically successful, there are times when configuring WebSEAL
to remove a cookie might not remove cookies from client systems. For example,
following a request for /pkmslogout and a successful session termination at
WebSEAL, a network issue might interfere with the logout response transmission.
In the scenario, the stale session cookie is left on the client system.

For this reason, security-sensitive decisions must not be based on the presence of
the cookie, or the OLDSESSION macro value.

Note: An intentional logout does not leave a user with a stale cookie because it is
normal browser operation to remove session cookies when a browser closes. A user
logs out intentionally by closing the browser application, and the OLDSESSION
macro is not set during the next request by that user.

However, the user session cache entry remains on the WebSEAL server, or Session
Management Server. It continues to count against the max-concurrent-web-
sessions policy setting until the cache entry expires because of lifetime or
inactivity timeout.

Enabling customized responses for old session cookies
You can configure WebSEAL to enable customized responses for old session
cookies.

Procedure
1. Configure WebSEAL to remove session cookies from the browsers of users who

logs out in a standard manner.
The logout-remove-cookie stanza entry in the [session] WebSEAL
configuration file stanza controls the removal of session cookies from the
browsers of users who does a standard log out.
The user enters the /pkmslogout command in the command line to log out in a
standard manner.
A value of yes sets WebSEAL to attempt to remove the cookies from the
browsers of users who logs out in a standard manner. For example:[session]
logout-remove-cookie = yes.

2. Customize the appropriate WebSEAL login form, such as login.html to do the
following actions:
v To read the value of the OLDSESSION macro.
v To generate a custom response to the user when the macro value is set to 1.

294 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

You can use any of the following tools to check the OLDSESSION macro in the
login form:
v Javascript
v HTML Meta tags
v Local response redirection

See “Local response redirection” on page 90 for details.

Results

Compatibility with WebSEAL versions before version 6.0:

The logout-remove-cookie = no default setting sets WebSEAL not to remove
cookies from the browsers of users who logs out in a standard manner. For
example:
[session]
logout-remove-cookie = no

The default no value exists for compatibility with WebSEAL versions before version
6.0.

Maintain session state with HTTP headers

This section contains the following topics:
v “HTTP header session key concepts”
v “Configuring HTTP headers to maintain session state”
v “Setup for requiring requests from an MPA” on page 297
v

HTTP header session key concepts
WebSEAL provides support for maintaining session state using HTTP headers as
session keys, independent of the authentication method used.

For example, to allow simultaneous mobile device and internet user support, a
Tivoli Federated Identity Manager environment requires that WebSEAL use a
pre-supplied HTTP header to maintain session state for wireless device clients.

In this scenario, mobile device users connect to a WebSEAL-protected intranet
through an authenticated multiplexing proxy agent (MPA) gateway. The WAP
gateway serves as a Liberty-enabled proxy (LEP). An LEP is a networking standard
created by the Liberty Alliance Project (LAP).

Session state with clients is maintained and managed through Mobile Station
Integrated Services Digital Network (MSISDN) HTTP headers. HTTP headers used
as session keys are only accepted by WebSEAL when requests are proxied through
an authenticated multiplexing proxy agent (MPA).

Configuring HTTP headers to maintain session state

About this task

To configure HTTP headers to maintain session state, specify the header names in
the [session-http-headers] stanza of the WebSEAL configuration file.

Chapter 17. Session state in non-clustered environments 295

Each header is listed on a per-transport basis. The same header can be listed for
both transports. Valid transports include "http" and "https". Use the following
syntax:
[session-http-headers]
header-name = http|https

For example:
[session-http-headers]
entrust-client = http
entrust-client = https

Conditions for HTTP header session key configuration:

v To allow HTTP headers to be used for maintaining session state, you must set:
[session]
ssl-id-sessions = no

v If ssl-id-sessions = yes, the [session-http-headers] stanza is ignored. An
exception occurs if MPA support is enabled:
[mpa]
mpa = yes

v WebSEAL must be configured to accept only HTTP headers in requests proxied
through an authenticated multiplexing proxy agent (MPA). See “Setup for
requiring requests from an MPA” on page 297.

v List all headers that are to be used for maintaining sessions.
v Limit the header list to no more than 20 entries per transport.
v Do not include the colon (:) character in the header names.
v HTTP headers can be enabled and disabled on a per-transport basis.

Process flow for establishing session state with HTTP headers:

v Session cookies always take precedence over HTTP headers for maintaining
session state.
Upon receiving a request, WebSEAL first looks for a session cookie before
continuing to look for configured HTTP headers.
If an incoming request contains a WebSEAL session cookie, WebSEAL does not
look for any configured HTTP headers.

v If a request (containing no session cookie) has an HTTP header matching an
entry in the [session-http-headers] stanza, that HTTP header is used to maintain
session state for that client.

v More than one header can be entered into the [session-http-headers] stanza.
WebSEAL stops searching requests when the first matching HTTP header is
found, regardless of whether or not the header is a key to an existing cache
entry.
For example, two headers are configured in the order header A, then header B.
A session is established using header B. Header A is for some reason added to a
later request from the same client. WebSEAL searches the [session-http-headers]
stanza and finds a match with header A. Because the existing entry for that
client in the session cache is based on header B, WebSEAL does not find an
existing session cache entry and prompts the user to authenticate.

v If no entries exist in the [session-http-headers] stanza, WebSEAL uses session
cookies to maintain session state.

v If ssl-id-sessions = no and none of the configured HTTP headers are found in
an incoming request, WebSEAL uses session cookies to maintain sessions.

296 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Setup for requiring requests from an MPA

The use of HTTP headers to maintain session state involves the risk that the
session keys can be stolen and user sessions spoofed. In an environment involving
clients with mobile devices, MSISDN telephone numbers are used as the values of
the session keys. Unlike the large size and random nature of session cookie key
values, telephone numbers have a smaller, more predictable, and therefore less
secure format.

In a secure WebSEAL environment, HTTP header session keys are only valid when
requests are proxied through an authenticated multiplexing proxy agent (MPA).
The require-mpa stanza entry in the [session] stanza of the WebSEAL
configuration file allows you to control this requirement.

A "yes" setting instructs WebSEAL to only accept HTTP headers from requests that
are proxied through an authenticated multiplexing proxy agent (MPA). WebSEAL
must authenticate the gateway itself before accepting proxied client connections.
For example:
[session]
require-mpa = yes

A "no" setting allows WebSEAL to accept HTTP headers under any condition. For
example:
[session]
require-mpa = no

A WebSEAL implementation with an MPA must adhere to the following
conditions:
v To avoid conflicts, the MPA cannot use the same session key type as a client

accessing WebSEAL through the MPA.
For example, if the MPA maintains sessions using session cookies, a client
session must be maintained sessions by a different mechanism.

v To avoid conflicts, the MPA cannot use the same authentication method as a
client accessing WebSEAL through the MPA.
For example, if the MPA uses forms authentication, the client must authenticate
using some other mechanism, such as the external authentication interface. In a
typical scenario, the MPA uses basic authentication or certificate authentication,
and the client uses the external authentication interface.

Note: If WebSEAL is upgraded to 6.1 or later from a previous release that supports
HTTP header authentication, the default value for require-mpa changes from no to
yes. If HTTP header authentication is being used, the upgrade causes
authentication to fail until require-mpa is set to no.

Share sessions with Microsoft Office applications
You can configure WebSEAL to instruct browsers to share session information with
Microsoft Office applications. Sharing session information avoids the need for the
Microsoft Office applications to re-authenticate the user.
v “Overview of session sharing with Microsoft Office applications” on page 298
v “Configure the temporary session cache” on page 298
v “Configure shared sessions with Microsoft Office applications” on page 300

Chapter 17. Session state in non-clustered environments 297

Overview of session sharing with Microsoft Office
applications

You can configure WebSEAL to use cookies to maintain client sessions. For security
reasons, WebSEAL uses non-persistent cookies. Since Internet Explorer and
Microsoft Office are only capable of sharing persistent cookies, the Microsoft Office
applications cannot share the WebSEAL user session by default.

You can configure WebSEAL to create a short-lived, single-use persistent session
cookie. This cookie stores an index into a temporary session cache that WebSEAL
uses to locate the corresponding session in the standard session cache. The
temporary cache entry is created for one time use and is not shared between
WebSEAL instances. Microsoft Office applications can use the single-use persistent
cookie to locate the corresponding user session from Internet Explorer.

A request for the /pkmstempsession URI triggers the creation of this temporary
session cookie. You can include a target redirect URL in the /pkmstempsession
request. WebSEAL redirects the client to this URL when the processing of the
/pkmstempsession request is complete. If no redirect URL is provided, WebSEAL
returns a default results page to the client.
http://<server>/pkmstempsession?url=<requested_resource>

where:

<server>
The fully qualified host name of the WebSEAL server.

<requested_resource>
The location of the target resource.

For example, a Microsoft Office document: /server/test.doc.

Note: The request resource URL can optionally contain query string
arguments. These arguments remain unchanged in the resulting WebSEAL
redirect request.

The single-use persistent cookie is created by sending a request to the
/pkmstempsession URI. This cookie creation must occur before the client switches
context from WebSEAL to Microsoft Office. See “Configure shared sessions with
Microsoft Office applications” on page 300 for configuration details of two
common use cases in a Microsoft Office environment.

Configure the temporary session cache
You can configure the temporary session cache that WebSEAL uses for its session
sharing functionality.

There are three WebSEAL configuration entries related to the temporary session
cache. You can use these entries to control the lifetime of cache entries, specify the
name of the temporary session cookie, and configure the default results page.
v “Configuring the lifetime of entries in the temporary session cache” on page 299
v “Configuring the name of the temporary session cookie” on page 299
v “Configuring the temporary cache response page” on page 300

298 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Configuring the lifetime of entries in the temporary session
cache

About this task

The temporary session cache stores a single-use, short-lived session. WebSEAL uses
this cache to create an intermediate session that maps between the single-use,
short-lived session and the standard session. The index into the temporary session
cache is returned to the client as a persistent cookie.

Use the temp-session-max-lifetime entry in the [session] stanza of the WebSEAL
configuration file to set the maximum lifetime (in seconds) of entries in the
temporary session cache.

Procedure

Set the temp-session-max-lifetime value to 0 to disable the use of the temporary
session cache.

Example

The following example configures a maximum lifetime duration of 10 seconds:
[session]
temp-session-max-lifetime = 10

Configuring the name of the temporary session cookie

About this task

WebSEAL creates the short-lived, single-use session cookie in response to a request
for the /pkmstempsession management page. This cookie stores an index into the
temporary session cache that WebSEAL uses later to locate the corresponding
session in the standard session cache.

Procedure

Use the temp-session-cookie-name entry in the [session] stanza of the WebSEAL
configuration file to specify the name of the temporary session cookie.

Note: This configuration item is valid only when the temporary session cache is
enabled. To enable the cache, you must set a non-zero value for the
temp-session-cookie-name entry in the [session] stanza.

Example

The following example configures a cookie name of PD-TEMP-SESSION-ID:
[session]
temp-session-cookie-name = PD-TEMP-SESSION-ID

Chapter 17. Session state in non-clustered environments 299

Configuring the temporary cache response page

About this task

Use the temp-cache-response entry in the [acnt-mgt] stanza of the WebSEAL
configuration file to set the default management page. WebSEAL returns this page
after processing a pkmstempsession request if no redirect URL is supplied in the
pkmstempsession request.

By default, WebSEAL returns temp_cache_response.html.
[acnt-mgt]
temp-cache-response = temp_cache_response.html

Example

The following example illustrates a typical request:
http://<server>/pkmstempsession?url=<requested_resource>

If the url argument is not included in the request then WebSEAL returns the page
specified by the temp-cache-response configuration entry.

Configure shared sessions with Microsoft Office applications
You can configure WebSEAL to use the temporary session cache so that both
Internet Explorer and Microsoft Office products can reference the same user
session.

A request to the /pkmstempsession management page creates a temporary session
cookie. Both Internet Explorer and Microsoft Office products can access this session
cookie.

You can use Ajax requests to automatically request this management page and
trigger the creation of a persistent session cookie. Through this process, you can
achieve session sharing with applications that are accessed through Internet
Explorer.

Microsoft SharePoint 2007 server
You can modify the JavaScript on the Microsoft SharePoint 2007 server so that
Internet Explorer and Microsoft Office can share the same session when accessing a
SharePoint resource.

About this task

To achieve session sharing with Microsoft SharePoint server, the SharePoint
administrator must determine when to create the persistent session cookie for
sharing sessions. The goal is to request the pkmstempsession management page
immediately before the context switch for the requested resource.

SharePoint does not send any notification to WebSEAL before this context switch.
However, you can create a custom JavaScript file on the SharePoint server, to
automatically send an Ajax request to WebSEAL before accessing the requested
resource. This Ajax HTTP request can collect the session cookie for the temporary
session cache. You must configure SharePoint to use this custom JavaScript file
instead of core.js.

300 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note: Do not directly update the core.js file on the SharePoint Server. Updating
this file directly is not a supported SharePoint modification. Instead, create a
custom JavaScript file and custom master page to override the required functions
of core.js. Use the custom master page to configure your site collections to use
these updated JavaScript functions.

Figure 22 illustrates the temporary session cache sequence of operations.
1. When WebSEAL starts, it initializes the temporary cache.
2. The client authenticates to the WebSEAL server.
3. The client sends a request for a SharePoint resource.
4. SharePoint sends a response back to the client that includes JavaScript

(customcore.js).
5. Before sending the SharePoint resource request, the updated JavaScript sends

an Ajax HTTP request for /pkmstempsession.
6. WebSEAL adds an entry for the session in the temporary cache.
7. WebSEAL sets a short-lived, single-use cookie with the session information.
8. WebSEAL adds the single-use cookie to the response that is returned to the

client browser.
9. The client switches context to MS Office/ActiveX and the application uses the

GET method to send the SharePoint document request.
10. WebSEAL retrieves the session information from the temporary cache and

then deletes the entry so that the cookie cannot be used again.
11. WebSEAL fetches the requested resource from the SharePoint server.
12. WebSEAL returns the document to the client with the session cookie set.

Client WebSEAL SharePoint
Server

1. Initialize temp cache

6. Create temp cache entry

7. Set a temp cookie

10. Retrieve the session
information from the temporary
cache and then delete the
temp cache entry

11. Fetch requested resource

Session cookie set

12. Return document

GET

9. Document request

context switch to
ActiveX/MS Office
product

8. Single-use, temporary
session cookie
added to response

5. JavaScript request for
/pkmstempsession

2. Client authenticates to
WebSEAL

3. Initial SharePoint request

4. Response including JavaScript
(customcore.js)

Figure 22. Sharing WebSEAL sessions with Microsoft SharePoint server

Chapter 17. Session state in non-clustered environments 301

Procedure
1. Copy the core.js file. Paste the copy into the folder that contains the core.js

file and rename it as customcore.js.
In a default SharePoint 2007 installation, you can find the core.js file at:
C:\Program Files\Common Files\Microsoft Shared\web server extensions\12\
TEMPLATE\LAYOUTS\core.js

2. Open the custom JavaScript file (customcore.js) for editing.
3. You must modify the JavaScript to make an out of band Ajax HTTP request to

the /pkmstempsession page. Add the following JavaScript to any link that
opens the Office Document by using the ActiveX Controls. In particular, add
the new JavaScript at the beginning of the following functions in the
customcore.js file on the SharePoint Server:
v function DispEx(...)

v function createNewDocumentWithProgIDCore(...)

Note: Remove all of the other JavaScript functions from customcore.js so that
it contains only the functions that are being overridden. Deleting the functions
that are not needed improves processing efficiency.
Example JavaScript

var cookieRequest = false;
try {
cookieRequest = new XMLHttpRequest();
}
catch (trymicrosoft) {
try {
cookieRequest = new ActiveXObject("Msxml2.XMLHTTP");
} catch (othermicrosoft) {
try {
cookieRequest = new ActiveXObject("Microsoft.XMLHTTP");
} catch (failed) {
cookieRequest = false;
}
}
}
if (cookieRequest) {
var url = "/pkmstempsession";
cookieRequest.open("GET", url, false);
cookieRequest.send(null);
if (cookieRequest.status != 200){
alert("ERROR: Single-Signon Cookie Request Failed!,Application may not load Document");
}
}

4. If you are using the default.master page as the master page in your
SharePoint site, make a copy of the default.master page. Rename the copy as
custom.master.
In a default SharePoint 2007 installation, you can find the default.master file
at:
C:\Program Files\Common Files\Microsoft Shared\web server extensions\12\
TEMPLATE\GLOBAL\default.master

5. In the custom.master page, add a line to use the customcore.js file. Insert this
new entry immediately after the existing entry that references core.js as
follows:
<SharePoint:ScriptLink language="javascript" name="core.js" Defer="true"

runat="server"/>
<SharePoint:ScriptLink language="javascript" name="customcore.js" Defer="true"

runat="server"/>

302 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note: You must keep a reference to the original core.js file in this custom
master page. You must set the Defer="true" property to override the original
core.js file.

6. Save the custom.master page and upload it to the master pages gallery of the
site.

7. Set the custom.master page as the default master page for the site:
a. Log in to your site in SharePoint.
b. Go to Site Action > Site Settings > Modify All Site Settings > Look and

Feel > Master Page.
c. Select Specify a master page to be used by this site and all sites that

inherit from it.
d. Select custom.master from the drop-down list.

Results

The Defer="true" setting specifies the load order of the SharePoint functions.
Including two entries with Defer="true" effectively merges the JavaScript files
together. The entry for the customcore.js file is included in the master page source
after the entry for the core.js file because SharePoint runs the deferred scripts in
order. SharePoint runs core.js first, followed by the overriding customcore.js
script.

Note: Be aware of the following considerations if you use custom JavaScript
functions to override core.js:
v To minimize the amount of script that is transmitted during processing, keep

only the methods that you want to customize in the customcore.js file.
v If you upgrade the SharePoint product or install a patch, review your custom

scripts against the updated core.js to ensure that the override scripts are still
applicable.

Chapter 17. Session state in non-clustered environments 303

304 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Part 5. Session Management Server

© Copyright IBM Corp. 2002, 2013 305

306 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 18. Session management server (SMS) overview

This chapter provides an overview to the session management server (SMS)
solution for maintaining session state in clustered server environments.

Topic Index:
v “The failover environment”
v “The session management server (SMS)” on page 308
v “Server clusters, replica sets, and session realms” on page 308
v “SMS process flow” on page 309
v “Sharing sessions across multiple DNS domains” on page 310

Failover cookies and the session management server (SMS) are alternate solutions
to the same challenge of maintaining session state in clustered server
environments. See also Chapter 16, “Failover solutions,” on page 267.

For administrative considerations and operational instructions for the session
management server, see IBM Security Access Manager for Web Shared Session
Management Administration Guide, SC23-6509-02.

The failover environment

The session management server solution is most commonly used in a scenario
where client requests are directed by a load balancing mechanism to two or more
replicated WebSEAL servers.

The replicated servers are identical. They contain replica copies of the WebSEAL
protected object space, junction database, and (optionally) dynurl database.

The client is not aware of the replicated front-end server configuration. The load
balancing mechanism is the single point of contact for the requested resource. The
load balancer connects the client with an available server.

Client

Load-balancing
mechanism

WS1

WS2

WS3

Replicated Front-end
WebSEAL Servers

Back-end
Resources

Figure 23. Failover for replicated WebSEAL servers

© Copyright IBM Corp. 2002, 2013 307

If the server where the client is connected suddenly becomes unavailable, the load
balancer redirects the request to one of the other replicated servers. This action
causes the loss of the original session-to-credential mapping. The client is new to
this substitute server and is normally forced to login again.

The purpose of the session management server solution is to prevent forced login
when the WebSEAL server that has the original session with the client suddenly
becomes unavailable. The session management server solution enables the client to
connect to another WebSEAL server, and create an authentication session
containing the same user session data and user credentials.

Note: Whenever possible, configure load balancers to maintain session affinity.
Session affinity provides improved performance, improved user experience, and
makes WebSEAL configuration simpler.

The session management server (SMS)
The session management server (SMS) is an independent service that acts as a
centralized session repository for a clustered WebSEAL server environment.

The major function of the SMS is to act as a distributed session cache.

Shared session management provides the following benefits:
v Provides a distributed session cache to manage sessions across clustered Web

security servers.
v Provides a central point for maintaining login history information.
v Resolves session inactivity and session lifetime timeout consistency issues in a

replicated Web security server environment.
v Provides secure failover and single signon among replicated Web security

servers.
v Provides controls over the maximum number of allowed concurrent sessions per

user.
v Provides single signon capabilities among other Web sites in the same DNS

domain.
v Provides performance and high availability protection to the server environment

in the event of hardware or software failure.
v Allows administrators to view and modify sessions on the WebSEAL server.

Server clusters, replica sets, and session realms

There are two variations of server clusters:
v Multiple servers that present the exact same content (Web site) to users.

The main users of the session management server (SMS) are replicated Web
security servers organized into groups called replica sets. A replica set consists of
servers with identical configurations and protected Web spaces, such that a
client session created by one member of a replica set could be used unmodified
by another.
Replica sets can provide performance benefits such as load balancing and high
availability.

v Multiple servers that present differing, but related, content to users.

308 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

These Web sites do not present the same content but typically have single signon
requirements between each other and share the Security Access Manager user
registry and policy server.
A group of replica sets is called a session realm. Certain policies, including
maximum concurrent session policy and policies affecting credential change, can
apply consistently across a session realm. From the user and administrator
points of view, sessions exist as a single entity across a session realm.

SMS process flow

The following diagram shows the basic process flow for session management in an
environment where WebSEAL is configured to use the session management server
(SMS). The example contains the following conditions:
v WebSEAL 1 and WebSEAL 2 are configured with replica virtual hosts (vhostA).
v The replica virtual hosts belong to a replica set.

1. A user makes a request for a protected object located in the Web space of
vhostA. WebSEAL A intercepts the request and creates a local cache entry for
the user. WebSEAL A prompts the user to log in.

2. The user provides authentication data to WebSEAL. WebSEAL updates the local
session cache entry with the client's credential.
Maintaining a local session cache improves the performance of that specific
WebSEAL server during future requests for resources.

3. WebSEAL A notifies the SMS of the new session and the associated credential
information. SMS maintains this information in its own database.

4. WebSEAL A sends a session cookie to the user's browser.

vhostA

vhostA

Client

WebSphere
Application

Server

Session
Management

Server

Web Portal
Manager
session

administration

Replica Set

WebSEAL A

WebSEAL B

1
2

3

4

5 6

Figure 24. WebSEAL/SMS process flow

Chapter 18. Session management server (SMS) overview 309

5. An additional request for a resource on vhostA by the same user, using the
same session cookie, fails over to another server in the replica set (WebSEAL B).

6. Using the session cookie, WebSEAL B consults the SMS to determine whether
the user has already authenticated. The SMS replies with the user's cached
credential.
WebSEAL B uses the credential to trust the user and allows the request for the
resource to proceed. The user is not prompted to login again.

Sharing sessions across multiple DNS domains
When operating in a multi-domain environment, you must use a different
mechanism to communicate the session identifier to the WebSEAL servers in the
different DNS domains.

About this task

The index into the SMS session cache is stored and transmitted in a domain cookie.
Clients do not present this cookie to servers that reside outside of the source DNS
domain.

Extensions to the external authentication interface (EAI) allow an EAI application
to supply WebSEAL with an SMS session identifier instead of authentication data.
For more details, see “External authentication interface HTTP header reference” on
page 240. This session identifier corresponds to the session index into the SMS
session cache. The mechanism by which the EAI application receives the session
identifier depends on the implementation of the EAI application. For example, you
can configure:
v Tivoli Federated Identity Manager to supply the identifier as a part of a SAML

assertion.
v An identity provider to add the session identifier into a SAML assertion. The

service provider then retrieves the session identifier from the SAML assertion
and passes the information back to WebSEAL.

For this mechanism to work, designate a single WebSEAL server or multiple
load-balanced Web servers in the same DNS domain as the primary authentication
server. This WebSEAL server establishes the authenticated session. It also hosts the
identity provider, which communicates the SMS session identifier back to the EAI
application.

To make the SMS session identifier available to the identity provider application,
see “User session management for back-end servers” on page 586.

The following diagram shows the basic process flow for session management in a
multi-domain environment where WebSEAL is configured to use the session
management server. The example is based on the following conditions:
v WebSEAL A is configured as the primary authentication server.
v WebSEAL A & B reside in different DNS domains.
v No session is established in either WebSEAL server.

310 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Procedure
1. A user makes a request for a protected object located in the Web space of

WebSEAL B, which:
v Intercepts the request.
v Creates a local cache entry for the user.
v Sends a redirect back to the identity provider application that is behind the

primary authentication server. You can either set this redirect as a
meta-header within the login form or specify it using the
local-response-redirect functionality.

2. The identity provider is a protected application that requires authentication.
WebSEAL A:
v Intercepts the request.
v Creates a local cache entry for the user that contains the requested URL for

the identity provider.
v Prompts the user to log in.

3. The user provides authentication data to WebSEAL, which performs a local
authentication and updates the local session cache entry with the credential of
the client.

4. WebSEAL A notifies the session management server of the new session and
the associated credential information. The session management server
maintains this information in its database.

5. WebSEAL A sends:
v A session cookie to the browser of the user.
v A redirect to the cached URL for the identity provider.

6. The identity provider:
v Extracts the SMS session identifier from the HTTP request headers.
v Sends a redirect to the EAI application junctioned behind WebSEAL B. The

mechanism for passing the session identifier to the EAI application is
implementation-specific.

Chapter 18. Session management server (SMS) overview 311

7. The EAI application:
v Locates the SMS session identifier supplied by the identity provider.
v Passes the identifier back to WebSEAL B in the appropriate HTTP header.

8. WebSEAL B retrieves the corresponding session from the session management
server.

9. WebSEAL B sends:
v A session cookie to the browser of the user.
v A redirect to the original cached URL.

10. WebSEAL B:
v Uses the session cookie set in step 9 to locate the appropriate local session

and credential.
v Allows the request for the resource to proceed.
v Does not prompt the user to log in again.

312 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 19. Quickstart guide for WebSEAL using SMS

This chapter contains a summary of the requirements for configuring WebSEAL to
use the session management server (SMS). The goal of this chapter is to explain
how an administrator can set up a simple WebSEAL and SMS integration scenario,
verify the environment, and better understand the functionality that SMS
provides.Chapter 20, “Configuration for WebSEAL using SMS,” on page 319
describes SMS configuration options in greater detail.

Topic Index:
v “Configuration summary for WebSEAL using SMS”

Configuration summary for WebSEAL using SMS

This section assumes you are familiar with the concepts relevant to the session
management server. For further information on session management server
concepts, see:
v Chapter 18, “Session management server (SMS) overview,” on page 307.
v IBM Security Access Manager for Web: Shared Session Management Administration

Guide.

See the following sections for information on how to adjust this configuration for
your environment: Chapter 20, “Configuration for WebSEAL using SMS,” on page
319.

This configuration summary assumes the following requirements for the WebSEAL
environment:
v Forms authentication to WebSEAL.

Note that forms authentication is not required for the environment with the
session management server. However, basic authentication (the default
WebSEAL authentication method) is not suitable for use with session
displacement.

v Mutual authentication (SSL) between WebSEAL and the session management
server using Security Access Manager certificates.

v The maximum concurrent sessions policy is enforced.
v Provide end-users with a view of the login history of their account.

1. Information gathering
Configuring WebSEAL to use the session management server requires that you
gather information.

You need the following details:
v The host name and port number of the SSL Web server hosting the session

management server.
v The replica set (or sets) that the WebSEAL server uses.
v The key database and stash file used by WebSEAL to authenticate to other

Security Access Manager servers.

© Copyright IBM Corp. 2002, 2013 313

Copy these values from the [ssl], ssl-keyfile and [ssl], ssl-keyfile-stash
stanza entries in the WebSEAL configuration file. These stanza entries and
values appear in the configuration file as follows:
[ssl]
ssl-keyfile = default-webseald.kdb
ssl-keyfile-stash = default-webseald.sth

v The user and password (if any) that are used when authenticating to the SMS
using a basic authentication header

2. WebSEAL configuration file settings

The following lists of stanzas and stanza entries in the WebSEAL configuration file
represent the complete set of options required for configuring WebSEAL to use the
session management server. Where necessary, edit the WebSEAL configuration file
to set these options. Some options may be set by default, based on the original
WebSEAL configuration file template.
[session]
logout-remove-cookie = yes
dsess-enabled = yes
prompt-for-displacement = yes
register-authentication-failures = yes
dsess-last-access-update-interval = 60
standard-junction-replica-set = replica_set_for_standard_junctions

[replica-sets]
replica-set = replica_set_for_standard_junctions
replica-set = replica_set_for_a_virtual_host_junction
... repeat for all of the replica sets in which
this WebSEAL server participates ...

[dsess]
dsess-sess-id-pool-size = 125
dsess-cluster-name = SMS cluster name

[dsess-cluster]
server = [0-9],<URL>
response-by = 60
handle-pool-size = 10
handle-idle-timeout = 240
timeout = 30

3. Import the Security Access Manager CA Certificate

Procedure
v Import the Security Access Manager Certificate Authority (CA) certificate to the

WebSEAL client and junction certificate database(s). The default client and
junction certificate key database is specified with the [ssl],
webseal-cert-keyfile stanza entry in the WebSEAL configuration file. The
default value of the webseal-cert-keyfile stanza entry is:
[ssl]
webseal-cert-keyfile = pdsrv.kdb

v Alternatively, configure WebSEAL to use a separate key store for junctioned SSL
server certificate validation. The optional junction certificate key database is
specified with the [junction], jct-cert-keyfile stanza entry in the WebSEAL
configuration file. The optional, separate key database for junctions is
commented out in the configuration file. When the option is enabled, the default
value of the jct-cert-keyfile stanza entry is:
[junction]
jct-cert-keyfile = pdjct.kdb

314 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note: Use the Local Management Interface (LMI) to import the CA certificate
into the key database specified by the webseal-cert-keyfile stanza entry. To
manage certificates in the LMI, go to Secure Reverse Proxy Settings > Global
Keys > SSL Certificates.

4. Restart the WebSEAL server

Procedure
v Restart the WebSEAL server.
v Check the WebSEAL server log file for any errors or warnings that occur during

the startup process. Some warning messages are normal and do not indicate a
problem. For example:
WebSEAL received notification that the SMS session cache
for replica-set "replica-set" was cleared.
All local reference to sessions are being discarded to
synchronize the local session cache with the SMS session cache.

If other warnings or errors occur that are cause for concern, investigate and
resolve the problems.

5. Create junctions for virtual hosts

About this task

If you are using virtual hosts, create virtual host junctions.

Procedure

Use the -z option to specify the name of the replica set for each virtual host
junction.

6. Junction the session management server

Procedure
1. Create a standard WebSEAL junction or virtual host junction to the session

management server. For example (entered as one line):
pdadmin> server task server create -t ssl -h sms_server_name
-p sms_server_port -D DN_of_SMS_Web_server /sms

2. Modify the junction to pass the value of the SMS-Session-Index HTTP header
as an extended attribute. For example:
pdadmin> object modify /WebSEAL/server_object/sms set attribute
HTTP-Tag-Value session_index=SMS-Session-Index

3. Attach ACLs that allow access only to the lastLogin.jsp page. For example:
pdadmin> acl create noaccess
pdadmin> acl modify noaccess set group iv-admin TcmdbsvaBRl
pdadmin> acl modify noaccess set any-other T
pdadmin> acl modify noaccess set unauth T
pdadmin> acl attach /WebSEAL/<server-object>/sms noaccess

pdadmin> acl create authonly
pdadmin> acl modify authonly set user sec_master TcmdbsvaBRlr
pdadmin> acl modify authonly set group iv-admin TcmdbsvaBRlr
pdadmin> acl modify authonly set any-other Tr
pdadmin> acl modify authonly set unauth T
pdadmin> acl attach /WebSEAL/server_object/sms/DSess/lastLogin.jsp authonly

Chapter 19. Quickstart guide for WebSEAL using SMS 315

7. Set the maximum concurrent sessions policy

About this task

Set the maximum concurrent sessions policy for your environment. For example:
pdadmin> policy set max-concurrent-web-sessions displace

8. Test the configuration

About this task

Test the configuration. If any problems occur during the following steps, examine
any errors displayed in the browser or in the WebSEAL server log file to help
correct the issue.

Procedure
1. Test that logging in works properly:

v Access the following URL:
https://webseal

You must be prompted to login.
v Log in as a test user.

You must be allowed access to the Web site.
2. Verify that the maximum concurrent session policy is enforced:

v From another machine, access the following URL:
https://webseal

You must be prompted to login.
v Log in as your test user with the correct password.

You must be prompted to displace your old session.
v Click the Terminate existing login link.

You must be allowed access to the Web site.
v Return to your old browser and access the following URL again:

https://webseal

If your browser cached the front page of the Web site, you may need to
reload (refresh) the page with the Shift key held down.
You must be prompted to login, because your original session was displaced.

3. Verify that login history is working:
v Log out of the Web site by accessing the following URL:

https://webseal/pkmslogout

A page must be returned indicating that you have logged out.
v Access the following URL:

https://webseal/sms/DSess/lastLogin.jsp

You must be prompted to login.
v Log in as your test user, using the wrong password.

You must be prompted to log in again.
v Log in as your test user, this time using the correct password.

You must be shown the "Last login" page that specifies the last time you
logged in and states that there was one failed login since that time.

4. Verify that ACLs are attached properly:

316 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v Access the following URL:
https://webseal/sms/DSess/services/DSess

A page saying access is forbidden must display.

Chapter 19. Quickstart guide for WebSEAL using SMS 317

318 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 20. Configuration for WebSEAL using SMS

This chapter discusses the configuration options for integrating WebSEAL with a
session management server (SMS) solution.

Topic Index:
v “SMS configuration for WebSEAL”
v “Replica set configuration” on page 321
v “Adjustment of the last access time update frequency for SMS” on page 325
v “SMS communication timeout configuration” on page 325
v “SMS performance configuration” on page 326
v “SSL configuration for WebSEAL and SMS” on page 327
v “Maximum concurrent sessions policy” on page 330
v “Single signon within a session realm” on page 334
v “Configuring login history” on page 337

SMS configuration for WebSEAL

This section contains the following topics:
v “Configuring the session management server (SMS)”
v “Enabling and disabling SMS for WebSEAL”
v “Specifying session management server cluster and location” on page 320
v “Retrieving the maximum concurrent sessions policy value” on page 320

Configuring the session management server (SMS)

About this task

To install and configure a session management server (SMS) for your clustered
server environment, see the IBM Security Access Manager for Web: Shared Session
Management Administration Guide.

Enabling and disabling SMS for WebSEAL

About this task

Use the dsess-enabled stanza entry in the [session] stanza of the WebSEAL
configuration file to enable and disable use of the session management server
(SMS) by WebSEAL.

Note: The phrase "dsess" refers to "distributed session".

When the SMS is enabled for a clustered WebSEAL server environment, session
cookies are used to maintain distributed session state information. The [session]
ssl-id-sessions stanza entry does not apply when the SMS is in use.

© Copyright IBM Corp. 2002, 2013 319

Procedure
v To enable WebSEAL to use the session management server (SMS) to maintain

user sessions, enter a value of "yes". For example:
[session]
dsess-enabled = yes

v To disable WebSEAL from using the session management server (SMS) to
maintain user sessions, enter a value of "no" (default). For example:
[session]
dsess-enabled = no

Specifying session management server cluster and location

About this task

Configuration entries for using SMS are located within the [dsess] and
[dsess-cluster] stanzas of the WebSEAL configuration file.

Procedure
v To specify the location of the session management server, define a cluster name

in the dsess-cluster-name entry of the [dsess] stanza. For example:
[dsess]
dsess-cluster-name = dsess

v Next, define the details for the cluster in a corresponding [dsess-cluster:<cluster-
name>] stanza. Use the server entry to specify the location (URL) of the session
management server. For example:
[dsess-cluster:dsess]
server = http://sms.example.com/DSess/services/DSess

Note: The default parameters and values to define a cluster of SMS servers are
provided in the [dsess-cluster] stanza.
For architectures where more than one SMS is installed in a failover
configuration, multiple instances of this configuration entry should be created.
You can specify multiple server entries for failover and load balancing purposes.
The complete set of these server entries defines the membership of an SMS
cluster.

v Optionally, you can specify a priority level for each server by including a
number, 1-9, before the URL. This digit (if present) represents the priority of the
server within the cluster (9 being the highest, 0 being lowest). If the priority is
not specified, a priority of 9 is assumed. When the server entry specifies the
HTTPS protocol in the URL, you must configure WebSEAL for SSL
communication with the SMS. See “SSL configuration for WebSEAL and SMS”
on page 327

Retrieving the maximum concurrent sessions policy value

About this task

You can use the maximum concurrent sessions policy (pdadmin policy set
max-concurrent-web-sessions) to control the number of sessions each user can
have at one time within a distributed session environment managed by the session
management server (SMS). By default, this policy is enabled:
[session]
enforce-max-sessions-policy = yes

320 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

As the administrator, you can apply this policy to a specific user or apply the
policy globally to all users registered in this secure domain. The policy is stored in
the Security Access Manager user registry. To be enforced by the authentication
process in an SMS environment, the policy must be retrieved from the registry and
stored as an extended attribute in each user's credential.

Replica set configuration

A replica set consists of servers with identical configurations and protected Web
spaces. A client session created by one member of a replica set can be used
unmodified by another.

You must specify the name of each replica set used in your server environment. By
convention, replica set names should match the DNS name (fully-qualified host
name) used by a Web site. For example, if the Web site DNS name is
www.example.com, the replica set name for the Web site should be www.example.com
as well.
v First, each replica set name must be initially defined during the configuration of

the session management server. Refer to the IBM Security Access Manager for Web:
Shared Session Management Administration Guide.

v Secondly, you must specify each replica set name in the configuration file of
each WebSEAL instance that participates in those replica sets. Additionally, you
must assign each junctioned or virtual host to the appropriate replica set. There
are different procedures for assigning standard junctions and virtual hosts to a
replica set. See:
– “Configuring WebSEAL to participate in multiple replica sets.”
– “Assigning standard junctions to a replica set.”
– “Virtual hosts assigned to a replica set” on page 322.

Configuring WebSEAL to participate in multiple replica sets
Each replica set that WebSEAL participates in must be listed in the [replica-sets]
stanza of the WebSEAL configuration file.

Example

If WebSEAL participates in replica sets named vhostA.example.com,
vhostB.example.com, and www.example.com, the stanza is configured as follows:
[replica-sets]
replica-set = vhostA.example.com
replica-set = vhostB.example.com
replica-set = www.example.com

Assigning standard junctions to a replica set

About this task

By design, all standard junctions for a WebSEAL instance are assigned to one
replica set, as specified by the standard-junction-replica-set stanza entry in the
[session] stanza for the WebSEAL configuration file.

To use the SMS, the standard-junction-replica-set stanza entry value must also be
listed in the [replica-sets] stanza. If the standard-junction-replica-set value is not
present in the [replica-sets] stanza, WebSEAL does not start.

Chapter 20. Configuration for WebSEAL using SMS 321

[session]
standard-junction-replica-set = replica-set-name

[replica-sets]
replica-set = replica-set-name

Example
[session]
standard-junction-replica-set = www.example.com

[replica-sets]
replica-set = www.example.com

Virtual hosts assigned to a replica set

In contrast to standard junctions, virtual hosts can be individually assigned to
different replica sets by using the -z option of the pdadmin server task virtualhost
create command.

When the SMS is in operation, the -z option specifies the replica set that sessions
on the virtual host junction are managed under. If WebSEAL is configured to use
the SMS, then the replica set for a virtual host junction can be specified with the -z
option. Different virtual host junctions must be assigned to different replica sets. If
the -z option is not used, then WebSEAL uses the virtual host name of the junction
as the name of the replica set.

Additionally, the name of the replica set used by this virtual host must be defined
by the replica-set stanza entry in the [replica-sets] stanza of the configuration file
for the WebSEAL instance:
[replica-sets]
replica-set = replica-set-name

Example conditions:

v Virtual host type: TCP
v Host name for the machine where the virtual host resides: abc.example.com
v Virtual host name: vh1.example.com
v Virtual host belongs to this replica set: vh1.example.com
v Virtual host junction label: vhost-vh1-http

Example virtual host create command (entered as one line):
pdadmin> server task default-webseald-webseal.example.com virtualhost create
-t tcp -h abc.example.com -v vh1.example.com -z vh1.example.com vhost-vh1-http

Example WebSEAL configuration for replica sets:
[replica-sets]
replica-set = vh1.example.com

Example replica set configuration

The following example illustrates an example replica set configuration.

Network architecture:

v There are three WebSEAL servers with one instance of WebSEAL ("default")
configured on each server:
– WebSEAL-A: webseal-A.example.com

322 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

– WebSEAL-B: webseal-B.example.com
– WebSEAL-C: webseal-C.example.com

v Each WebSEAL instance is configured for two virtual hosts and a standard
junction.

v Virtual host and standard junction resources reside on replica back-end servers:
– Virtual host vhostA.example.com on back-end server a.example.com

– Virtual host vhostB.example.com on back-end server b.example.com

– Standard junction /jctC for back-end server c.example.com

v Junction designations:
– Virtual host label vhost-A represents the junction for virtual host

vhostA.example.com

– Virtual host label vhost-B represents the junction for virtual host
vhostB.example.com

– Junction /jctC is the standard junction for back-end server c.example.com

v A star topology is used across the WebSEAL servers and the replicated back-end
servers.

Junction configuration:

v The SMS configuration includes three replica sets: vhostA.example.com,
vhostB.example.com, and www.example.com

v The WebSEAL configuration file lists all three replica sets in the [replica-sets]
stanza.

v The vhost-A junctions are assigned to the replica set vhostA.example.com using
the -z virtual host junction option.

a.example.com
WebSEAL-A

vhost-A

vhostA.example.com

b.example.com

vhostB.example.com

c.example.com

vhost-B

/jctC

webseal-A.example.com

Figure 25. Junction configuration for a single WebSEAL server

Chapter 20. Configuration for WebSEAL using SMS 323

v The vhost-B junctions are assigned to the replica set vhostB.example.com using
the -z virtual host junction option.

v Standard junctions (including the / and /jctC junctions) are assigned to the
replica set www.example.com using the [session], standard-junction-replica-set
stanza entry in the WebSEAL configuration file.

Example configuration for WebSEAL-A (webseal-A.example.com):
v Replica set configuration:

[session]
standard-junction-replica-set = www.example.com

[replica-sets]
replica-set = www.example.com
replica-set = vhostB.example.com
replica-set = vhostA.example.com

v Create virtual host junction (label: vhost-A) for virtual host vhostA.example.com,
located on back-end server a.example.com (entered as one line):
pdadmin> server task default-webseald-webseal1.example.com virtualhost create
-t tcp -h a.example.com -v vhostA.example.com -z vhostA.example.com vhost-A

v Create virtual host junction (label: vhost-B) for virtual host vhostB.example.com,
located on back-end server b.example.com (entered as one line):
pdadmin> server task default-webseald-webseal1.example.com virtualhost create
-t tcp -h b.example.com -v vhostB.example.com -z vhostB.example.com vhost-B

v Create standard junction jctC for back-end server c.example.com (entered as one
line):

WebSEAL-A

vhost-A

Replica Set
vhostA.example.com

vhost-B jctC

WebSEAL-B

vhost-A vhost-B jctC

WebSEAL-C

vhost-A vhost-B jctC

Lo
ad

B
al

an
ce

r

Client

Replica Set
www.example.com

Replica Set
vhostB.example.com

Figure 26. Replica set configuration

324 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

pdadmin> server task default-webseald-webseal1.example.com create
-t tcp -h c.example.com /jctC

Configuration for WebSEAL-B and WebSEAL-C is similar.

Adjustment of the last access time update frequency for SMS

The dsess-last-access-update-interval stanza entry in the [session] stanza of the
WebSEAL configuration file specifies the frequency at which WebSEAL updates the
session last access time at the SMS. If you are adjusting session inactivity timeouts
or configuring reauthentication based on session inactivity policy
(reauth-for-inactive = yes), and you are using the session management server
(SMS), you might need to adjust this value.

Smaller values offer more accurate inactivity timeout tracking, at the expense of
sending updates to the SMS more frequently. Values of less than 1 second are not
permitted. The default value is 60 seconds. For example:
[session]
dsess-last-access-update-interval = 60

As an example, consider the following configuration:
[session]
inactive-timeout = 600
dsess-last-access-update-interval = 60

With these configuration values, a user's session may be flagged as "inactive" at the
SMS anywhere between 540 seconds and 600 seconds after the user's last access to
the WebSEAL server.

Small values for the dsess-last-access-update-interval parameter are not
recommended and can seriously impact WebSEAL server performance.

See also “Reauthentication with external authentication interface” on page 243.

See also “Cache entry inactivity timeout value” on page 264

SMS communication timeout configuration

This section contains the following topics:
v “Configuring SMS response timeout”
v “Configuring connection timeout for broadcast events” on page 326

Configuring SMS response timeout

About this task

Use the timeout stanza entry in the [dsess-cluster] stanza of the WebSEAL
configuration file to specify the amount of time (in seconds) WebSEAL can wait for
a response from the session management server. The default value is 30 seconds.
For example:
[dsess-cluster]
timeout = 30

Chapter 20. Configuration for WebSEAL using SMS 325

If the timeout limit is reached with no response from the SMS, WebSEAL assumes
the SMS is unavailable. When this occurs, the following actions are taken:
v A separate WebSEAL server thread begins attempting to contact the SMS every

60 seconds to see if the SMS has recovered or a backup has come online.
v All attempts to create or access a session on the WebSEAL server receive an

HTTP "503 Service Unavailable" error page from the WebSEAL server
(38b9a4b1.html). You can customize this page by creating an error page for error
status "0x38b9a4b1" as described in “HTML server response page modification”
on page 75.

When the SMS recovers, WebSEAL attempts to determine whether the outage was
due to a temporary network outage or if the SMS server was restarted. If the SMS
server was restarted, the local WebSEAL session cache is cleared. All sessions on
the WebSEAL server are deleted. This is done so that sessions across all of the
WebSEAL servers in the cluster and the SMS remain synchronized. Consult the
IBM Security Access Manager for Web: Shared Session Management Administration
Guide for information on replicating the SMS for high-availability configurations.

Configuring connection timeout for broadcast events

About this task

Some clustered server architectures may implement a firewall between the
WebSEAL server and the WebSphere installation running the SMS. Firewalls often
restrict the flow of communication to one direction. WebSEAL communicates
through the firewall to send session information to the SMS. To additionally
receive broadcast events from the SMS, WebSEAL must open another connection
through the firewall. The firewall timeout policy can shut down this connection
while WebSEAL is waiting for broadcast events from the SMS.

Procedure

Use the response-by stanza entry in the [dsess-cluster] stanza of the WebSEAL
configuration file to specify the length of time (in seconds) that WebSEAL keeps a
connection open to the SMS for receiving broadcast events for the SMS cluster.
When the timeout value is reached, WebSEAL recreates a new connection.
[dsess-cluster]
response-by = 60

To ensure the most optimal conditions for keeping this connection open, set the
response-by stanza entry value to be less than the internal firewall timeout value.

SMS performance configuration

This section contains the following topics:
v “Maximum pre-allocated session IDs”
v “Configuration of the handle pool size” on page 327

Maximum pre-allocated session IDs

The dsess-sess-id-pool-size stanza entry in the [dsess] stanza of the WebSEAL
configuration file specifies the maximum number of session IDs that are
pre-allocated in the session ID pool. This stanza entry is used by the SMS cluster
and is required when SMS is enabled.

326 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

[dsess]
dsess-sess-id-pool-size = 125

Configuration of the handle pool size

The handle-pool-size stanza entry in the [dsess-cluster] stanza of the WebSEAL
configuration file specifies the maximum number of idle Simple Access Object
Protocol (SOAP) handles that the dsess client will maintain at any given time.
These handles are used for anticipated exchanges with the SMS. The default value
is 10.

For example:
[dsess-cluster]
handle-pool-size = 10

The default value is adequate for most environments.

The value can be increased if communication between WebSEAL and the SMS is
slow because all handles are in use. If you decide to modify this value, be aware
that each handle reserves a file descriptor on the WebSEAL server. A large value
can prevent other WebSEAL functionality that requires file descriptors from
working properly.

The maximum value for the handle-pool-size depends on both the platform on
which the WebSEAL server is running and various WebSEAL configuration
options. In most environments, handle-pool-size should not be increased beyond
25 handles.

SMS Authentication
You can configure WebSEAL to provide a basic authentication header to the SMS.

The BA header consists of a user name and password as defined by the
basic-auth-user and basic-auth-passwd configuration entries in the [dsess-cluster]
stanza.

SSL configuration for WebSEAL and SMS

When the [dsess-cluster] server stanza entry specifies the HTTPS protocol in the
URL, you must configure WebSEAL for SSL communication with the SMS.
WebSEAL can authenticate to the SMS with client certificates.

Configuring WebSEAL for SSL communication with the SMS requires that you
provide WebSEAL the following information:
v The CA certificate used to sign the SMS SSL server certificate.
v The DN contained in the SMS SSL server certificate.
v The SSL client certificate WebSEAL should use to authenticate to the SMS.

You can also configure additional GSKit attributes to use when initializing the SSL
connection with the SMS.

This section contains the following topics:
v “Configuring the WebSEAL key database” on page 328
v “Specifying the SSL certificate distinguished name (DN)” on page 328

Chapter 20. Configuration for WebSEAL using SMS 327

v “GSKit configuration for SMS connections” on page 329

Configuring the WebSEAL key database

About this task

WebSEAL stores client-side certificates and CA root certificates, used for SSL
communication with the SMS, in a key database file:
v The CA root certificate is used to validate the server certificate returned by the

SMS.
v The client-side certificate is used by WebSEAL when the SMS is configured for

mutual authentication.

Procedure
v To specify the key database file, use the ssl-keyfile stanza entry in the

[dsess-cluster] stanza of the WebSEAL configuration file. For example:
[dsess-cluster]
ssl-keyfile = key-file-name

Unless Security Access Manager SSL certificates are being used for
communication between WebSEAL and the SMS, use a separate key file from the
other WebSEAL key files as the value for ssl-keyfile.

v To specify the key database stash file (containing password information for
access to the database file), use the ssl-keyfile-stash stanza entry in the
[dsess-cluster] stanza of the WebSEAL configuration file. For example:
[dsess-cluster]
ssl-keyfile-stash = key-file-name

v To specify the label name for the client-side certificate, use the
ssl-keyfile-label stanza entry in the [dsess-cluster] stanza of the WebSEAL
configuration file. For example:
[dsess-cluster]
ssl-keyfile-label = label-name

Specifying the SSL certificate distinguished name (DN)

About this task

The CA root certificate stored in a WebSEAL key database file validates that a
certificate received from the SMS is authentic. By additionally checking the DN
value in the certificate, you can ensure that the server certificate received by
WebSEAL from the SMS is the expected certificate.

To specify the accepted certificate DN values, use the ssl-valid-server-dn stanza
entry in the [dsess-cluster] stanza of the WebSEAL configuration file.

Example
[dsess-cluster]
ssl-valid-server-dn = DN-value

328 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Obtaining the server certificate DN value

About this task

The ssl-valid-server-dn in the [dsess-cluster] stanza of the WebSEAL configuration
file requires the value of the DN found in a valid server certificate sent by the SMS
during its communication with WebSEAL.

You can obtain the DN value from the SMS administrator directly.

Alternatively, you can indirectly determine the value by performing the following
procedure:

Procedure
1. Enable the SMS for WebSEAL:

[session] dsess-enabled = yes

2. Ensure that the SMS is configured for SSL. The URL to the SMS requires the
HTTPS protocol:
[dsess-cluster] server = https://server/DSess/services/DSess

3. Follow the procedures for configuring the ssl-keyfile, ssl-keyfile-stash, and
ssl-keyfile-label stanza entries in the [dsess-cluster] stanza of the WebSEAL
configuration file. See “Configuring the WebSEAL key database” on page 328.

4. Enter a test value for the ssl-valid-server-dn stanza entry. For example:
[dsess-cluster] ssl-valid-server-dn = test

5. Restart the WebSEAL server.
6. WebSEAL returns the following error message:

The DN contained within the server certificate, <DN>, is not a configured DN.

The DN listed in the message is the DN of the certificate presented by the SMS.
Use this value to correctly specify the value for the ssl-valid-server-dn stanza
entry.

7. To verify you are communicating with the right SSL server, confirm, with the
SMS administrator, the value for the DN returned in the error message.
Once you are sure you have the right value for the DN of the SMS server
certificate, use that DN for the value of the ssl-valid-server-dn stanza entry.

GSKit configuration for SMS connections
There are a number of GSKit attributes that you can use to control how GSKit
creates SSL connections. You can configure WebSEAL to use particular GSKit
attributes when it initializes SSL connections.

The gsk-attr-name configuration entry in the [dsess-cluster] stanza controls the
GSKit attributes that WebSEAL uses when initializing a connection with the SMS.
You can specify this configuration entry multiple times. Include each desired GSKit
attribute as a new entry.
[dsess-cluster]
gsk-attr-name = {enum | string | number}:id:value

Note: Similar configuration entries exist in the [ssl] stanza for connections with
clients and junctioned web servers.

For further details about these configuration entries, see IBM Security Web Gateway
Appliance: Web Reverse Proxy Stanza Reference.

Chapter 20. Configuration for WebSEAL using SMS 329

Maximum concurrent sessions policy

This section contains the following topics:
v “Setting the maximum concurrent sessions policy”
v “Enforcing the maximum concurrent sessions policy” on page 333
v “Switch user and maximum concurrent sessions policy” on page 334

Setting the maximum concurrent sessions policy

About this task

You can control the number of sessions each user can have at one time within a
distributed session environment managed by the session management server. The
pdadmin policy set max-concurrent-web-sessions command specifies this
maximum number of concurrent sessions.

As the administrator, you can apply this policy to a specific user or apply the
policy globally to all users registered in this secure domain. See “Per user and
global settings” on page 332.

Use the enforce-max-sessions-policy stanza entry in the [session] stanza of the
WebSEAL configuration file to control whether or not a specific WebSEAL instance
enforces the max-concurrent-web-sessions policy. See “Enforcing the maximum
concurrent sessions policy” on page 333.

Command syntax for pdadmin policy (each entered as one line):
policy set max-concurrent-web-sessions {unset|number|displace|unlimited}
[-user username]

policy get max-concurrent-web-sessions [-user username]

Argument descriptions for pdadmin policy set:

v unset

Disables the max-concurrent-web-sessions policy. With this setting, the policy
contains no value. The effective policy for the user is the same as the unlimited
setting.
The unset setting is the default policy.
For example (global setting):
pdadmin> policy set max-concurrent-web-sessions unset

v number

Specifies the number of concurrent sessions allowed per user. The user is
prevented from establishing more sessions beyond this number.
For example (global setting):
pdadmin> policy set max-concurrent-web-sessions 2

A error response page (38b9a41f.html "Additional Login Denied") is returned to
the user when a login attempt is made that exceeds this value.

v unlimited

Allows an unlimited number of concurrent sessions per user.
For example (global setting):
pdadmin> policy set max-concurrent-web-sessions unlimited

v displace

330 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Limits users to one active session at one time by forcing a value of "1" session
for max-concurrent-web-sessions policy.
For example (global setting):
pdadmin> policy set max-concurrent-web-sessions displace

The response to additional login attempts is governed by the
prompt-for-displacement in the [session] stanza of the WebSEAL configuration
file.
See “Interactive displacement” and “Non-interactive displacement” on page 332.

Interactive displacement

The prompt-for-displacement stanza entry in the [session] stanza of the WebSEAL
configuration file determines whether or not a user is prompted for appropriate
action when the max-concurrent-web-sessions displace policy has been exceeded.
This section discusses the interactive option (prompt-for-displacement = yes),
where the user is prompted for appropriate action.

Example configuration:
v Policy setting (global example):

pdadmin> policy set max-concurrent-web-sessions displace

v Prompt setting:
[session]
prompt-for-displacement = yes

When a second login is attempted, the user receives the too_many_sessions.html
response page. You can customize the contents of this page. The default message
on this page states:
You are already logged in from another client. Do you want to terminate
your existing login or cancel this new login request?

Terminate existing login
Cancel this new login

Action descriptions:

v Terminate existing login

The terminate action calls the WebSEAL /pkmsdisplace function. This function
terminates the existing (original) login, creates a new session for the user, logs
the user in transparently, and redirects the user to the requested URL.

Note: The pkmsdisplace management page is a management command to the
WebSEAL server. It is not represented in the object space and you cannot attach
policies to it.
The original session cookie remaining on the user's original browser becomes an
old, or "stale" cookie that no longer maps to an existing entry in the WebSEAL
session cache. If the user attempts to access another protected resource from the
original (older) login session, WebSEAL requires authentication and responds
with the standard login form.
The OLDSESSION macro contained in this form is set to the value of "1",
indicating that the request contains an old ("stale") cookie that no longer matches
any entry in the WebSEAL session cache. You can use the value of the
OLDSESSION macro as a trigger mechanism for a customized response to the
user. This custom response could more accurately explain to the user why the
session is not valid anymore.

Chapter 20. Configuration for WebSEAL using SMS 331

For further information on this feature, see “Customized responses for old
session cookies” on page 293.

v Cancel this new login

The cancel action calls the WebSEAL /pkmslogout function. This function closes
the current login attempt and returns the standard WebSEAL logout page to the
user. The original (older) login session can continue accessing resources.

Prerequisite: Maximum concurrent sessions policy must be enabled through an
additional configuration. See “Enforcing the maximum concurrent sessions policy”
on page 333.

Non-interactive displacement

The prompt-for-displacement stanza entry in the [session] stanza of the WebSEAL
configuration file determines whether or not a user is prompted for appropriate
action when the max-concurrent-web-sessions displace policy has been exceeded.
This section discusses the non-interactive option (prompt-for-displacement = no),
where the user is not prompted for appropriate action.

Example configuration:
v Policy setting (global example):

pdadmin> policy set max-concurrent-web-sessions displace

v Prompt setting:
[session]
prompt-for-displacement = no

When a second login is attempted, the original (older) login session is
automatically terminated with no prompt. A new session is created for the user
and the user is logged in to this new session transparently. The original (older)
session is no longer valid.

The original session cookie remaining on the user's original browser becomes an
old, or "stale" cookie that no longer maps to an existing entry in the WebSEAL
session cache. If the user attempts to access another protected resource from the
original (older) login session, WebSEAL requires authentication and responds with
the standard login form.

The OLDSESSION macro contained in this form is set to the value of "1",
indicating that the request contains an old ("stale") cookie that no longer matches
any existing entry in the WebSEAL session cache. You can use the value of the
OLDSESSION macro as a trigger mechanism for a customized response to the user.
This custom response could more accurately explain to the user why the session is
not valid anymore.

For further information on this feature, see “Customized responses for old session
cookies” on page 293.

Per user and global settings
The pdadmin policy commands can be set for a specific user (with the -user
option) or globally (by not using the -user option). Any user-specific setting
overrides a global setting for the policy.

You can also disable a policy (with the unset argument). With this setting, the
policy contains no value.

332 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Examples:

A global maximum concurrent web sessions policy of 1 session per user is created.
As an exception to this policy, user brian is given a maximum concurrent web
sessions policy of 4 sessions.
pdadmin> policy set max-concurrent-web-sessions 1
pdadmin> policy set max-concurrent-web-sessions 4 -user brian

pdadmin> policy get max-concurrent-web-sessions
Maximum concurrent web sessions: 1
pdadmin> policy get max-concurrent-web-sessions -user brian
Maximum concurrent web sessions: 4

The specific maximum concurrent web sessions policy for user brian is unset. User
brian now has no maximum concurrent web sessions policy. However, user Brian
is effectively governed by the current global maximum concurrent web sessions
policy of 1 session.
pdadmin> policy set max-concurrent-web-sessions unset -user brian

pdadmin> policy get max-concurrent-web-sessions -user brian
Maximum concurrent web sessions: unset

The global maximum concurrent web sessions policy is unset. All users, including
user brian, now have no maximum concurrent web sessions policy. However, the
effective policy for all users is the same as the unlimited setting.
pdadmin> policy set max-concurrent-web-sessions unset

pdadmin> policy get max-concurrent-web-sessions
Maximum concurrent web sessions: unset

Enforcing the maximum concurrent sessions policy

About this task

Use the enforce-max-sessions-policy stanza entry in the [session] stanza of the
WebSEAL configuration file to control whether or not a specific WebSEAL instance
enforces the max-concurrent-web-sessions policy.

Procedure
v To set this WebSEAL instance to enforce the max-concurrent-web-sessions

policy, enter a value of "yes" (default). For example:
[session]
enforce-max-sessions-policy = yes

v To set this WebSEAL instance to not enforce the max-concurrent-web-sessions
policy, enter a value of "no". For example:
[session]
enforce-max-sessions-policy = no

Note: This stanza entry is effective only when you have configured the session
management server to manage sessions for your environment.
[session]
dsess-enabled=yes

Chapter 20. Configuration for WebSEAL using SMS 333

By default, all systems in the distributed session environment enforce this policy:
[session]
enforce-max-sessions-policy = yes

v You can modify the enforce-max-sessions-policy stanza entry for specific
WebSEAL instances in the same environment to disable enforcement of the
max-concurrent-web-sessions policy:
[session]
enforce-max-sessions-policy = no

Users accessing those WebSEAL servers with enforce-max-sessions-policy = no
can have unlimited login sessions.
For information on setting the maximum concurrent sessions policy, see “Setting
the maximum concurrent sessions policy” on page 330.

Note: Maximum concurrent sessions policy is enforced on a per session realm
basis. For further information, see IBM Security Access Manager for Web: Shared
Session Management Administration Guide.

Example

Use the pdadmin policy set command to globally specify a maximum concurrent
session policy of "1":
pdadmin> policy set max-concurrent-web-sessions 1

Switch user and maximum concurrent sessions policy

When an administrator uses switch user to impersonate another user, the session at
the session management server is considered to belong to the switch user
administrator. The maximum concurrent sessions policy applies to the switch user
administrator, and not the impersonated user.

For example: if the user "brian" has a maximum concurrent sessions policy of "1"
and is logged in to the WebSEAL server, a switch user administrator is still able to
impersonate "brian." The maximum concurrent sessions policy for user "brian" does
not apply to the impersonated session.

Single signon within a session realm

This section discusses a single signon solution provided by session sharing across
servers belonging to multiple replica sets within the same session realm. Topics
include:
v “Session realm and session sharing concepts”
v “Configuring session sharing” on page 335

Session realm and session sharing concepts

A session realm is a collection of Web security servers that are configured to share
sessions.

Session sharing allows single signon among all servers in the session realm while
enforcing concurrent session limitations and session terminations. A user can logon
to any server in the session realm and access any other server in the session realm
without authenticating again.

334 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

For example, as a user, you log in to the main Web site for your company:
www.example.com. The www.example.com site is handled by a WebSEAL cluster
where all WebSEAL servers belong to the "www.example.com" replica set.

WebSEAL is configured to provide you (as an authenticated user) with a domain
session cookie for .example.com.

Later in the session, you access sales.example.com, which is the main Web site for
the company's sales department. The sales.example.com site is handled by a
WebSEAL cluster where all WebSEAL servers belong to the "sales.example.com"
replica set.

The session management server (SMS) configuration includes the assignment of
replica sets to session realms. In this example, the two replica sets
www.example.com and sales.example.com are configured to be members of the
same session realm.

The sales.example.com WebSEAL cluster uses your domain session cookie to
acquire your session information at www.example.com. With this session
information, you are not asked to authenticate again and single signon is achieved.

In order for session sharing to function, all of the following conditions must be
met:
v The values for session lifetime and inactivity timeouts on all servers in the

session realm must be identical.
v Authentication configuration and policy on all servers in the session realm must

be compatible.
As an example of an incompatible configuration, consider the following:
– www.example.com is configured for forms authentication.
– test.example.com is configured for EAI authentication.
– The resource www.example.com/action.jsp is protected by a POP requiring

reauthentication.
If a user logs on to test.example.com and then accesses www.example.com, the
user is able to access most resources on www.example.com. However, the user is
not able to access www.example.com/action.jsp because the user cannot perform
an EAI reauthentication on www.example.com.

Configuring session sharing

About this task

To configure session sharing, perform the following steps:
v Assign all replica sets—that participate in session sharing within the same

session realm—to a single SMS session realm.
See “Assigning replica sets to session realms” on page 336.

v Configure all Web security servers in the session realm to use the same name for
session cookies.
See “Configuring session cookie names” on page 336.

v Configure all Web security servers in the same session realm with a list of DNS
domains that should be used for domain session cookies.
See “Configuring DNS domains” on page 337.

Chapter 20. Configuration for WebSEAL using SMS 335

Assigning replica sets to session realms

About this task

Assign all participating replica sets to a single SMS session realm.

Refer to the IBM Security Access Manager for Web: Shared Session Management
Administration Guide for information on configuring a session realm.

No WebSEAL configuration changes are necessary for this step.

Configuring session cookie names

About this task

Configure all Web security servers in the session realm to use the same name for
session cookies.

The cookie name used for WebSEAL session cookies is specified by the
tcp-session-cookie-name and ssl-session-cookie-name stanza entries in the
[session] stanza of the WebSEAL configuration file. For example (default WebSEAL
cookie names for TCP and SSL sessions):
[session]
tcp-session-cookie-name = PD-H-SESSION-ID
ssl-session-cookie-name = PD-S-SESSION-ID

See also “Customization of the session cookie name” on page 292.

If you are using WebSEAL and Plug-in for Web Servers security servers in the
same session realm, ensure that all servers use the same session cookie name. By
default, WebSEAL and Plug-in for Web Servers use different cookie names. The
following configuration choices are possible:
v Change the default WebSEAL cookie name configuration to use the Plug-in for

Web Servers cookie name.
v Change the default Plug-in for Web Servers cookie name configuration to use

the WebSEAL cookie name.
v Use a custom cookie name for both WebSEAL and Plug-in for Web Servers

configuration.

Example

To configure session sharing between a WebSEAL protected Web site at:
https://www.example.com

and a Plug-in for Web Servers protected Web site at:
https://test.example.com

change the default session cookie names in the WebSEAL configuration file to
match the default cookie names used by the Plug-in for Web Servers:
[session]
tcp-session-cookie-name = AM-DSESS-SESSION-ID
ssl-session-cookie-name = AM-DSESS-SECURE-SESSION-ID

336 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Configuring DNS domains

About this task

Configure all of the Web security servers in the same session realm with a list of
DNS domains that are used for domain session cookies.

WebSEAL session cookies are the required session ID data type used in a
WebSEAL environment using the session management server (SMS). Normally,
session cookies are server-specific (or host) cookies. A browser only returns a host
type cookie to the server that originally sent the cookie.

To enable session sharing across multiple clusters in the same DNS domain, it is
necessary to use domain type cookies.

You define participating domains in the domain stanza entry, located in the
[session-cookie-domains] stanza of the WebSEAL configuration file.

When a domain stanza entry is uncommented and provided with a value,
WebSEAL session cookies automatically become domain type cookies. For example:
[session-cookie-domains]
domain = example1.com
domain = example2.com

WebSEAL decides what domain to use for domain session cookies based on the
Web site the user connects to and the [session-cookie-domains] stanza. Add an
entry to this stanza matching the domain used for the session realm.

As an example, consider a WebSEAL server with three virtual hosts:
www.example.com
www.abc.ibm.com
www.tivoli.com

The following conditions apply to this example:
v The www.example.com site participates in the "example.com" session realm.
v The www.abc.ibm.com site participates in the "abc.ibm.com" session realm.
v The www.tivoli.com site does not share sessions with other Web security

servers, so is not assigned to a session realm.

To configure domain session cookies for both the example.com and abc.ibm.com
domains, set the following configuration options in each participating Web security
server:
[session-cookie-domains]
domain = example.com
domain = abc.ibm.com

Configuring login history

About this task

The session management server (SMS) can be configured to record information
about the last time a user logged in and the number of failed attempts to login
since that last successful login. A customized JavaServer Page (JSP) is used to
display this information to the user at the time of login. The information alerts the
user to any activity that has occurred on the account.

Chapter 20. Configuration for WebSEAL using SMS 337

To configure login history, perform the following steps:

Procedure
1. Configure WebSEAL to use the session management server (SMS).

See “SMS configuration for WebSEAL” on page 319.
2. Configure the login history database at the session management server (SMS).

See IBM Security Access Manager for Web: Shared Session Management
Administration Guide.

3. Enable WebSEAL to notify the session management server (SMS) when login
failures occur.
See “Enabling login failure notification.”

4. Create a junction to the SMS with the appropriate junction options.
See “Creating a junction to the session management server.”

5. Allow access to the login history JSP.
See “Allowing access to the login history JSP” on page 339.

6. Customize and integrate the login history JavaServer Page (JSP) with your web
site.
See “Customizing the JSP to display login history” on page 339.

Enabling login failure notification

About this task

Configure WebSEAL to notify the session management server (SMS) when login
failures occur. SMS generates a login history based on this information and display
the information to a user at the next successful login.

To enable WebSEAL for login failure notification, set the value of the
register-authentication-failures stanza entry in the [session] stanza to "yes".

The default setting is "no" (login failure notification disabled).

Example
[session]
register-authentication-failures = yes

Creating a junction to the session management server
The login history JavaServer Page (JSP) must be located on the same server as the
session management server (SMS).

Procedure
1. Create a standard WebSEAL junction to the SMS and the JSP.

For example:
pdadmin> server task server create -t tcp -h sms.example.com /sms

2. Configure WebSEAL to pass the credential attribute tagvalue_session_index to
the junction using the HTTP header SMS-Session-Index.
For example:
pdadmin> object modify /WebSEAL/www.example.com/sms set attribute
HTTP-Tag-Value session_index=SMS-Session-Index

338 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Allowing access to the login history JSP

About this task

No users should be allowed to access any resources on the session management
server machine except the JSP that displays their login information. You must
apply appropriate ACLs on the junction to the session management server
machine.

Procedure
1. Use the following pdadmin commands to create and attach an ACL on the

junction to the SMS that denies access to all resources on the SMS machine:
pdadmin> acl create noaccess
pdadmin> acl modify noaccess set group iv-admin TcmdbsvaBRl
pdadmin> acl modify noaccess set any-other T
pdadmin> acl modify noaccess set unauth T

pdadmin> acl attach /WebSEAL/server-object/sms noaccess

2. Use the following commands to create and attach an explicit ACL that allows
authenticated users general read access to the JSP (lastLogin.jsp):
pdadmin> acl create authonly
pdadmin> acl modify authonly set user sec_master TcmdbsvaBRlr
pdadmin> acl modify authonly set group iv-admin TcmdbsvaBRlr
pdadmin> acl modify authonly set any-other Tr
pdadmin> acl modify authonly set unauth T

pdadmin> acl attach /WebSEAL/server-object/sms/DSess/lastLogin.jsp authonly

3. If other applications are hosted on the session management server machine,
adjust the ACLs so that users have access to those applications. However, users
must never be allowed access to any resources under the /DSess subdirectory
except the last login JSP. Use the following pdadmin command to attach an
ACL specifically to the DSess subdirectory:
pdadmin> acl attach /WebSEAL/server-object/sms/DSess noaccess

Customizing the JSP to display login history
The session management server (SMS) installation includes a sample JavaServer
Page (JSP) that can display the login history for any user logging in.

About this task

This sample login history JSP can be customized for your installation.

The default location for this page on the session management server machine is:
/DSess/lastLogin.jsp

By default, the page returned by this sample JSP simply displays a message saying:
You last logged in at <time> on <date>.
There have been <N> unsuccessful login attempts since that time.
The last unsuccessful login attempt was at <time> on <date>.

You can customize the JSP and incorporated it into a "welcome" page that is
presented to users when they first authenticate. For example, you can configure
automatic redirection ([acnt-mgt] stanza, login-redirect-page stanza entry) to direct
users to a page reporting their login history whenever they first authenticate to
WebSEAL.

Chapter 20. Configuration for WebSEAL using SMS 339

See IBM Security Access Manager for Web: Shared Session Management Administration
Guide for information on how to customize the sample login history JSP.

340 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Part 6. Authorization

© Copyright IBM Corp. 2002, 2013 341

342 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 21. Configuration for authorization

This chapter discusses WebSEAL functions that affect the authorization service and
process.

Topic Index:
v “WebSEAL-specific ACL policies”
v “Quality of protection POP” on page 344
v “Configuration of authorization database updates and polling” on page 345
v “Configuring quality of protection levels” on page 346
v “Authorization decision information” on page 348
v “Support for OAuth authorization decisions” on page 348

WebSEAL-specific ACL policies

The following security considerations apply for the /WebSEAL container in the
protected object space:
v The WebSEAL object begins the chain of ACL inheritance for the WebSEAL region

of the object space.
v If you do not apply any other explicit ACLs, this object defines (through

inheritance) the security policy for the entire Web space.
v The traverse permission is required for access to any object below this point.

Refer to the IBM Security Access Manager for Web: Administration Guide for complete
information about Security Access Manager ACL policies.

/WebSEAL/host-instance_name

This subdirectory entry represents the beginning of the Web space for a particular
WebSEAL instance. The following security considerations apply for this object:
v The traverse permission is required for access to any object below this point.
v If you do not apply any other explicit ACLs, this object defines (through

inheritance) the security policy for the entire object space on this machine.

/WebSEAL/host-instance_name/file
This subdirectory entry represents the resource object checked for HTTP access.

The permissions checked depend on the operation being requested.

WebSEAL ACL permissions

The following table describes the ACL permissions applicable for the WebSEAL
region of the object space:

Operation Description

r read View the Web object.

x execute Run the CGI program.

© Copyright IBM Corp. 2002, 2013 343

Operation Description

d delete Remove the Web object from the Web space.

m modify PUT an HTTP object. (Place - publish - an HTTP object in the
WebSEAL object space.)

l list Required by policy server to generate an automated directory
listing of the Web space.

This permission also governs whether a client can see the
directory contents listing when the default "index.html" page is
not present.

Default /WebSEAL ACL policy

Core entries for the WebSEAL ACL, default-webseal, include:
Group iv-admin Tcmdbsvarxl
Group webseal-servers Tgmdbsrxl
User sec_master Tcmdbsvarxl
Any-other Trx
Unauthenticated T

At installation, this default ACL is attached to the /WebSEAL container object in
the object space.

The group, webseal-servers, contains an entry for each WebSEAL server in the
secure domain. The default permissions allow the servers to respond to browser
requests.

The traverse permission allows expansion of the Web space as represented in the
Web Portal Manager. The list permission allows the Web Portal Manager to display
the contents of the Web space.

Valid characters for ACL names

The following characters are valid for creating ACL names:
v A-Z
v a-z
v 0-9
v underscore (_)
v hyphen (-)
v backslash (\)
v Any character from a double-byte character set

For detailed information about creating ACL names, refer to the IBM Security
Access Manager for Web: Administration Guide.

Quality of protection POP

The protected object policy (POP) attribute for quality of protection allows you to
specify what level of data protection is required when performing an operation on
an object.

344 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The quality of protection POP attribute is used to determine whether access will be
granted to a requested resource. When an ACL check for a resource succeeds, the
quality of protection POP is checked. If a quality of protection POP exists, and the
resource manager (WebSEAL) cannot guarantee the required level of protection, the
request is denied.

The syntax for setting the quality of protection POP attribute is as follows:
pdadmin> pop modify pop-name set qop {none|integrity|privacy}

When the quality of protection level is set to either integrity or privacy, WebSEAL
requires data encryption through the use of Secure Socket Layer (SSL).

For example:
pdadmin> pop modify test set qop privacy

Configuration of authorization database updates and polling

This section contains the following topics:
v “Database update and polling concepts”
v “Configuration of update notification listening”
v “Configuration of authorization database polling” on page 346

Database update and polling concepts

The Security Access Manager policy server (pdmgrd) manages the master
authorization policy database and maintains location information about other
Security Access Manager servers in the secure domain. A Security Access Manager
administrator can make security policy changes to the secure domain at any time.
The policy server makes the necessary adjustments to the master authorization
database whenever security policy changes are implemented.

When the policy server makes a change to the master authorization database, it
can send out notification of this change to all replica databases in the secure
domain that support individual policy enforcers (such as WebSEAL). The policy
enforcers must then request an actual database update from the master
authorization database.

WebSEAL, as a resource manager and policy enforcer, has three options to obtain
information about authorization database changes:
v Listen for update notifications from the policy server (configurable and enabled

by default).
v Check (poll) the master authorization database at regular intervals (configurable

and disabled by default).
v Enable both listening and polling.

The [aznapi-configuration] stanza of the WebSEAL configuration file contains
stanza entries for configuring update notification listening and database polling.

Configuration of update notification listening

The listen-flags stanza entry, located in the [aznapi-configuration] stanza of the
WebSEAL configuration file, enables and disables update notification listening by
WebSEAL. By default, notification listening is enabled. To disable notification
listening, enter "disable".

Chapter 21. Configuration for authorization 345

[aznapi-configuration]
listen-flags = enable

The ssl-listening-port stanza entry, located in the [ssl] stanza of the WebSEAL
configuration file, specifies the SSL port for the notification listener:
[ssl]
ssl-listening-port = 7234

Note: Do not change the ssl-listening-port entry directly; this option should be
modified only by issuing the scrsslcfg -chgport command so that the policy server
can detect that the listening port has been changed. Otherwise, the resource
manager cannot receive policy update notifications or pdadmin server task
commands.

Configuration of authorization database polling

You can configure WebSEAL to regularly poll the master authorization database for
update information. The cache-refresh-interval stanza entry can be set to "default",
"disable", or a specific time interval in seconds. The "default" setting is equal to 600
seconds. By default, polling is disabled.
[aznapi-configuration]
cache-refresh-interval = disable

Configuring quality of protection levels

You can control the default level of encryption required for access to WebSEAL
over SSL (HTTPS) by configuring the quality of protection (QOP). Default quality
of protection management is controlled using stanza entries in the "SSL QUALITY
OF PROTECTION MANAGEMENT" section of the WebSEAL configuration file:
v Enable and disable QOP management with the ssl-qop-mgmt stanza entry.
v Specify allowed encryption levels in the [ssl-qop-mgmt-default] stanza.
1. Enable quality of protection management:

[ssl-qop]
ssl-qop-mgmt = yes

2. Specify the default encryption level for HTTPS access. The syntax is:
default = {ALL|NONE|cipher_level}

Supported values for cipher_level are:
NONE, ALL, NULL, DES-56, FIPS-DES-56, DES-168, FIPS-DES-168,
RC2-40, RC2-128, RC4-40, RC4-56, RC4-128, AES-128, AES-256

The value "NONE" disables encryption.
For example:
[ssl-qop-mgmt-default]
default = ALL

Note that you can also specify a selected group of ciphers:
[ssl-qop-mgmt-default]
default = RC4-128
default = RC2-128
default = DES-168

Notes:

v NONE means that no SSL connection is allowed.
v NULL means that unencrypted SSL connection is allowed.
v ALL means that all types of SSL connections are allowed.

346 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v There can be multiple cipher/MAC levels made available to the connection
for a given quality of protection cipher selection. These configurations will
still have the same encryption bit strength, just different MAC methods
(SHA1 or MD5)

v RC2-128 is available only with SSLv2. If it is the only cipher selection,
WebSEAL will disable SSLv3 and TLSv1 for the affected connection.

v NULL, FIPS-DES-56, FIPS-DES-168, RC4-56, AES-128, and AES-256 are
available only with SSLv3 and TLSv1. If they are the only ciphers available
to a given connection, SSLv2 will be disabled for the affected connection.

v AES Support is determined automatically by GSKit based on the
base-crypto-library setting. AES-128 and AES-256 are available only if AES
Support is enabled by GSKit, else they will be ignored.

v FIPS-DES-56 and FIPS-DES-168 are available only when fips-mode-
processing is enabled (set to yes). Otherwise they are ignored

Security Access Manager uses GSKit 8. The Cipher specifications supported by
GSKIT7 when used in SSLv2/TLS in Internet security are:
SSL_RSA_WITH_NULL_MD5
SSL_RSA_WITH_NULL_SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5
SSL_RSA_WITH_RC4_128_MD5
SSL_RSA_WITH_RC4_128_SHA
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA
SSL_RSA_WITH_DES_CBC_SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA
TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA
TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA
TLS_RSA_EXPORT1024_WITH_RC4_56_SHA
SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA
SSL_RSA_FIPS_WITH_3DES_EDE_CBC_SHA

These TLS cipher specifications are also used with SSLV3.

Configuration of QOP for individual hosts and networks

The ssl-qop-mgmt = yes stanza entry also enables any settings that appear in the
[ssl-qop-mgmt-hosts] and [ssl-qop-mgmt-networks] stanzas. These stanzas allow
quality of protection management by specific host/network/netmask IP address.

Note: The [ssl-qop-mgmt-hosts] and [ssl-qop-mgmt-networks] stanzas are
provided for compatibility with prior versions of WebSEAL only. It is
recommended that you not use them for Security Access Manager configuration.
Additionally, Internet Protocol version 6 (IPv6) addresses are not supported by
these stanzas.

The [ssl-qop-mgmt-default] stanza lists the ciphers used for all IP addresses not
matched in the [ssl-qop-mgmt-hosts] and [ssl-qop-mgmt-networks] stanzas.

Example configuration syntax for hosts:
[ssl-qop-mgmt-hosts]
xxx.xxx.xxx.xxx = ALL
yyy.yyy.yyy.yyy = RC2-128

Example configuration syntax for network/netmask:

Chapter 21. Configuration for authorization 347

[ssl-qop-mgmt-networks]
xxx.xxx.xxx.xxx/255.255.255.0 = RC4-128
yyy.yyy.yyy.yyy/255.255.0.0 = DES-56

Note that the entry for an IP address specified under [ssl-qop-mgmt-hosts] takes
priority over an entry for the same address in [ssl-qop-mgmt-networks]. Likewise,
an entry in [ssl-qop-mgmt-networks] takes priority over an entry for the same
address in [ssl-qop-mgmt-default].

If you must use [ssl-qop-mgmt-hosts] or [ssl-qop-mgmt-networks] for
compatibility concerns, review the IP address settings under all stanzas to ensure
that a specific IP address is not listed under more than one stanza. If an IP address
is listed under more than one stanza, ensure that the order of evaluation yields the
desired configuration.

Authorization decision information
WebSEAL can pass configured elements from the HTTP request to the
authorization framework for use when making authorization decisions.

The following HTTP request elements can be passed to the authorization
framework:
v The HTTP method of the request
v The HTTP scheme of the request
v The request URI
v Specific HTTP headers contained in the request
v Specific POST data elements contained in the request

The [azn-decision-info] stanza in the WebSEAL configuration file specifies the
extra information that is to be passed to the authorization framework. For further
information, see the IBM Security Web Gateway Appliance: Web Reverse Proxy Stanza
Reference.

Support for OAuth authorization decisions
OAuth provides a method for clients to access server resources on behalf of a
resource owner (such as a different client or an end user). It also provides a
process for end-users to authorize third party access to their server resources
without sharing their credentials (typically, a username and password pair), using
user-agent redirections.

WebSEAL supports the EAS plug-in, which leverages the Tivoli Federated Identity
Manager OAuth, versions 1.0 and 2.0, capabilities. This plug-in allows OAuth
decisions to be made as a part of the standard authorization on WebSEAL requests.
To use this functionality, you need a Tivoli Federated Identity Manager server
configured to reject or authorize OAuth tokens in your environment. For more
information, see the Tivoli Federated Identity Manager server product
documentation.

High level overview of the OAuth EAS

At a high level, the EAS framework allows a custom module to be called during
an authorization decision to add customized decision making logic to the
authorization decision. The configuration of the EAS controls whether the module
is invoked when a specific POP is encountered, or whether it is invoked when a

348 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

specific permission bit is applied to the authorization decision.

Figure 27 shows the logical flow through the OAuth EAS when making an
authorization decision. The following steps outline this authorization process:
1. The OAuth EAS receives the authorization request.
2. The OAuth EAS determines whether the required OAuth data is present.
3. If there is missing OAuth data, then a 401 response is generated and no further

processing takes place. If the required OAuth data is available, then proceed to
the next step.

4. EAS verifies that all required data is available in the request.

Figure 27. Logical flow of the OAuth EAS

Chapter 21. Configuration for authorization 349

5. If there is missing data, then a 400 response is generated and no further
processing takes place. If all of the data is available, then the EAS constructs a
Request Security Token (RST) and sends it to the Tivoli Federated Identity
Manager server.

6. Tivoli Federated Identity Manager processes the request. If the Tivoli Federated
Identity Manager processing fails then a 502 response is generated and no
further processing takes place. Otherwise Tivoli Federated Identity Manager
returns the access decision to the OAuth EAS.

7. If the request is authorized, then access is granted to the requested resource. If
the request is not authorized, then a 401 response is generated.

Configuring WebSEAL to include OAuth decisions

To make an OAuth authorization decision, Tivoli Federated Identity Manager
requires specific information regarding the request. The required data includes the
following:
v Authorization data. This data is obtained from either the authorization header,

the query string or the POST data.
v Resource information. This data is obtained from the HTTP request and is used

to validate the OAuth signature.

WebSEAL uses the EAS plug-in to provide this required data and utilize the
OAuth functionality in Tivoli Federated Identity Manager. The EAS plug-in is
installed with the Security Access Manager Web Security Runtime package.

To include OAuth decisions as part of the standard authorization on WebSEAL
requests, you need to perform the following tasks:
1. Configure the required authorization decision data.
2. Configure the extra EAS specific data.

This configuration ensures that the correct data is passed to the EAS for each
request.

Authorization decision data:

To correctly construct the RST, the EAS requires various information from the
request itself. WebSEAL must be configured to provide this information to the
EAS.

The majority of the required data is provided on every authorization request by
specifying these HTTP request elements in the [azn-decision-info] stanza. See
“Authorization decision information” on page 348.

Note: In certain situations, the POST data is also required. For efficiency, the EAS
plug-in does not provide the POST data on every authorization decision request.
Instead, the plug-in uses the existing dynamic access decision information within
WebSEAL to optionally request the POST data when required. WebSEAL
recognizes the request for POST data based on the resource-manager-provided-adi
configuration entry in the [aznapi-configuration] stanza.

It is vital that this configuration stanza is correct so that the data is passed to the
EAS. The following configuration entries are required in order for the EAS to
function correctly:

350 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

[azn-decision-info]

#
The following information will be provided to the authorization
framework for every authorization request. This information
is required by the OAuth EAS when validating an OAuth token.
#

HTTP_REQUEST_METHOD = method
HTTP_REQUEST_SCHEME = scheme
HTTP_REQUEST_URI = uri
HTTP_HOST_HDR = header:host
HTTP_CONTENT_TYPE_HDR = header:content-type
HTTP_TRANSFER_ENCODING_HDR = header:transfer-encoding
HTTP_AZN_HDR = header:authorization

[aznapi-configuration]

resource-manager-provided-adi = AMWS_pb_

EAS specific data:

The EAS requires specific configuration data to function correctly. This data is
mostly contained in the [oauth-eas] stanza.

WebSEAL provides a template file called oauth_eas.conf.template that includes
these stanza entries.

One of the required configuration entries in the [oauth-eas] stanza is
cluster-name, which specifies the name of the Tivoli Federated Identity Manager
cluster that hosts the OAuth service. You must configure a corresponding
[tfim-cluster:<cluster>] stanza to define the specified cluster.

The following excerpt provides an example of the required stanzas:
[oauth-eas]

This stanza contains definitions for OAuth EAS specific information.

....

[tfim-cluster:oauth-cluster]

#
This stanza contains definitions for the cluster of TFIM
servers that hosts the OAuth service.
#

....

For details of the required configuration entries for each of these stanzas, see the
IBM Security Web Gateway Appliance: Web Reverse Proxy Stanza Reference.

Error responses

In some circumstances HTTP error responses need to be returned to the client
including:
v 400 Bad Request
v 401 Unauthorized
v 502 Bad Gateway

Chapter 21. Configuration for authorization 351

In the case of a 401 response, an additional WWW-Authenticate header is added to
the response in the following format:
WWW-Authenticate: OAuth realm = <realm-name>

The HTML component of the responses are pre-loaded from files that have been
specified in the EAS configuration. Namely the [bad-request-rsp-
file],[unauthorized-rsp-file] and [bad-gateway-rsp-file] configuration entries
in the [oauth-eas] stanza. For more information about the [oauth-eas] stanza, see
the IBM Security Web Gateway Appliance: Web Reverse Proxy Stanza Reference.

Troubleshooting
The EAS provides trace information through the standard Security Access Manager
tracing mechanism.

This mechanism is controlled using the Security Access Manager server task
command: trace. You can use the trace-component configuration entry within the
[oauth-eas] stanza to specify the name of the of the trace component that is
associated with the EAS.

352 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 22. Key management

This chapter contains information that describes tasks you can perform to manage
certificate handling by the WebSEAL server.

Topic Index:
v “Key management overview”
v “Key management in the Local Management Interface” on page 354
v “Client-side and server-side certificate concepts” on page 354
v “Configuration of the WebSEAL key database file” on page 355
v “Configuration of CRL checking” on page 359
v “Configuration of the CRL cache” on page 359
v “Use of the WebSEAL test certificate for SSL connections” on page 361

Key management overview
The LMI manages the keys that are required to enable SSL communication between
WebSEAL and other components of the Security Access Manager domain.

You can use the LMI to create key database files and manage the digital certificates
that are stored in these key database files.

Figure 28 summarizes the key management configuration that WebSEAL uses for
SSL communication with other components of the Security Access Manager
environment. The configuration stanzas and stanza entries are in the WebSEAL
configuration file.

Client WebSEAL

Application

Server

-K junction

LDAP

registry

Policy

database

(

WebSEAL authentication to LDAP)

DN of LDAP server certificate for

[ldap]
ssl-keyfile-dn

(Mutual authentication over

SSL junctions. Key stored in

)pdsrv.kdb
-K key-label

(WebSEAL server certificate

for internal authentication. Key

stored in)webseald.kdb
[ssl]
ssl-keyfile-label

(WebSEAL server certificate

for authentication with browsers.

Key stored in).pdsrv.kdb
[ssl]
webseal-cert-keyfile-label (default)
or
[ssl]
webseal-cert-keyfile-sni (if applicable)

Figure 28. Keyfile management configuration

© Copyright IBM Corp. 2002, 2013 353

Key management in the Local Management Interface

You can use the LMI to manage the digital certificates that WebSEAL uses. In the
LMI, go to the Secure Reverse Proxy Settings > Global Keys menu to access the
following key management pages:

SSL Certificates
Use the SSL Certificates management page to complete the following tasks:
v List or retrieve all current SSL certificate database names.
v Create a certificate database.
v Rename a certificate database.
v Describe a certificate database.
v Delete a certificate database.
v Import a certificate database.
v Export a certificate database.
v Manage signer certificates.
v Manage personal certificates.
v Manage certificate requests.

SSO Keys
Use the SSO Keys management page to complete the following tasks:
v List all current SSO key files.
v Create a new SSO key file.
v Import an existing SSO key file.
v Export an SSO key file.
v Delete an SSO key file.

LTPA Keys
Use the LTPA Keys management page to complete the following tasks:
v Retrieve all current LTPA key files.
v Rename an LTPA key file.
v Delete an LTPA key file.
v Export an LTPA key file.
v Import an LTPA key file.

See the IBM Security Web Gateway Appliance: Administration Guide for detailed
information about using the LMI to complete these key management tasks.

Client-side and server-side certificate concepts

This section describes the administration and configuration tasks required to set up
WebSEAL to handle client-side and server-side digital certificates used for
authentication over SSL.

WebSEAL requires certificates for the following situations:
v WebSEAL identifies itself to SSL clients with its server-side certificate
v WebSEAL identifies itself to a junctioned back-end server (configured for mutual

authentication) with a client-side certificate
v WebSEAL refers to its database of Certificate Authority (CA) root certificates to

validate clients accessing with client-side certificates

354 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v WebSEAL refers to its database of Certificate Authority (CA) root certificates to
validate junctioned back-end servers

WebSEAL uses the IBM Global Security Kit (GSKit) implementation of SSL to
configure and administer digital certificates. The IBM Security Web Gateway
Appliance provides the LMI to set up and manage the certificate key database.
This database contains one or more WebSEAL server/client certificates and the CA
root certificates.

WebSEAL includes the following components at installation to support SSL
authentication using digital certificates:
v A default key database (pdsrv.kdb)
v A default key database stash file (pdsrv.sth) and password ("pdsrv")
v Several common CA root certificates
v A self-signed test certificate that WebSEAL can use to identify itself to SSL

clients
Before using WebSEAL in a production environment, apply for a commonly
recognized certificate from a known Certificate Authority to use instead of this
test certificate.

Configuration of the WebSEAL key database file

This section contains the following topics:
v “WebSEAL key database file”
v “Key database file password” on page 356
v “WebSEAL test certificate” on page 356
v “Server Name Indication” on page 357
v “Inter-server SSL communication for Security Access Manager” on page 358

WebSEAL key database file
During installation, WebSEAL provides a default certificate key database that is
used to authenticate both clients and junctioned servers. WebSEAL also provides
an optional, separate certificate key database that can be used to authenticate
junctioned servers.

By default, the junction certificate key database option is commented out in the
WebSEAL configuration file. Unless this option is enabled, junctions maintain the
default behavior of using a shared key database for clients and junctioned servers.

Note: When a separate certificate key database is used for junctioned servers, it is
not possible for a user to use a client certificate that is validated by a CA certificate
stored in the junction key database. Similarly, it is not possible for a junctioned
server to use a certificate that is validated by a CA certificate contained in the
default certificate database.

The webseal-cert-keyfile stanza entry, located in the [ssl] stanza of the
WebSEAL configuration file, identifies the default certificate key database. For
example:
[ssl]
webseal-cert-keyfile = pdsrv.kdb

Chapter 22. Key management 355

The jct-cert-keyfile stanza entry in the [junction] stanza for the WebSEAL
configuration file, identifies the optional, separate junction certificate key database.
For example:
[junction]
jct-cert-keyfile = pdjct.kdb

You can use the SSL Certificates management page of the LMI to create a new key
database. However, you must enter the name and location of this new key file in
the webseal-cert-keyfile stanza entry so that WebSEAL can find and use the
certificates contained in that database.

Key database file password
WebSEAL provides a stash file that contains the password for the default certificate
key database pdsrv.kdb.

The following stanza entry specifies the name of the stash file:
[ssl]
webseal-cert-keyfile-stash = pdsrv.sth

The default password encrypted in the pdsrv.sth stash file is pdsrv. You can
alternatively express a password as plain text in the corresponding stanza entry.
For example:
[ssl]
webseal-cert-keyfile-pwd = pdsrv

During installation, WebSEAL uses the stash file to obtain the key file password.
The webseal-cert-keyfile-pwd stanza entry is commented out. By using the stash
file you can avoid displaying the password as text in the configuration file.

Note: Uncomment the specific password stanza entry you want to use. If both
password and stash file stanza entries are specified, the password value is used.

WebSEAL test certificate

During installation, WebSEAL provides a non-secure self-signed test certificate. The
test certificate, acting as a server-side certificate, allows WebSEAL to identify itself
to SSL clients.

To better control how this test certificate is used, the certificate is not installed as a
default certificate. Instead, the webseal-cert-keyfile-label stanza entry designates
the certificate as the active server-side certificate and overrides any other certificate
designated as "default" in the keyfile database.
[ssl]
webseal-cert-keyfile-label = WebSEAL-Test-Only

Note: WebSEAL uses GSKit certificate handling functionality. GSKit allows but
does not require that a certificate in keyfile databases be designated the default
certificate.

Although this test certificate allows WebSEAL to respond to an SSL-enabled
browser request, it cannot be verified by the browser (which does not contain an
appropriate root CA certificate). Because the private key for this default certificate
is contained in every WebSEAL distribution, this certificate offers no true secure
communication.

356 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

You can use the LMI to generate a certificate request that can be sent to a
Certificate Authority (CA). Use the LMI to install and label the returned server
certificate.

If you use different certificates for other scenarios (such as –K junctions), you can
use the LMI to create, install, and label these certificates. The keyfile label must not
contain spaces.

WebSEAL (which by default runs as user ivmgr) must have read (r) permission on
these key database files.

Server Name Indication
WebSEAL can use Server Name Indication to identify the host name in the request
and send a server certificate that contains a matching host name. You can configure
the certificate that WebSEAL uses for each host.

Server Name Indication is an extension to the SSL and TLS protocols. Server Name
Indication identifies the host name to which the browser is requesting a
connection.

By default, WebSEAL sends the same certificate to all hosts. However, by using
Server Name Indication, WebSEAL can send a different certificate for each
requested host.

To support Server Name Indication, the request must meet the following
requirements:
v Use TLS over SSL to connect to WebSEAL. SSLv2 and SSLv3 are not supported.
v Use a browser that supports Server Name Indication.

Use the webseal-cert-keyfile-sni configuration entry in the [ssl] stanza of the
WebSEAL configuration file to specify the certificate that WebSEAL sends for a
particular host name. For example:
[ssl]
webseal-cert-keyfile-sni = <host_name>:<label>

where:

<host_name>
The name of the host to which WebSEAL returns the certificate.

<label>
The name of the certificate for WebSEAL to use.

Note: Specify the certificate that contains a dn value of cn=<host_name>.

You can specify this configuration entry multiple times. Specify a separate entry for
each server certificate.

If WebSEAL does not find an entry for the host name in the browser request,
WebSEAL sends the default certificate that is specified by the webseal-cert-
keyfile-label entry. WebSEAL also uses the default certificate if the request does
not meet the Server Name Indication requirements. For example, if the browser
does not support Server Name Indication.

If you do not configure webseal-cert-keyfile-sni entries, WebSEAL can send only
a single certificate, which means that WebSEAL cannot differentiate between

Chapter 22. Key management 357

different hosts. A certificate mismatch error results in the browser when a user uses
SSL to connect to a host that does not match the default certificate.

Server Name Indication solves this problem. Use the webseal-cert-keyfile-sni to
configure WebSEAL to provide a matching certificate for each host name.

Inter-server SSL communication for Security Access Manager

The [ssl] stanza of the WebSEAL configuration file contains four additional stanza
entries used to configure the keyfile used by WebSEAL for internal SSL
communication with other Security Access Manager servers. You should modify
these stanza entries only through the pdconfig configuration script.
[ssl]
ssl-keyfile =
ssl-keyfile-pwd =
ssl-keyfile-stash =
ssl-keyfile-label =

Certificate revocation in WebSEAL

Certificates can be revoked for various reasons. Before using a certificate,
WebSEAL must check an up-to-date source to ensure that it is valid.

Certificate revocation list (CRL)

The certificate revocation list (CRL) is a method of preventing the validation of
unwanted certificates. The CRL contains the identities of certificates that are
deemed untrustworthy. WebSEAL uses a GSKit implementation of SSL that
supports CRL checking. WebSEAL can use GSKit to perform CRL checking on
client-side certificates and certificates from SSL junctions.

A certificate authority (CA) provides a CRL that is valid for a limited amount of
time. The CA specifies the lifetime validity of the CRL. The CA is responsible for
maintaining this information. Contact the CA to find out their policies for updating
the CRL.

You can configure WebSEAL to use OCSP, CRL, or both for managing certificates.
By default, WebSEAL (using GSKit) tries OCSP first, followed by CRL. If these first
two methods fail, WebSEAL can then try LDAP (if configured). This search order is
defined by an RFC and cannot be changed.

WebSEAL must be able to connect to the Certificate Distribution Point (CDP) as
specified by the CA in the certificate. If WebSEAL is installed on a server behind a
firewall, you must allow communication through to the CDP. Otherwise,
performance could be affected and you risk certificates being validated against an
out of date CRL.

There is no time limitation for using an outdated CRL. However, allowing the use
of an outdated CRL creates security exposures. If GSKit determines that the CRL is
out of date, it returns an UNDETERMINED status message. The application can
then decide the best course of action. You can configure the course of action in
WebSEAL by setting the configuration option undetermined-revocation-cert-action
in the [ssl] stanza to one of: ignore, log, or reject.

358 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Configuration of CRL checking

WebSEAL must know the location of the CRL list in order to perform CRL
checking. Stanza entries for the location of the LDAP server that can be referenced
for CRL checking during client-side certificate authentication are found in the [ssl]
stanza of the WebSEAL configuration file:
[ssl]
#crl-ldap-server = server-name
#crl-ldap-server-port = port-id
#crl-ldap-user = webseal-admin-name
#crl-ldap-user-password = admin-password

Stanza entries for the location of the LDAP server that can be referenced for CRL
checking during authentication across SSL junctions are found in the [junction]
stanza of the WebSEAL configuration file:
[junction]
#crl-ldap-server = server-name
#crl-ldap-server-port = port-id
#crl-ldap-user = webseal-admin-name
#crl-ldap-user-password = admin-password

By default, CRL checking is disabled (stanza entries are commented out). To enable
CRL checking during certificate authentication, uncomment each stanza entry and
enter the appropriate values.

A null value for the crl-ldap-user stanza entry indicates that the SSL authentication
mechanism should bind to the LDAP server as an anonymous user.

Certificate distribution points

A CA specifies in the certificate where you can obtain revocation information.
These details are not provided by WebSEAL or the GSKit library.

Although rare, a certificate can have more than one CDP. The primary reason for
more than one CDP is to offer different protocols such as LDAP and HTTP. If a
certificate is configured with more one CDP, WebSEAL contacts each CDP until a
valid result is returned.

You can use Certificates from different CAs. Each CRL is signed by each CA so
they cannot be confused. Each certificate contains its own CDP.

Configuration of the CRL cache

GSKit allows WebSEAL to perform CRL checking on client-side certificates and
certificates from SSL junctions. To improve CRL checking performance, you can
cache the CRL from a particular Certificate Authority (CA). Subsequent CRL checks
are made against this cached version of the list.

The settings for the two configuration file stanza entries discussed in this section
are passed directly to the GSKit utility. For further information about GSKit
functionality, refer to the GSKit documentation.

Chapter 22. Key management 359

Set the maximum number of cache entries

The gsk-crl-cache-size stanza entry specifies the maximum number of entries in
the GSKit CRL cache. Each entry represents an entire CRL for a particular
certificate authority. The default setting is "0". A value greater than "0" is required
to activate the cache.

Note: CRL entries can use a large amount of memory. Therefore, try to specify the
minimal value for the gsk-crl-cache-size.
[ssl]
gsk-crl-cache-size = 0

Set the GSKit cache lifetime timeout value

The gsk-crl-cache-entry-lifetime stanza entry specifies the lifetime timeout value
for all entries in the GSKit CRL cache. The value is expressed in seconds and can
have a range of 0-86400 seconds. The default value is 0.

Note: There is no maximum limit imposed by either WebSEAL or GSKit, but the
value must be contained in a 64-bit integer.
[ssl]
gsk-crl-cache-entry-lifetime = 0

Enable the CRL cache

When the gsk-crl-cache-size and gsk-crl-cache-entry-lifetime stanza entries are
both set to "0" (default), CRL caching is disabled.

To enable the cache, change the setting for either or both of the gsk-crl-cache-size
and gsk-crl-cache-entry-lifetime to a value other than zero. If both values are zero,
the cache is disabled. The cache is enabled if one or both of these stanza entries
has a non-zero value configured.

If either configuration entry has a value of 0 while the other is non-zero, GSKit
automatically assigns a default value to the entry with the zero value. GSKit uses
the following process:
v If gsk-crl-cache-entry-lifetime is configured with a non-zero value, but

gsk-crl-cache-size is configured as 0 then the CRL cache is enabled. In this case,
GSKit uses the following default value for the gsk-crl-cache-size:
– gsk-crl-cache-size = 50

v If gsk-crl-cache-size is configured with a non-zero value, but
gsk-crl-cache-entry-lifetime is configured as 0 then the CRL cache is enabled. In
this case, GSKit uses the following default value for the gsk-crl-cache-entry-
lifetime:
– gsk-crl-cache-entry-lifetime = 43200

If the CDP in the certificate specifies an HTTP source for the CRL then WebSEAL
does not use the gsk-crl-cache-size and gsk-crl-cache-entry-lifetime configuration
settings. CRLs from HTTP sources are never cached. If OCSP is not an option and
a large CRL must be read using HTTP, you can use the GSKit environment
variable GSK_HTTP_CDP_MAX_RESPONSE_SIZE.

360 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Use of the WebSEAL test certificate for SSL connections

Client-side certificate authentication must take place over a Secure Socket Layer
(SSL) connection. The SSL connection is established prior to the certificate
authentication process. The SSL connection can be established when a client
attempts to access a resource over HTTPS. When the resource does not require
authenticated access, the client negotiates an SSL session with the WebSEAL server.
The SSL session is established when the client and server (WebSEAL) examine each
other's certificate and accept the validity of the signing authority.

In order to enable the establishment of SSL sessions on a new WebSEAL server,
WebSEAL contains a self-signed test server certificate. WebSEAL can present the
self-signed certificate to the client. If the client accepts the certificate, the SSL
session is established.

This test certificate is not suitable for permanent use by the WebSEAL server.
Although this test certificate allows WebSEAL to respond to an SSL-enabled
browser request, it cannot be verified by the browser. This is because the browser
does not contain an appropriate root Certificate Authority (CA) certificate — as is
the case for when the browser receives any self-signed certificate for which a root
CA certificate does not exist. Because the private key for this default certificate is
contained in every WebSEAL distribution, this certificate offers no true secure
communication.

To ensure secure communication over SSL, WebSEAL administrators must obtain a
unique site server certificate from a trusted Certificate Authority (CA). You can use
the LMI to generate a certificate request that is sent to the CA. You can also use
the LMI to install and label the new site certificate.

Use the webseal-cert-keyfile-label stanza entry in the [ssl] stanza of the
WebSEAL configuration file to designate the certificate as the active WebSEAL
server-side certificate (this setting overrides any certificate designated as “default”
in the keyfile database).

If you require different certificates for other scenarios (such as for mutually
authenticated junctions), you can use the LMI to create, install, and label these
additional certificates. See “Configuration of the WebSEAL key database file” on
page 355.

It is also important to ensure that validation of certificates includes checking of
Certificate Revocation Lists (CRLs). Configure WebSEAL to access the appropriate
LDAP server as an LDAP user with sufficient permission to access the appropriate
CRLs. Supply values for the following configuration file entries:
[ssl]
crl-ldap-server
crl-ldap-server-port
crl-ldap-user
crl-ldap-user-password

WebSEAL can be configured to cache CRLs. To configure the cache, supply values
for the following configuration file entries:
[ssl]
gsk-crl-cache-size
gsk-crl-cache-entry-lifetime

Chapter 22. Key management 361

Instructions for setting values that affect CRL access and handling, including valid
ranges for cache settings, are specified in the IBM Security Web Gateway Appliance:
Web Reverse Proxy Stanza Reference.

See also “Configuration of the CRL cache” on page 359.

362 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Part 7. Standard WebSEAL Junctions

© Copyright IBM Corp. 2002, 2013 363

364 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 23. Standard WebSEAL junctions

This chapter provides information for configuring standard WebSEAL junctions.

Most standard junction options are also supported by virtual host junctions.
Information on virtual host junctions can be found at Chapter 29, “Virtual host
junctions,” on page 479 and Chapter 30, “Command option summary: Virtual host
junctions,” on page 499.

Topic Index:
v “WebSEAL junctions overview”
v “Management of junctions with Web Portal Manager” on page 367
v “Junction management in the Local Management Interface” on page 368
v “Managing junctions with the pdadmin utility” on page 368
v “Standard WebSEAL junction configuration” on page 369
v “Transparent path junctions” on page 373
v “Technical notes for using WebSEAL junctions” on page 376
v “How to generate a back-end server Web space (query_contents)” on page 379

WebSEAL junctions overview

A WebSEAL junction is an HTTP or HTTPS connection between a front-end
WebSEAL server and a back-end Web application server. Junctions logically
combine the Web space of the back-end server with the Web space of the
WebSEAL server, resulting in a unified view of the entire Web object space.

A junction allows WebSEAL to provide protective services on behalf of the
back-end server. WebSEAL performs authentication and authorization checks on all
requests for resources before passing those requests across a junction to the
back-end server. Junctions also allow a variety of single signon solutions between a
client and the junctioned back-end applications.

You can create WebSEAL junctions with either the pdadmin command-line utility,
the Web Portal Manager, or the LMI.

This section contains the following topics:
v “Junction types”
v “Applying coarse-grained access control: summary” on page 366
v “Applying fine-grained access control: summary” on page 366
v “Additional references for WebSEAL junctions” on page 366

Junction types

You can create the following WebSEAL junction types:
v WebSEAL to back-end server over TCP connection
v WebSEAL to back-end server over TCP connection using HTTP proxy server
v WebSEAL to back-end server over SSL connection
v WebSEAL to back-end server over SSL connection using HTTPS proxy server

© Copyright IBM Corp. 2002, 2013 365

v WebSEAL to WebSEAL over SSL connection
v WebSEAL to back-end server over mutual junction

You must address the following two concerns when creating any junction:
1. Decide where to junction (mount) the Web application server in the WebSEAL

object space.
2. Choose the type of junction.

Applying coarse-grained access control: summary

About this task

A protective ACL placed on the junction object provides coarse-grained control
over the back-end resources. The ACL provides a general overall coarse-grained set
of permissions every individual resource accessed through the junction.

Procedure
1. Use the pdadmin utility or the Web Portal Manager to create a junction

between WebSEAL and the back-end server.
2. Place an appropriate ACL policy on the junction point to provide

coarse-grained control to the back-end server.

Applying fine-grained access control: summary
A protective ACL placed on the junction object provides coarse-grained control
over the back-end resources. The ACL provides a general overall coarse-grained set
of permissions every individual resource accessed through the junction.

About this task

You can also provide fine-grained protection to the resources accessed through the
junction by explicitly placing ACLs on individual resource objects or groups of
objects. WebSEAL cannot automatically see and understand a back-end file system.
You must inform WebSEAL of the back-end object space using a special
application, called query_contents, that inventories the back-end Web space and
reports the structure and contents to WebSEAL.

Procedure
1. Use the pdadmin utility or the Web Portal Manager to create a junction

between WebSEAL and the back-end server.
2. Copy the query_contents program to the back-end server.
3. Apply ACL policy to appropriate objects in the object space revealed by the

query_contents program.

Additional references for WebSEAL junctions

See “Standard WebSEAL junctions” on page 14 for a conceptual overview of
WebSEAL junctions.

See Chapter 24, “Advanced junction configuration,” on page 387 for advanced
junction options.

See Chapter 28, “Command option summary: standard junctions,” on page 465 for
a summary of the junction command options by functional categories.

366 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Management of junctions with Web Portal Manager

You can use the Security Access Manager Web Portal Manager graphical user
interface to create, list, and delete junctions.

This section contains the following topics:
v “Creating a junction using Web Portal Manager”
v “Listing junctions using Web Portal Manager”
v “Deleting junctions using Web Portal Manager” on page 368

Creating a junction using Web Portal Manager

About this task

Create a junction using Web Portal Manager.

Procedure
1. Log in to the domain.
2. Click WebSEAL → Create Junction.
3. Select the WebSEAL Server Name instance.
4. Type the name of the Junction Point.
5. Select a junction Type.

For online help on supported types, click the ? icon in the upper-right corner.
6. Provide the configuration information, as required by the junction type you

chose. Note that the fields in the Web Portal Manager window change based on
the junction type. Select the appropriate check boxes, and type the requested
values, in the following sections:
v Server Information
v Client Identity Headers
v General Options
v Basic Authentication
For online help for each configuration section, click the ? icon in the
upper-right corner.

7. When configuring single signon using LTPA to WebSphere, supply values for
the WebSphere Single Signon section.

8. When configuring multiple junctions, you can control the allocation of worker
threads by specifying values for the Junction Fairness section.Note: The default
value for Soft Limit is 90%. For more information on junction fairness, see
“Worker thread allocation” on page 51.

Listing junctions using Web Portal Manager
Use the Web Portal Manager to list junctions.

Procedure
1. Log in to the domain.
2. Click WebSEAL → List Junctions.
3. Select the WebSEAL Server Name instance.
4. Click Show Junctions.

Chapter 23. Standard WebSEAL junctions 367

Deleting junctions using Web Portal Manager

About this task

To delete one or more configured junctions using Web Portal Manager:

Procedure
1. Log in to the domain.
2. Click WebSEAL → List Junctions.
3. Select the WebSEAL Server Name instance.
4. Click Show Junctions.
5. Select the check box next to the junction name and click Delete.

You can delete multiple junctions at the same time.

Junction management in the Local Management Interface

You can use the LMI to manage standard and virtual junctions. To access the
junction management page in the LMI, go to the Reverse Proxy Management page
and select the appropriate WebSEAL instance. Click Manage > Junction
Management to open the Junction Management page for the selected instance.

From the Junction Management page, you can complete the following tasks:
v Retrieve a list of standard and virtual junctions.
v Retrieve the parameters for a single standard or virtual junction.
v Delete a standard or virtual junction.
v Create a standard or virtual junction.
v Add a back-end server to an existing standard or virtual junction.

See the IBM Security Web Gateway Appliance: Administration Guide for detailed
information about how to use the LMI to complete these junction management
tasks.

Managing junctions with the pdadmin utility

About this task

Note: You can also use the Security Access Manager Web Portal Manager graphical
user interface to create junctions. For more information, see “Creating a junction
using Web Portal Manager” on page 367.

Before using the pdadmin utility, you must login to a secure domain as a user
with administration authorization, such as sec_master.

For example:

UNIX or Linux:
pdadmin
pdadmin> login
Enter User ID: sec_master
Enter Password:
pdadmin>

368 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

To create WebSEAL junctions, you use the pdadmin server task create command:
pdadmin> server task instance_name-webseald-host_name create options

For example, if the configured name of a single WebSEAL instance is web1 ,
installed on a host named www.example.com, the complete server name would be
expressed as follows:
web1-webseald-www.example.com

Use the pdadmin server list command to display the correct format of the
complete server name:
pdadmin> server list
web1-webseald-www.example.com

For more information, see the reference page for pdadmin server task create in
Appendix B, “Command reference,” on page 615 or the IBM Security Access
Manager for Web: Command Reference.

Import and export of junction databases

You can replicate a junction database, copying it from one WebSEAL server to
another, without having to stop the WebSEAL server itself. This is done by
exporting the junction database to a named file on one server, then importing the
junction database to another server from the same named file.

The following server task command exports the existing junction database to a
named file:
pdadmin> server task server jdb export file path=file

The following server task command imports the junction database from the named
file:
pdadmin> server task server jdb import file path=file

These commands can be executed through pdadmin or Web Portal Manager. The
file specified in the two commands resides on the file system of the target
WebSEAL server, not on the file system from which the command is executed.

It is possible to edit the exported text or XML file to change things like IP
addresses of servers.

Rules can be added to the [jdb-cmd:replace] stanza, which control the remapping
of junction attribute values during the execution of the import command.

Some pre-junction set up might also be required before the junction definition can
be imported. For example, the necessary SSL certificates might need to be imported
into the WebSEAL key database for an SSL junction before the junction can be
created.

Standard WebSEAL junction configuration

This section contains the following topics:
v “The pdadmin server task create command” on page 370
v “Creating TCP type standard junctions” on page 370
v “Creating SSL type standard junctions” on page 371

Chapter 23. Standard WebSEAL junctions 369

v “Adding multiple back-end servers to a standard junction” on page 373

The pdadmin server task create command

WebSEAL supports both standard non-secure TCP (HTTP) and secure SSL (HTTPS)
junctions between WebSEAL and back-end Web application servers.

The junction between WebSEAL and the back-end server is independent of the
type of connection (and its level of security) between the client (browser) and the
WebSEAL server.

The mandatory command options required to create a basic WebSEAL junction
using pdadmin server task create include:
v Host name of the back-end application server (–h option)
v Junction type: tcp, ssl, tcpproxy, sslproxy, local (–t option)
v Junction point (mount point)

Command syntax (entered as one line):
pdadmin> server task instance_name-webseald-host-name
create -t type -h host_name jct_point

For example:
pdadmin> server task web1-webseald-cruz create -t tcp -h doc.ibm.com /pubs

Note: Always use the fully qualified domain name of the back-end server when
specifying the argument to the –h option.

Creating TCP type standard junctions

About this task

A WebSEAL junction over a TCP connection provides the basic properties of a
junction but does not provide secure communication across the junction.

Procedure

To create a secure TCP junction and add an initial server, use the create command
with the –t tcp option (entered as one line):
pdadmin> server task instance_name-webseald-host_name create -t tcp
-h host-name [-p port] jct-point

The default port value for a TCP junction (if not specified) is 80.

Junction

WebSEAL

Client

Web
Application

Server

/

TCP
/mnt

Figure 29. Non-secure TCP (HTTP) junction

370 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Creating SSL type standard junctions

About this task

SSL junctions function exactly like TCP junctions, with the added value that all
communication between WebSEAL and the back-end server is encrypted.

SSL junctions allow secure end-to-end browser-to-application transactions. You can
use SSL to secure communications from the client to WebSEAL and from WebSEAL
to the back-end server. The back-end server must be HTTPS-enabled when you use
an SSL junction.

Procedure

To create a secure SSL junction and add an initial server, use the create command
with the –t ssl option (entered as one line):
pdadmin> server task instance_name-webseald-host-name create -t ssl
-h host_name [-p port] jct_point

The default port value for an SSL junction (if not specified) is 443.
For more information on configuring SSL-based standard junctions, see “SSL-based
standard junctions” on page 372.

Creating mutual junctions

About this task

Mutual junctions provide the ability to send junction requests over HTTP or
HTTPS, governed by the communication protocol over which the request was
received.

If a request comes in to a mutual junction over HTTP, then the request goes to the
junctioned server via HTTP. If the request comes in over HTTPS then it goes to the
junctioned server over HTTPS.

Procedure

To create a mutual junction and add an initial server, use the create command with
the –t mutual option. Use the -p option for a HTTP port and the -P option for a
HTTPS port. Similarly, use the -V option to specify the virtual host name for HTTP
requests, and the -V option to specify the virtual host name for HTTPS requests.
For example (entered as one line):

Junction

WebSEAL

Client

Web
Application

Server

/

SSL
/mnt

Figure 30. Secure SSL (HTTPS) junction

Chapter 23. Standard WebSEAL junctions 371

pdadmin> server task instance_name-webseald-host-name create -t mutual
-h host_name [-p HTTP_port] [-P HTTPS_port] [-v HTTP_virtual_host_name]
[-V HTTPS_virtual_host_name]jct_point

The default HTTP port value for a mutual junction (if not specified) is 80.
The default HTTPS port value for a mutual junction (if not specified) is 443.

SSL-based standard junctions

Verification of the back-end server certificate

When a client makes a request for a resource on the back-end server, WebSEAL, in
its role as a security server, performs the request on behalf of the client. The SSL
protocol specifies that when a request is made to the back-end server, that server
must provide proof of its identity using a server-side certificate.

When WebSEAL receives this certificate from the back-end server, it must verify its
authenticity by matching the certificate against a list of root CA certificates stored
in its certificate database.

Security Access Manager uses the IBM Global Security Kit (GSKit) implementation
of SSL. You can use the LMI to add the root certificate of the CA who signed the
back-end server certificate to the WebSEAL certificate keyfile (pdsrv.kdb).

Examples of SSL junctions

Junction host sales.ibm.com at junction point /sales over SSL (entered as one
line):
pdadmin> server task web1-webseald-cruz create -t ssl -h
sales.ibm.com /sales

Note: In this sales example, the –t ssl option dictates a default port of 443.

Junction host travel.ibm.com on port 4443 at junction point /travel over SSL
(entered as one line):
pdadmin> server task web1-webseald-cruz create -t ssl -p 4443
-h travel.ibm.com /travel

Disabling SSL protocol versions for junctions

About this task

You can optionally disable one or more SSL protocol versions for junction
connections. By default, SSL v2 is disabled. All other supported SSL versions are
enabled. The WebSEAL configuration file provides the following entries by default:
[junction]
disable-ssl-v2 = yes
disable-ssl-v3 = no
disable-tls-v1 = no
disable-tls-v11 = no
disable-tls-v12 = no

Procedure

To disable an SSL protocol version for junctions, set the corresponding entry to yes.

372 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Adding multiple back-end servers to a standard junction

About this task

See “Adding multiple back-end servers to the same junction” on page 377.

Local type standard junction

A local type junction (-t local) is a mount point for specific content located locally
on the WebSEAL server. Like the content from junctioned remote servers, local
junction content is incorporated into WebSEAL's unified protected object space
view.

The following junction options are appropriate for local type junctions:

Table 34. Local type junction options

Option Description

–t type Type of junction (local).

–f Force the replacement of an existing junction.

See “Forcing a new junction” on page 396.

–l percent-value Defines the soft limit for consumption of worker threads.

–L percent-value Defines the hard limit for consumption of worker threads.

Disable local junctions
Disable the local junction functionality so that the WebSEAL instance cannot serve
locally stored pages.

Set the disable-local-junctions entry in the [junction] stanza of the WebSEAL
configuration file to yes to disable the local junction functionality:
[junction]
disable-local-junctions = yes

If you enable the disable-local-junctions configuration item, new local junctions
are not created. If existing local junctions are in the WebSEAL instance, those
junctions are not loaded when the instance starts.

Transparent path junctions

This section contains the following topics:
v “Filtering concepts in standard WebSEAL junctions” on page 374
v “Transparent path junction concepts” on page 374
v “Configuring transparent path junctions” on page 375
v “Example transparent path junction” on page 376

Chapter 23. Standard WebSEAL junctions 373

Filtering concepts in standard WebSEAL junctions
In standard junction configuration, a configured junction represents a specific
back-end host machine. The junction and its name are represented as a
subdirectory in the WebSEAL protected object space.

The following example uses the pdadmin server task command to create a
junction (/jct) to the back-end server pubs.ibm.com:
pdadmin> server task web1-webseald-www.cruz.com create -t tcp -h pubs.ibm.com /jct

A subdirectory named /jct is created in the WebSEAL object space. This junction
mount point represents the back-end server pubs.ibm.com.

A response page returned from pubs.ibm.com contains the following link (URL) in
the HTML of that page:
http://pubs.ibm.com/docs/readme.html

WebSEAL's standard filtering mechanism for standard junctions parses the HTML
in the response page and modifies this link by adding the name of the junction
configured for this back-end server. Additionally, the original absolute expression
of the URL is changed to a server-relative expression. This is the link as it now
appears to the user:
/jct/docs/readme.html

Note: If rewrite-absolute-with-absolute was set to "yes", the link would appear as:
http://www.cruz.com/jct/docs/readme.html

See “Configuring the rewrite-absolute-with-absolute option” on page 427.

Now the user clicks the link to access the back-end resource (readme.html).

The portion of the URL representing the junction name (/jct) is mapped by
WebSEAL to the back-end server, pubs.ibm.com. By design, a junction points to the
root of the back-end server document space. Any path expression following the
junction name in the URL represents the path to the resource from the server's root
location.

As a conclusion to the example, WebSEAL successfully locates the resource at:
http://pubs.ibm.com/docs/readme.html

Notice that in the end, the junction name has been removed from the path and the
URL reads as it originally appeared on the response page.

Transparent path junction concepts

For standard WebSEAL junctions, a link to a resource on a back-end junctioned
server can only succeed if the URL in the request received by WebSEAL contains
the identity of the junction. Junctions use both default and optional filtering
solutions to force URLs found in HTML response pages to appear correct when
viewed as a part of WebSEAL's single host document space. See Chapter 25,
“Modification of URLs to junctioned resources,” on page 415.

There are three parts of a URL that must be considered in a filtering solution:
v protocol
v host name:port

374 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v path

Of the three parts of a URL, the path is often the most problematic and restricting
part to filter. The transparent path junction option (-x) implements a variation on
the standard junction mechanism that eliminates the need to filter the path portion
of a URL.

A transparent path junction observes a crucial requirement: the configured junction
name must match the name of a subdirectory under the root of the back-end
server document space. All resources accessed through this junction must be
located under this subdirectory. The transparent path junction name represents the
name of the actual subdirectory on the back-end server.

Transparent path junctions are really the same as standard junctions except that the
junction name, instead of being an addition to the URL path, is based on the path
already present on the back-end application. Transparent path junctions allow
WebSEAL to route requests to a junction based on the URL path of the back-end
server resources rather than based on a junction name added to the path.

For example, if the configured junction name is /docs, all resources controlled by
this junction must be located on the back-end server under a subdirectory called
/docs.

The transparent path junction mechanism prevents WebSEAL from filtering the
path portion of links to the resources protected by this junction. The junction name
has now become part of the actual path expression describing the location of a
resource and no longer requires filtering. The junction name is not added to or
removed from the path portion of URLs, as it is in junctions created without the
transparent path option.

WebSEAL does support nested paths. For example, the following three junctions
are all valid and can be made on the same WebSEAL system:
/financing/tools
/financing/tools/gars
/financing/tools/gars/custom

The pattern-matching within WebSEAL is sensitive enough to map to the most
"specific" junction first, /financing/tools/gars/custom in this example.

Configuring transparent path junctions

About this task

To configure a transparent path junction:

Procedure
1. Use the pdadmin server task command (or Web Portal Manager) to create the

transparent path junction. Create the junction like you would a standard
WebSEAL junction, but include the -x option. In the following example (entered
as one line), the junction name is /files/docs:pdadmin> server task
web1-webseald-www.cruz.com create -t tcp -x-h pubs.ibm.com /files/docs

2. Ensure that all resources protected by this junction are contained on the
back-end server (in this example, pubs.ibm.com) under a subdirectory called
/files/docs/.

Chapter 23. Standard WebSEAL junctions 375

Results

The junction name (and its associated subdirectory on the back-end server) must
be unique among all other protected servers in the WebSEAL environment.

Example transparent path junction

The following example uses the pdadmin command (entered as one line) to create
a transparent path junction (/docs) to the back-end server pubs.ibm.com:
pdadmin> server task web1-webseald-www.cruz.com create -t tcp -x
-h pubs.ibm.com /docs

After a client request for a back-end resource is made (via the WebSEAL proxy
server), a response page is returned from pubs.ibm.com containing the following
link (URL) in the HTML of that page:
http://pubs.ibm.com/docs/readme.html

WebSEAL's standard filtering mechanism for junctions parses the HTML in the
response page and modifies this link by changing the original absolute expression
of the URL to a server-relative expression. However, the path is not filtered,
because this is a transparent path junction (-x). This is the link as it now appears to
the user:
/docs/readme.html

Note: If rewrite-absolute-with-absolute was set to "yes", the link would appear as:
http://www.cruz.com/docs/readme.html

See “Configuring the rewrite-absolute-with-absolute option” on page 427.

Now the user clicks the link to access the back-end resource (readme.html).

The portion of the URL representing the junction name (/docs) is recognized by
WebSEAL as associated with the /docs subdirectory on the back-end server,
pubs.ibm.com.

As a conclusion to the example, WebSEAL successfully locates the resource at:
http://pubs.ibm.com/docs/readme.html

Some benefits of transparent path junctions include:
v Several different transparent path junctions to the same back-end server can be

created to point to different regions (subdirectories) of that server.
v Each individual transparent path junction can handle a different authentication

requirement and ACL control.

Technical notes for using WebSEAL junctions

This section contains the following topics:
v “Guidelines for creating WebSEAL junctions” on page 377
v “Adding multiple back-end servers to the same junction” on page 377
v “Exceptions to enforcing permissions across junctions” on page 378
v “Certificate authentication across junctions” on page 378
v “Handling domain cookies” on page 378

376 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v “Supported HTTP versions for requests and responses” on page 379
v “Junctioned application with Web Portal Manager” on page 379

Guidelines for creating WebSEAL junctions

The following guidelines summarize the "rules" for junctions:
v You can add a junction anywhere in the primary WebSEAL object space.
v You can junction multiple replica back-end servers at the same mount point.

Multiple replica back-end servers mounted to the same junction point must be of
the same type.

v ACL policies are inherited across junctions to back-end Web servers.
v The junction name should not match any directory name in the Web space of the

back-end server if HTML pages from that server contain programs (such as
JavaScript or applets) with server-relative URLs to that directory. For example, if
pages from the back-end server contain programs with a URL of form
/path/..., do not create a junction name using /path.

v Creating multiple WebSEAL junctions that point to the same back-end
application server/port is not a secure junction configuration. Each junction can
be control by unique ACLs. One junction secured with more permissive ACLs
can compromise another junction secured with less permissive ACLs. This type
of configuration can cause unintended control of access to resources and is
therefore not a supported configuration strategy for Security Access Manager.

v WebSEAL supports HTTP/1.1 across junctions.

Adding multiple back-end servers to the same junction

About this task

To increase high availability of the resources protected by Security Access Manager,
you can junction multiple replica back-end servers to the same junction point.
There can be any number of replica servers mounted at the same point.
v Multiple back-end servers added to the same junction point must be replica

servers with identical (mirrored) Web document spaces.
v Multiple back-end servers added to the same junction point must use the same

protocol.
v Do not add dissimilar servers to the same junction point.
v WebSEAL uses a least busy algorithm to determine which back-end replica

server has the fewest number of request connections and forwards any new
request to that server.

Procedure
1. Create the initial junction. For example:

pdadmin> server task web1-webseald-cruz create -t tcp -h server1 /sales

2. Add an additional back-end server replica. For example:
pdadmin> server task web1-webseald-cruz add -h server2 /sales

3. From the primary Security Access Manager server Web space, test the access to
pages belonging to the junctioned servers. You must be able to access these
pages (subject to permissions) and the pages must appear consistent. If a page
cannot be found occasionally, or if it changes occasionally, it means that page
was not replicated properly.

Chapter 23. Standard WebSEAL junctions 377

4. Check that the document exists and is identical in the document tree of both
replicated servers.

Exceptions to enforcing permissions across junctions

Certain Security Access Manager permissions are not enforceable across a junction.
You cannot control, for example, the execution of a CGI script with the x
permission, or a directory listing with the l permission. WebSEAL has no means of
accurately determining whether or not a requested object on a back-end server is,
for example, a CGI program file, a dynamic directory listing, or a regular HTTP
object.

Access to objects across junctions, including CGI programs and directory listings, is
controlled only through the r permission.

Certificate authentication across junctions

At installation, WebSEAL is configured with a non-default test certificate. The test
certificate is designated as the active server-side certificate by the
webseal-cert-keyfile-label stanza entry in the [ssl] stanza of the WebSEAL
configuration file.

If a junctioned back-end application server requires WebSEAL to identify itself
with a client-side certificate, you must first create, install, and label this certificate
using the Local Management Interface (LMI). Then, configure the junction using
the –K key-label option. See “Mutually authenticated SSL junctions” on page 387.

If the junction is not configured with –K, GSKit handles a request for mutual
authentication by automatically sending the “default” certificate contained in the
keyfile database. If this is not the required response, you must ensure that there are
no certificates marked as "default" (an asterisk mark) in the keyfile database
(pdsrv.kdb, or the junctions keyfile, if a separate junction keyfile is configured).

In summary:
v Identify all required certificates by label name.
v Do not mark any certificate in the keyfile database as "default".
v Control the WebSEAL server-side certificate response with the

webseal-cert-keyfile-label stanza entry.
v Control the WebSEAL client-side certificate response through the –K junction

option.

Handling domain cookies

About this task

The allow-backend-domain-cookies stanza entry in the [junction] stanza of the
WebSEAL configuration file controls how WebSEAL handles domain attributes in
cookie headers.

When this stanza entry value is set to "no" (default), WebSEAL performs "tail
matching" to determine if the domain (contained as an attribute in the cookie
header) is valid. If the domain in the cookie header is valid, the cookie is sent to
the browser with the domain attribute removed from the cookie header. When a
browser receives a cookie with no domain attribute, it can return the cookie only to

378 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

the originating server. If "tail matching" determines that the domain in the cookie
header is not valid, the cookie is not sent to the browser. The browser has no
cookies to return.
[junction]
allow-backend-domain-cookies = no

When this stanza entry value is set to "yes", WebSEAL does not perform "tail
matching" and allows all cookies, regardless of the domain attribute value, to be
sent to the browser. The browser can return the cookies to the appropriate server
or servers.
[junction]
allow-backend-domain-cookies = yes

Procedure

Customize the allow-backend-domain-cookies configuration item for a particular
junction by adding the adjusted configuration item to a [junction:{junction_name}]
stanza.
{junction_name} refers to the junction point for a standard junction (including the
leading / character) or the virtual host label for a virtual host junction.

Supported HTTP versions for requests and responses

HTTP/1.0 requests are sent to junctioned back-end servers only if those servers
return a status of 400 (Bad Request), return a status of 504 (HTTP version not
supported), or if the client browser specifies HTTP/1.0 in the request.

Otherwise, if the back-end server accepts HTTP/1.1, WebSEAL sends HTTP/1.1
requests.

However, even when WebSEAL sends an HTTP/1.0 request to a junctioned
back-end server (and the back-end server returns an HTTP/1.0 response),
WebSEAL always returns an HTTP/1.1 response to the client browser.

Junctioned application with Web Portal Manager

Problem: Web Portal Manager sends absolute or server-relative URLs in its
Javascript. These addresses are not resolved successfully by the browser and
require junction cookie information to complete the path name.

Solution: If an application server with Web Portal Manager is junctioned to
WebSEAL, you must use the –j option when creating this junction. The junction
cookie provided by the –j option allows the browser (client) to successfully issue
commands to Web Portal Manager.

In addition to using the –j option, you must also use the –c iv_user,iv_creds
option.

How to generate a back-end server Web space (query_contents)

This section contains the following topics:
v “query_contents overview” on page 380
v “query_contents components” on page 381

Chapter 23. Standard WebSEAL junctions 379

v “Installing and configuring query_contents on UNIX-based Web servers” on
page 382

v “Installing and configuring query_contents on Windows-based Web servers” on
page 383

v “General process flow for query_contents” on page 384
v “Securing the query_contents program” on page 385

query_contents overview
If you want to use the Security Access Manager security service to protect the
resources on a back-end application Web server, you must provide WebSEAL with
information about the contents of the back-end Web space.

A CGI program called query_contents provides this information. The
query_contents program searches the back-end Web space contents and provides
this inventory information to WebSEAL. A default version of the program comes
with the WebSEAL installation, but must be manually installed on the back-end
Web server. There are different program file types available, depending on whether
the back-end server is running UNIX or Windows.

The Object Space manager of the Web Portal Manager automatically runs
query_contents any time the portion of the protected object space belonging to the
junction is expanded in the Object Space management panel. When the Web Portal
Manager knows about the contents of the back-end Web space, you can display
this information and apply policy templates to appropriate objects.

The pdadmin object show command uses the query_contents program to browse
Web space and enables an administrator to identify resources to which a policy can
be attached. In this way, pdadmin and query_contents are used to manage and
control access to objects in the Security Access Manager object space.

WebSEAL includes source files for query_contents, a sample configuration file, and
an HTML help file. Administrators can use these files to configure query_contents
and, when needed, to modify its behavior.

Custom query_contents program

When a query_contents program is run, WebSEAL sends a simple HTTP GET
request to the program and expects a simple HTTP reply along with a response
body containing the requested information. The query_contents program can be
written in any language and can be hosted on any HTTP-compliant application
server.

Program inputs:

The query_contents program is called with an HTTP GET request with the
following syntax:
<URL>?dirlist=<resource root>

where <URL> is the location of the query_contents program and <resource root> is
the root of the object space that should be searched.

The GET request is accompanied by an HTTP cookie with the name
X_QUERY_CONTENTS_URIENCODED. This cookie contains a yes or no value to indicate
whether the path is URI-encoded.

380 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The following sample is an example of a GET request that WebSEAL might send to
a query_contents program:
GET /appserver/cgi-bin/custom_query_contents.exe?dirlist=/directory
Cookie: X_QUERY_CONTENTS_URIENCODED=no

Program outputs:

The query_contents program must return a response that is UTF-8 encoded, and
the response must include the following header:
content-type: text/plain;charset=utf8

The body of the response must contain one line with a return code followed by the
directory listing, with one object or container name per line:
<return-code>
<file or directory>
<file or directory>
<file or directory>

where <return-code> is 100, 102, or 103, as defined in the following table.

Table 35. Return codes

Query Status Description

QUERY_STATUS_OK = 100 The directory listing operation succeeded.

QUERY_STATUS_NO_EXISTS = 102 The directory queried does not exist.

QUERY_STATUS_NOT_DIR = 103 The directory queried is not a directory.

Object names and containers in the response must follow these rules:
v Containers end in two forward slashes, for example,: /path/directory//

v Punctuation "." and ".." are not included in the directory entries.
v Object or container data must be UTF-8 encoded and then URI encoded.

query_contents components

The query_contents components are available through the LMI. Go to Secure
Reverse Proxy Settings > Tools > Query Site Contents.

The query_contents components include:

File Description

Windows:

query_contents.exe
Main executable program for Windows systems. Install
this file in the cgi-bin directory of the back-end Web
server.

query_contents.cfg
The Windows configuration file that identifies the
document root for the Web server.

query_contents.c
Source code for Windows systems. The source is provided
in case you need to modify the behavior of
query_contents. In most cases, this will not be necessary.

Chapter 23. Standard WebSEAL junctions 381

File Description

UNIX:

query_contents.sh
Main executable program for UNIX systems. Install this
file in the cgi-bin directory of the back-end Web server.

Installing and configuring query_contents on UNIX-based Web
servers

About this task

The following steps describe the installation of query_contents on back-end
UNIX-based Web servers:

Procedure
1. In the LMI, go to Secure Reverse Proxy Settings > Tools > Query Site

Contents to locate the shell script named query_contents.sh.
2. Ensure that the back-end Web server has a CGI directory correctly configured.
3. For testing purposes, ensure that a valid document exists in the document root

of the back-end Web server.
4. Copy query_contents.sh into a functioning cgi-bin directory on the back-end

Web server. Consult the appropriate documentation for the Web server to
identify the location of this directory.

5. You must specify query_contents.sh as the correct file name for WebSEAL to
use by using the –q location option when creating a junction to the back-end
Web server.
The –q location option and argument provides WebSEAL with the correct name
of the file and where to find the file. For example (entered as one line and
assuming other options are additionally selected):
pdadmin> server task default-webseald-www.example.com create -t tcp -h
host-name <...> -q /cgi-bin/query_contents.sh /junction-name

The location argument value is used in the actual URL string that calls the
query_contents program. For example:
http://unix-machine-name/cgi-bin/query_contents.sh?dirlist=/

6. Manually edit the script file to correctly specify the document root directory.
Change the value of the DOCROOTDIR variable (default is /usr/local/html) to
the document root of the back-end Web server. For example (IBM HTTP Server,
version 6.0):
ADD_TO_ROOT=
DOCROOTDIR=/opt/IBMIHS/htdocs
#ADD_TO_ROOT="cgi-bin//"

Note: The blank ADD_TO_ROOT line is required for the variable initialization.
Additionally, if the back-end Web server's cgi-bin directory is not located
below the document root on the Web server's file system, uncomment the line
for the ADD_TO_ROOT variable. For example:
ADD_TO_ROOT=
DOCROOTDIR=/opt/IBMIHS/htdocs
ADD_TO_ROOT="cgi-bin//"

382 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

7. Set the UNIX execute bit for the administration account of the back-end Web
server.

Results

Testing the configuration (UNIX)

Procedure
1. From a command prompt on the back-end UNIX-based machine, execute the

query_contents program from the CGI directory as follows:
query_contents dirlist=/

You should see something similar to the following output:
100
index.html
cgi-bin//
pics//

The number 100 is a return status that indicates success. It is most important to
see at least the number 100 as the first (and perhaps only) value.
If you see an error code instead, the document root entry might be incorrect.
Check the configuration of the query_contents.sh file and make sure that the
document root is specified correctly.

2. From a browser, enter the following URL:
http://unix-machine-name/cgi-bin/query_contents.sh?dirlist=/

This URL should return the same result as the preceding step. If it does not
return this result, the CGI configuration of your Web server is not correct. See
the server's documentation to correct the problem.

Installing and configuring query_contents on Windows-based
Web servers

About this task

The following steps describe the installation of query_contents on back-end
Windows-based Web servers:

Procedure
1. Locate the executable program named query_contents.exe and the

configuration file named query_contents.cfg in the LMI. Go to Secure Reverse
Proxy Settings > Tools > Query Site Contents.

2. Ensure that the back-end Web server has a CGI directory correctly configured.
3. For testing purposes, ensure that a valid document exists in the document root

of the back-end Web server.
4. Copy query_contents.exe into the cgi-bin directory of the back-end Web

server. Consult the appropriate documentation for the Web server to identify
the location of this directory.

5. Copy query_contents.cfg into the "Windows" directory.
Default values for this directory are shown in the table below:

Operating System Windows Directory

Windows c:\windows

Chapter 23. Standard WebSEAL junctions 383

6. Edit the query_contents.cfg file to correctly specify the document root
directory for the back-end Web server. The file contains a default value for the
IBM HTTP Server (version 6.0):
[server]
docroot="C:/Program Files/IBM HTTP Server/htdocs/en_US"

7. You must specify query_contents.exe as the correct file name for WebSEAL to
use by using the –q location option when creating a junction to the back-end
Web server.
The –q location option and argument provides WebSEAL with the correct name
of the file and where to find the file. For example (entered as one line and
assuming other options are additionally selected):
pdadmin> server task default-webseald-www.example.com create -t tcp -h

host-name <...> -q /cgi-bin/query_contents.exe \junction-name

The location argument value is used in the actual URL string that calls the
query_contents program. For example:
http://windows-machine-name/cgi-bin/query_contents.exe?dirlist=/

Testing the configuration (Windows)

Procedure
1. From an MS-DOS prompt on the Windows machine, execute the

query_contents program from the CGI directory as follows:
MSDOS> query_contents dirlist=/

You should see something similar to the following output:
100
index.html
cgi-bin//
pics//

The number 100 is a return status that indicates success. It is most important to
see at least the number 100 as the first (and perhaps only) value.
If you see an error code instead, then the configuration file is not in the correct
place, or does not contain a valid document root entry. Check the configuration
of the query_contents.cfg file and make sure that the document root exists.

2. From a browser, enter the following URL:
http://windows-machine-name/cgi-bin/query_contents.exe?dirlist=/

This URL should return the same result as the preceding step. If it does not
return this result, the CGI configuration of your Web server is not correct. See
the server's documentation to correct the problem.

General process flow for query_contents

The job of query_contents is to return the contents of directories included in a
URL request.

For example, to get the contents of the root directory of a server's Web space, the
browser runs query_contents on a URL such as (UNIX example):
http://back-end-server/cgi-bin/query_contents.sh?dirlist=/

The query_contents script performs the following actions:
1. Reads the configured value for the DOCROOTDIR variable.
2. Reads the value of the QUERY_STRING variable from the requested URL to

obtain the requested operation and get the object path.

384 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The operation value is stored in the OPERATION variable. The object path
value is stored in the $OBJPATH variable. In the example, the value of the
OPERATION variable is dirlist. The value of the OBJPATH variable is /.

3. Performs a directory listing (DO) on the object path and sends the results to
standard output for use by the Security Access Manager server. Entries that
indicate subdirectories have a double slash (//) appended to them.
Typical output looks like:
100
index.html
cgi-bin//
pics//

The number 100 is a return status that indicates success.

Securing the query_contents program

About this task

The query_contents CGI program is used by Security Access Manager to display
junctioned Web server object spaces in the Web Portal Manager. It is very
important to secure this file to prevent unauthorized users from running it.

Procedure

You must set a security policy that allows only the policy server (pdmgrd) identity
to have access to the query_contents program. The following example ACL
(query_contents_acl) meets this criteria:
group ivmgrd-servers Tl

user sec_master dbxTrlcam

Use the pdadmin utility to attach this ACL to the query_contents.sh (UNIX) or
query_contents.exe (Windows) object on the junctioned servers. For example
(UNIX):
pdadmin> acl attach /WebSEAL/host/junction-name/cgi-bin/query_contents.sh
query_contents_acl

Chapter 23. Standard WebSEAL junctions 385

386 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 24. Advanced junction configuration

Most standard junction options are also supported by virtual host junctions.

Information on virtual host junctions can be found at Chapter 29, “Virtual host
junctions,” on page 479 and Chapter 30, “Command option summary: Virtual host
junctions,” on page 499.

Topic Index:
v “Mutually authenticated SSL junctions”
v “TCP and SSL proxy junctions” on page 390
v “WebSEAL-to-WebSEAL junctions over SSL” on page 390
v “Stateful junctions” on page 392
v “Forcing a new junction” on page 396
v “Junction throttling” on page 397
v “Management of cookies” on page 405
v “Passing of session cookies to junctioned portal servers” on page 406
v “Support for URLs as not case-sensitive” on page 408
v “Junctions to Windows file systems” on page 409
v “Standard junctions to virtual hosts” on page 410
v “UTF-8 encoding for HTTP header data” on page 411
v “Single sign-on solutions across junctions” on page 413

Mutually authenticated SSL junctions

This section contains the following topics:
v “Mutually authenticated SSL junctions process summary”
v “Validation of the back-end server certificate” on page 388
v “Matching the distinguished name (DN)” on page 388
v “Authentication with a client certificate” on page 389
v “Authentication with a BA header” on page 389

Mutually authenticated SSL junctions process summary
WebSEAL supports mutual authentication between a WebSEAL server and a
back-end server over an SSL junction (–t ssl or –t sslproxy or –t mutual).

The following outline summarizes the supported functionality for mutual
authentication over SSL (command options are listed where appropriate):
1. WebSEAL authenticates the back-end server (normal SSL process)

v WebSEAL validates the server certificate from the back-end server.
See “Validation of the back-end server certificate” on page 388.

v WebSEAL verifies the distinguished name (DN) contained in the certificate
(–D) (optional, but provides a higher level of security).
See “Matching the distinguished name (DN)” on page 388.

2. Back-end server authenticates WebSEAL (two methods)
v Back-end server validates client certificate from WebSEAL (–K).

© Copyright IBM Corp. 2002, 2013 387

See “Authentication with a client certificate” on page 389.
v Back-end server validates WebSEAL identity information in a basic

Authentication (BA) header (–B, –U, –W).
See “Authentication with a BA header” on page 389.

The command options that control mutual authentication over SSL provide the
following features:
v You can specify client certificate or BA authentication method.
v You can apply authentication methods on a per-junction basis.

Special considerations for combining the –b options (for handling BA information)
with mutual authentication over SSL are described in “Client identity information
across junctions” on page 518.

Mutual authentication over SSL virtual host junctions is also supported. See
Chapter 29, “Virtual host junctions,” on page 479 and Chapter 30, “Command
option summary: Virtual host junctions,” on page 499.

Validation of the back-end server certificate

WebSEAL verifies a back-end server certificate according to the standard SSL
protocol. The back-end server sends its server certificate to WebSEAL. WebSEAL
validates the server certificate against a pre-defined list of root Certificate
Authority (CA) certificates.

The Certificate Authority (CA) certificates that form the trust chain for the
application server certificate (from the signing CA up to and including the root
certificate) must be included in the key database in use by WebSEAL.

You use the LMI to create and manage the database of root CA certificates.

Matching the distinguished name (DN)

About this task

You can enhance server-side certificate verification through distinguished name
(DN) matching. To enable server DN matching, you must specify the back-end
server DN when you create the SSL junction to that server. Although DN matching
is an optional configuration, it provides a higher degree of security with mutual
authentication over SSL junctions.

During server-side certificate verification, the DN contained in the certificate is
compared with the DN defined by the junction. The connection to the back-end
server fails if the two DNs do not match.

Procedure

To enable the server DN matching, specify the back-end server DN when you
create the SSL-based junction using the –D "DN" option. To preserve any blank
spaces in the string, surround the DN string with double quotation marks. For
example:
-D "CN=Access Manager,OU=SecureWay,O=Tivoli,C=US"

The –D option is appropriate only when used with the –K or –B option.

388 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Authentication with a client certificate

Use the –K option to enable WebSEAL to authenticate to the junctioned back-end
server using its client certificate.
-K "key_label"

The conditions for this scenario include:
v The back-end server is set up to require verification of WebSEAL's identity with

a client certificate.
v Using the LMI to create, label, and store a special key that is used solely as

WebSEAL's client certificate when authenticating to a junctioned back-end server.
v For greater security, additionally configure the junction for DN matching (–D).

The –K option uses an argument that specifies the key-label of the required
certificate as stored in the GSKit key database. Use the LMI to add new certificates
to the key database.

You must surround the key-label argument with quotation marks. For example:
-K "cert1_Tiv"

If the key is located on cryptographic hardware, you must specify the WebSEAL
token device with the key label.
-K "token_name:key-label"

For example:
-K "websealtoken:junctionkey"

See “Configuration of the WebSEAL key database file” on page 355.

Authentication with a BA header

Use the –B–U "username"–W "password" option to enable WebSEAL
authentication using basic authentication.
-B -U "username" -W "password"

The conditions for this scenario include:
v The back-end server is set up to require verification of WebSEAL's identity with

a BA header.
v Do not configure the junction with any –b option. (Internally, however, the –B

option uses –b filter.)
v WebSEAL is configured to pass its identity information in a BA header to

authenticate to the back-end server.
v For greater security, additionally configure the junction for DN matching (–D).

You must surround the user name and password arguments with double quotation
marks. For example:
-U "WS1" -W "abCde"

Chapter 24. Advanced junction configuration 389

TCP and SSL proxy junctions

You can create WebSEAL junctions that allow communication to traverse network
topologies that use HTTP or HTTPS proxy servers. You can configure the junction
to handle requests as standard TCP communication or protected SSL
communication.

The create command requires one of the following arguments to the type option to
establish either a TCP-based or SSL-based junction through a proxy server:
v –t tcpproxy

v –t sslproxy

Both create and add commands require the following options and arguments to
identify the proxy server and the target Web server:

–H host-name The DNS host name or IP address of the proxy server.

–P port The TCP port of the proxy server.

–h host-name The DNS host name or IP address of the target Web server.

–p port The TCP port of target Web server. Default is 80 for TCP
junctions; 443 for SSL junctions.

Example TCP proxy junction (entered as one line):
pdadmin> server task web1-webseald-cruz create -t tcpproxy
-H clipper -P 8081 -h www.ibm.com -p 80 /ibm

Example SSL proxy junction (entered as one line):
pdadmin> server task web1-webseald-cruz create -t sslproxy
-H clipper -P 8081 -h www.ibm.com -p 443 /ibm

TCP and SSL proxy virtual host junctions are also supported. See Chapter 29,
“Virtual host junctions,” on page 479 and Chapter 30, “Command option summary:
Virtual host junctions,” on page 499.

WebSEAL-to-WebSEAL junctions over SSL

Security Access Manager supports SSL junctions between a front-end WebSEAL
server and a back-end WebSEAL server. Use the –c option with the create
command to junction the two WebSEAL servers over SSL and provide mutual
authentication.

WebSEAL
Web

Server

Secure Domain

-H and -P

Proxy
Server

Internet

-h and -pjunction at /ibm

Figure 31. Example proxy junction

390 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Example:
pdadmin> server task web1-webseald-cruz create -t ssl -C -h serverA /jctA

Mutual authentication occurs in the following two stages:
v The SSL protocol allows the back-end WebSEAL server to authenticate to the

front-end WebSEAL server through its server certificate.
v The –C option enables the front-end WebSEAL server to pass its identity

information to the back-end WebSEAL server in a Basic Authentication (BA)
header.

Additionally, the –C option enables single signon functionality provided by the –c
option. The –c option allows you to place Security Access Manager-specific client
identity and group membership information into the HTTP header of the request
destined for the back-end WebSEAL server. The header names include iv-user,
iv-groups, and iv-creds. See “Client identity in HTTP headers (–c)” on page 519.

The following conditions apply to WebSEAL-to-WebSEAL junctions:
v The junction is appropriate only with the –t ssl or –t sslproxy junction type.
v Both WebSEAL servers must share a common user registry. This configuration

allows the back-end WebSEAL server to authenticate the front-end WebSEAL
server identity information.

v If the WebSEAL-to-WebSEAL junction and the back-end application server
junction both use the –j junction option (for junction cookies), a naming conflict
can occur between the two junction cookies created by each of the two
WebSEAL servers. (Refer to the diagram at the beginning of this section.) To
prevent this conflict, you must configure the intermediary WebSEAL server
(WebSEAL 2 in the diagram) to uniquely identify its junction cookie. On the
intermediary WebSEAL server only, set the value of the hostname-junction-
cookie stanza entry in the [script-filtering] stanza of the WebSEAL configuration
file to "yes" (default is "no"):
[script-filtering]
hostname-junction-cookie = yes

Junction cookies allow WebSEAL to handle server-relative URLs generated on
the client-side. These URLs lack knowledge of the junction point of the
destination application. The junction cookie provides this information. For
complete information on junction cookies, see “Modification of server-relative
URLs with junction cookies” on page 431.

Client

WebSEAL
1

Web
Application

Serverback-end
junction

WebSEAL
2-C

junction

SSL

DMZ Intranet

Figure 32. WebSEAL-to-WebSEAL junction scenario

Chapter 24. Advanced junction configuration 391

Stateful junctions

This section contains the following topics.
v “Stateful junction concepts”
v “Configuration of stateful junctions”
v “Specifying back-end server UUIDs for stateful junctions” on page 393
v “Handling an unavailable stateful server” on page 395

Stateful junction concepts

Most Web-enabled applications maintain a "state" for a sequence of HTTP requests
from a client. This state is used, for example, to:
v Track a user's progress through the fields in a data entry form generated by a

CGI program
v Maintain a user's context when performing a series of database inquiries
v Maintain a list of items in an online shopping cart application where a user

randomly browses and selects items to purchase

Back-end servers that run Web-enabled applications can be replicated in order to
improve performance through load sharing. By default, Security Access Manager
balances back-end server load by distributing requests across all available
replicated servers. Security Access Manager uses a "least-busy" algorithm. This
algorithm directs each new request to the server with the fewest connections
already in progress.

However, when WebSEAL processes a request over a stateful junction, WebSEAL
must ensure that all subsequent requests from that client during that session are
forwarded to the same server, and not distributed among the other replicated
back-end servers according to the load balancing rules.

Configuration of stateful junctions

Use the pdadmin server task create command with the –s option to override load
balancing rules and create a stateful junction. A stateful junction ensures that a
client's requests are forwarded to the same server throughout an entire session.
When the initial client request occurs over a stateful junction, WebSEAL places a
cookie on the client system that contains the UUID of the designated back-end
server. When the client makes future requests to the same resource during the
same session, the cookie's UUID information ensures that the requests are
consistently routed to the same back-end server.

The –s option is appropriate for a single front-end WebSEAL server with multiple
back-end servers junctioned at the same junction point. Note that as soon as the
initial junction is created as stateful, the pdadmin server task add command is
used without the –s option to junction the remaining replicated back-end servers to
the same junction point.

Stateful virtual host junctions are also supported. See Chapter 29, “Virtual host
junctions,” on page 479 and Chapter 30, “Command option summary: Virtual host
junctions,” on page 499.

If the scenario involves multiple front-end WebSEAL servers, all junctioned to the
same back-end servers, you must use the –u option to correctly specify each

392 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

back-end server UUID to each front-end WebSEAL server. See “Specifying
back-end server UUIDs for stateful junctions.”

You can also control how WebSEAL handles a stateful server that becomes
unavailable. See “Handling an unavailable stateful server” on page 395.

Specifying back-end server UUIDs for stateful junctions

About this task

When a new junction is created to a back-end Web application server, WebSEAL
normally generates a Unique Universal Identifier (UUID) to identify that back-end
server. This UUID is used internally and also to maintain stateful junctions (create
–s).

When the initial client request occurs, WebSEAL places a cookie on the client
system that contains the UUID of the designated back-end server. When the client
makes future requests to the same resource, the cookie's UUID information ensures
that the requests are consistently routed to the same back-end server.

The handling of stateful junctions becomes more complex when there are multiple
front-end WebSEAL servers junctioned to multiple back-end servers. Normally,
each junction between a front-end WebSEAL server to a back-end server generates
a unique UUID for the back-end server. This means that a single back-end server
will have a different UUID on each front-end WebSEAL server.

Multiple front-end servers require a load balancing mechanism to distribute the
load between the two servers. For example, an initial "state" could be established
to a back-end server through WebSEAL server 1 using a specific UUID.

However, if a future request from the same client is routed through WebSEAL
server 2 by the load balancing mechanism, the "state" will no longer exist, unless
WebSEAL server 2 uses the same UUID to identity the same back-end server.
Normally, this will not be the case.

The –u option allows you to supply the same UUID for a specific back-end server
to each front-end WebSEAL server.

WebSEAL

Client
(Cookie with UUID2)

Stateful
Junction

Replica
Server 2
(UUID2)

Replica
Server 1
(UUID1)

Figure 33. Stateful junctions use back-end server UUIDs

Chapter 24. Advanced junction configuration 393

The –u option is also supported on virtual host junctions. See Chapter 29, “Virtual
host junctions,” on page 479 and Chapter 30, “Command option summary: Virtual
host junctions,” on page 499.

As an example, consider two replicated front-end WebSEAL servers, each with a
stateful junction to two back-end servers. When you create the stateful junction
between WebSEAL server 1 and back-end server 2, a unique UUID (UUID A) is
generated to identify back-end server 2. However, when a stateful junction is
created between WebSEAL server 2 and back-end server 2, a new and different
UUID (UUID B) is generated to identify back-end server 2.

A "state" established between a client and back-end server 2, via WebSEAL server 1
will fail if a subsequent request from the client is routed through WebSEAL server
2.

In the following figure, back-end server 1 is known by both WebSEAL-1 and
WebSEAL-2 as UUID 1. Back-end server 2 is known by both WebSEAL-1 and
WebSEAL-2 as UUID 2.

Procedure

Apply the following process for specifying a UUID during the creation of a
junction:

Stateful
Junctions

UUID B

UUID A

Replica
WebSEAL-1

Replica
WebSEAL-2

Replica
Server 2

Replica
Server 1

Figure 34. Dissimilar UUIDs

Stateful
JunctionsLoad

Balancing
Mechanism

Client
(Cookie with UUID2)

Replica
Server 2
(UUID2)

Replica
Server 1
(UUID1)

Replica
WebSEAL-1

Replica
WebSEAL-2

Figure 35. Specifying back-end server UUIDs for stateful junctions

394 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

1. Create a junction from WebSEAL server 1 to each back-end server. Use create
–s and add.

2. List the UUID generated for each back-end server during step 1. Use show.
3. Create a junction from WebSEAL server 2 to each back-end server and specify

the UUIDs identified in Step 2. Use create –s –u and add –u.

Stateful junction example

In the following example,
v WebSEAL-1 instance is called WS1. Host name is host1.
v WebSEAL-2 instance is called WS2. Host name is host2.
v Back-end server 1 is called APP1
v Back-end server 2 is called APP2
pdadmin> server task WS1-webseald-host1 create -t tcp -h APP1 -s /mnt
pdadmin> server task WS1-webseald-host1 add -h APP2 /mnt
pdadmin> server task WS1-webseald-host1 show /mnt

(output of this command reveals UUID1 and UUID2)

pdadmin> server task WS2-webseald-host2 create -t tcp -h APP1 -u UUID1 -s /mnt
pdadmin> server task WS2-webseald-host2 add -h APP2 -u UUID2 /mnt

When a client establishes a stateful connection with back-end server 2, it receives a
cookie containing UUID2. This example now ensures that the client will always
connect to back-end server 2, regardless of whether future requests are routed
through WebSEAL-1 or WebSEAL-2.

Handling an unavailable stateful server

About this task

You can use the use-new-stateful-on-error stanza entry in the [junction] stanza of
the WebSEAL configuration file to control how WebSEAL responds to a stateful
server that becomes unavailable.

When use-new-stateful-on-error is set to "yes" and the original server becomes
unavailable during a session, WebSEAL directs the next request of the user to a
new replica server on the same stateful junction. If a new replica server is found
on that stateful junction, and is responsive to the request, WebSEAL sets a new
stateful cookie on the browser of the user. Subsequent requests during this same
session are directed to this same new server.

When use-new-stateful-on-error is set to "no" and the original server becomes
unavailable during a session, WebSEAL does not direct the subsequent requests of
the user to a new replica server on the same stateful junction. Instead, WebSEAL
returns an error and attempts to access the same server for subsequent requests by
the user during this session. The "no" value is the default setting and maintains
compatibility with versions of WebSEAL prior to version 6.0. For example:
[junction]
use-new-stateful-on-error = no

To end the access attempts on an unresponsive server, the user must restart the
browser, or the administrator must remove the unresponsive server.

This configuration item may be customized for a particular junction by adding the
adjusted configuration item to a [junction:{junction_name}] stanza.

Chapter 24. Advanced junction configuration 395

where {junction_name} refers to the junction point for a standard junction (including
the leading / character) or the virtual host label for a virtual host junction. For
example:
[junction:/WebApp]

Forcing a new junction

About this task

You must use the –f junction option when you want to force a new junction to
overwrite an existing junction.

The following example (WebSEAL instance name = cruz) illustrates this procedure:

Procedure
1. Log in to pdadmin:

pdadmin
pdadmin> login
Enter User ID: sec_master
Enter Password:
pdadmin>

2. Use the server task list command to display all current junction points:
pdadmin> server task web1-webseald-cruz list
/

3. Use the server task show command to display details of the junction:
pdadmin> server task web1-webseald-cruz show /
Junction point: /
Type: Local
Junction hard limit: 0 - using global value
Junction soft limit: 0 - using global value
Active worker threads: 0
Root Directory: /opt/pdweb/www/docs
...

4. Create a new local junction to replace the current junction point (the -f option
is required to force a new junction that overwrites an existing junction):
pdadmin> server task web1-webseald-cruz create -t local -f -d /tmp/docs /
Created junction at /

5. List the new junction point:
pdadmin> server task web1-webseald-cruz list
/

6. Display the details of this junction:
pdadmin> server task web1-webseald-cruz show /
Junction point: /
Type: Local
Junction hard limit: 0 - using global value
Junction soft limit: 0 - using global value
Active worker threads: 0
Root Directory: /tmp/docs
...

The –f option is also supported on virtual host junctions. See Chapter 29,
“Virtual host junctions,” on page 479 and Chapter 30, “Command option
summary: Virtual host junctions,” on page 499.

396 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Use of /pkmslogout with virtual host junctions
Policies can be attached to pkmslogout, but WebSEAL does not always apply the
policies.

For example, if a user authenticated to WebSEAL and tries to access pkmslogout,
the pkmslogout page ends the user session without an authorization check. ACL
policies are not applied to such requests. However, if a user has not authenticated
to WebSEAL and tries to access pkmslogout, the request is treated as a normal
request. WebSEAL conducts an authorization check.

If the authorization check fails, the request proceeds as a normal authorization
failure. In the default WebSEAL configuration, the user is prompted to login.

If the authorization check passes, WebSEAL attempts to retrieve an object called
/pkmslogout from the root junction, and this typically results in a 404 Not Found
response from WebSEAL.

The allow-unauthenticated-logout option in the [acnt-mgmt] stanza determines
whether unauthenticated users are able to request the pkmslogout resource without
authenticating first. If set to yes, WebSEAL behaves in the same manner whether
the user logging out is authenticated or unauthenticated.

There are several methods to achieve single logout using Security Access Manager.
One method is to embed or <IFRAME> HTML tags in a logout page so that
the browser simultaneously logs the user out of multiple servers when the page is
viewed. For example, the following HTML tags send requests to /pkmslogout on
three different virtual hosts:

If this technique is used for single logout, it can be beneficial to either attach ACLs
to /pkmslogout or to use the [acnt-mgmt] allow-unauthenticated-logout option to
control WebSEAL behavior. For more information about the allow-
unauthenticated-logout option, see the IBM Security Web Gateway Appliance: Web
Reverse Proxy Stanza Reference.

Junction throttling

This section contains the following topics:
v “Junction throttling concepts”
v “Placing a junctioned server in a throttled state” on page 398
v “Junctioned server in an offline state” on page 400
v “Junctioned server in an online state” on page 402
v “Junction throttle messages” on page 403
v “Use of junction throttling with existing WebSEAL features” on page 404

Junction throttling concepts

Regular maintenance on equipment in a computer network environment is a
crucial and necessary task. In a WebSEAL environment, data storage and
application programs typically reside on junctioned back-end host machines that

Chapter 24. Advanced junction configuration 397

are protected by WebSEAL. High demand WebSEAL environments usually rely on
server clusters made up of multiple machines hosting replicated content and
applications.

A replica server environment allows you to take individual servers offline to
perform regular maintenance. The network load is redistributed across the
remaining replicas allowing the user experience to proceed without disruption.

Junction throttling allows you to gradually take a junctioned back-end Web server
offline without interrupting the transactions of users with existing sessions. The
throttling action on a junction is particularly useful for allowing stateful sessions,
such as shopping cart transactions, to continue until completed.

Junction throttling accomplishes the following actions:
v The throttled server continues to process current and subsequent requests from

users with sessions created before the throttle action was taken.
v The throttled server blocks all requests from unauthenticated users and new

authenticated users and directs these requests to other available replica servers
on the same junction.

v As the current users finish their sessions, the throttled server eventually becomes
idle and can be taken offline.

v Junction throttling does not require you to stop WebSEAL and does not interrupt
user access to other junctioned Web servers.

The pdadmin utility provides commands to place junctioned servers in one of
three operational states:
v Throttle
v Offline
v Online

Note: These operational states are different from the run states of a junctioned
server: running, not running, unknown, not an http server. The server run states is
reported in the "Server State" field of the pdadmin server task show and pdadmin
server task virtualhost show commands.

The commands allow you to individually or collectively control the servers on a
junction. Collective control might be required, for example, in the case of a security
breach.

The junction throttle feature cannot be controlled through the Web Portal Manager.

The junction throttling feature is supported on standard WebSEAL junctions and
virtual host junctions. Junction throttling is not available for standard local
junctions or virtual host local junctions.

Placing a junctioned server in a throttled state

About this task

Place a junctioned server in a throttled operational state when you want a
controlled and gradual transition of the server to an offline state. The throttled
operational state places the following conditions on the junction:
v A throttled server continues to process current and subsequent requests from

users with sessions created before the throttle action was taken.

398 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v The throttled server blocks all requests from unauthenticated users and new
authenticated users and directs these requests to other available replica servers
on the same junction.

v When a request is blocked by a throttled server, it is retried on another replica
server. If no replica servers are configured or available, an error page is returned
to the user indicating the application server is offline.

v The throttled operational state for a junction is stored in the junction database
and is maintained across any restarts of the WebSEAL server.

Throttle command usage for standard WebSEAL junctions

The following pdadmin command syntax is appropriate for use with standard
WebSEAL junctions:
server task instance_name-webseald-host_name throttle [-i server_uuid] jct_point

Use the -i option to specify the UUID of the junctioned server that is being placed
in a throttled operational state. If a server is not specified using this option, then
all servers located at the junction are placed in a throttled operational state.

Example:

The following example places the backappl server located at the /pubs junction
point in a throttled operational state. To determine the UUID of this junctioned
server, run the server task show command:
pdadmin> server task default-webseald-cruz show /pubs

Output is similar to the following:
Junction point: /pubs
...
Server 1:
ID: 6fc3187a-ea1c-11d7-8f4e-09267e38aa77
Server State: running
Operational State: Online
Hostname: backapp1.diamond.example.com
...
Current requests: 0
...

Then, place this server in a throttled operational state (entered as one line):
pdadmin> server task default-webseald-cruz throttle
-i 6fc3187a-ea1c-11d7-8f4e-09267e38aa77 /pubs

Throttle command usage for virtual host junctions

The following pdadmin command syntax is appropriate for use with virtual host
junctions:
server task instance_name-webseald-host_name virtualhost throttle [-i server_uuid]
vhost_label

Use the -i option to specify the UUID of the junctioned server that is being placed
in a throttled operational state. If a server is not specified using this option, then
all servers located at the junction are placed in a throttled operational state.

In the following example, the virtual host junction with the label
support-vhost-https, configured on the WebSEAL server abc.ibm.com, supports
the virtual host support.ibm.com, located on the back-end junctioned server
int3.ibm.com.

Chapter 24. Advanced junction configuration 399

There is a requirement to place the int3.ibm.com server in a throttled operational
state. To determine the UUID of this junctioned server, run the server task
virtualhost show command:
pdadmin> server task default-webseald-abc.ibm.com
virtualhost show support-vhost-https

Output is similar to:
Virtual Host label: support-vhost-https
Type: SSL
...
Virtual hostname: support.ibm.com
Alias: ibm.com
Alias: support
Virtual Host junction protocol partner: support-vhost-http
Server 1:
ID: bacecc66-13ce-11d8-8f0a-09267ea5aa77
Server State: running
Operational State: Online
Hostname: int3.ibm.com
Port: 443
Server DN:
Query_contents URL: /cgi-bin/query_contents
Query-contents: unknown
Case insensitive URLs: no
Allow Windows-style URLs: yes
Current requests: 0
Total requests: 1

Place this server in a throttled operational state using the following command
(entered as one line):
pdadmin> server task default-webseald-cruz virtualhost throttle
-i bacecc66-13ce-11d8-8f0a-09267ea5aa77 support-vhost-https

Junctioned server in an offline state

Place a junctioned server in an offline operational state when you want to block all
requests from all users. The offline operational state places the following conditions
on the junction:
v An offline server continues to process existing requests.
v An offline server blocks all subsequent requests from all users.
v When a request is blocked by an offline server, it is retried on another replica

server. If no replica servers are configured or available, an error page is returned
to the user indicating the application server is offline.

v The offline operational state for a junction is stored in the junction database and
is maintained across any restarts of the WebSEAL server.

Offline command usage for standard WebSEAL junctions

The following pdadmin command syntax is appropriate for use with standard
WebSEAL junctions:
server task instance_name-webseald-host_name offline [-i server_uuid] jct_point

Use the -i option to specify the UUID of the junctioned server that is being placed
in an offline operational state. If a server is not specified using this option, then all
servers located at the junction are placed in an offline operational state.

Example:

400 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The following example places the backappl server located at the /pubs junction
point in an offline operational state. To determine the UUID of this junctioned
server, run the server task show command:
pdadmin> server task default-webseald-cruz show /pubs

Output is similar to the following:
Junction point: /pubs
...
Server 1:
ID: 6fc3187a-ea1c-11d7-8f4e-09267e38aa77
Server State: running
Operational State: Throttled
Throttled at: 2005-03-01-17:07:24
Hostname: backapp1.diamond.example.com
...
Current requests: 0
...

Then, place this server in an offline operational state (entered as one line):
pdadmin> server task default-webseald-cruz offline
-i 6fc3187a-ea1c-11d7-8f4e-09267e38aa77 /pubs

Offline command usage for virtual host junctions

The following pdadmin command syntax is appropriate for use with virtual host
junctions:
server task instance_name-webseald-host_name virtualhost offline [-i server_uuid]
vhost_label

Use the -i option to specify the UUID of the junctioned server that is being placed
in an offline operational state. If a server is not specified using this option, then all
servers located at the junction are placed in an offline operational state.

In the following example, the virtual host junction with the label
support-vhost-https, configured on the WebSEAL server abc.ibm.com, supports
the virtual host support.ibm.com, located on the back-end junctioned server
int3.ibm.com.

There is a requirement to place the int3.ibm.com server in an offline operational
state. To determine the UUID of this junctioned server, run the server task
virtualhost show command:
pdadmin> server task default-webseald-abc.ibm.com
virtualhost show support-vhost-https

Output is similar to:
Virtual Host label: support-vhost-https
Type: SSL
...
Virtual hostname: support.ibm.com
Alias: ibm.com
Alias: support
Virtual Host junction protocol partner: support-vhost-http
Server 1:
ID: bacecc66-13ce-11d8-8f0a-09267ea5aa77
Server State: running
Operational State: Throttled
Throttled at: 2005-03-01-17:07:24
Hostname: int3.ibm.com
Port: 443
Server DN:

Chapter 24. Advanced junction configuration 401

Query_contents URL: /cgi-bin/query_contents
Query-contents: unknown
Case insensitive URLs: no
Allow Windows-style URLs: yes
Current requests: 0
Total requests: 1

Place this server in an offline operational state using the following command
(entered as one line):
pdadmin> server task default-webseald-cruz virtualhost offline
-i bacecc66-13ce-11d8-8f0a-09267ea5aa77 support-vhost-https

Junctioned server in an online state

Place a junctioned server in an online operational state when you want to return
the server to normal operation. The online operational state places the following
conditions on the junction:
v An online server resumes normal operations.
v The online operational state for a junction is stored in the junction database and

is maintained across any restarts of the WebSEAL server.

Online command usage for standard WebSEAL junctions

The following pdadmin command syntax is appropriate for use with standard
WebSEAL junctions:
server task instance_name-webseald-host_name online [-i server_uuid] jct_point

Use the -i option to specify the UUID of the junctioned server that is being placed
in an online operational state. If a server is not specified using this option, then all
servers located at the junction are placed in an online operational state.

Example:

The following example places the backappl server located at the /pubs junction
point in an online operational state. To determine the UUID of this junctioned
server, run the server task show command:
pdadmin> server task default-webseald-cruz show /pubs

Output is similar to the following:
Junction point: /pubs
...
Server 1:
ID: 6fc3187a-ea1c-11d7-8f4e-09267e38aa77
Server State: running
Operational State: Offline
Hostname: backapp1.diamond.example.com
...
Current requests: 0
...

Then, place this server in an online operational state (entered as one line):
pdadmin> server task default-webseald-cruz online
-i 6fc3187a-ea1c-11d7-8f4e-09267e38aa77 /pubs

Online command usage for virtual host junctions

The following pdadmin command syntax is appropriate for use with virtual host
junctions:

402 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

server task instance_name-webseald-host_name virtualhost online [-i server_uuid]
vhost_label

Use the -i option to specify the UUID of the junctioned server that is being placed
in an online operational state. If a server is not specified using this option, then all
servers located at the junction are placed in an online operational state.

In the following example, the virtual host junction with the label
support-vhost-https, configured on the WebSEAL server abc.ibm.com, supports
the virtual host support.ibm.com, located on the back-end junctioned server
int3.ibm.com.

There is a requirement to place the int3.ibm.com server in an online operational
state. To determine the UUID of this junctioned server, run the server task
virtualhost show command:
pdadmin> server task default-webseald-abc.ibm.com
virtualhost show support-vhost-https

Output is similar to:
Virtual Host label: support-vhost-https
Type: SSL
...
Virtual hostname: support.ibm.com
Alias: ibm.com
Alias: support
Virtual Host junction protocol partner: support-vhost-http
Server 1:
ID: bacecc66-13ce-11d8-8f0a-09267ea5aa77
Server State: running
Operational State: Offline
Hostname: int3.ibm.com
Port: 443
Server DN:
Query_contents URL: /cgi-bin/query_contents
Query-contents: unknown
Case insensitive URLs: no
Allow Windows-style URLs: yes
Current requests: 0
Total requests: 1

Place this server in an online operational state using the following command
(entered as one line):
pdadmin> server task default-webseald-cruz virtualhost online
-i bacecc66-13ce-11d8-8f0a-09267ea5aa77 support-vhost-https

Junction throttle messages

This section contains the following topics:
v “Junction throttle error page”
v “Monitoring of throttled server status and activity” on page 404

Junction throttle error page

An error page (38b9a4b0.html) is returned to the user when a request is blocked
due to a junctioned server that has been placed in a throttled or offline operational
state. This error page is only sent if all servers on the junction are placed in a
throttled or offline operational state.

Chapter 24. Advanced junction configuration 403

You can customize the content of this HTML error page. See “HTML server
response page modification” on page 75.

Alternatively, WebSEAL can be configured to redirect error reporting to an external
error page service. See “Local response redirection” on page 90.

Monitoring of throttled server status and activity

You can monitor the status and activity of a throttled server using three new fields
to the pdadmin server task show and pdadmin server task virtualhost show
commands:
v Operational state: {Throttled|Offline|Online}
v Current requests: number

This field displays the number of worker threads actively using a junctioned
server and allows you to determine when the server has become idle.

v Throttled at: date-time

This field only displays when the server is in the throttled operational state.

For example:
pdadmin> server task default-webseald-cruz show /pubs

Output is similar to the following:
Junction point: /pubs
...
Server 1:
ID: 6fc3187a-ea1c-11d7-8f4e-09267e38aa77
Server State: running
Operational State: Throttled
Throttled at: 2005-03-01-17:07:24
Hostname: backapp1.diamond.example.com
...
Current requests: 3
...

The "Current requests" field helps to determine if a server is idle. However, there
are numerous conditions that prevent a completely accurate determination of the
state of server activity. For example:
v The"Current requests" field is not updated during the lag time between the

reading of the body of the response from the junctioned server and the return of
the response to the client.

v If session lifetime resets and extensions have been configured, it becomes almost
impossible to be completely sure no future operations will occur on the server.

Use of junction throttling with existing WebSEAL features
Junction throttling has an impact on the following WebSEAL functions.
v Failover authentication

Failover authentication transparently supports failed over sessions that continue
to use a throttled junction if the original session was created before the junction
was throttled. The session creation time is added as an attribute to the failover
cookie so it can be restored when a failover cookie is used to authenticate. When
the failover cookie is used for authentication, the session creation time from the
cookie is set for the newly created failover session.

v Session management server (SMS)

404 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

SMS makes the session creation time available to all processes that are sharing
the session. The session creation time is important because only sessions created
before a junction server is throttled are allowed continued access to the throttled
junction server.

v Reauthentication
Reauthenticated sessions are allowed continued access to a throttled junction
server if the sessions are initially created before the junction was throttled. The
additional effect of session lifetime extensions or resets can make it difficult for
you to determine when the throttled junction is truly idle.

v Switch user
When a switch user event occurs, a new session creation time is generated. This
new creation time is used to determine accessibility to a throttled junction server.
When the switch user logs out and returns to the original identity, the original
session creation time becomes effective again and is used to determine
accessibility to a throttled junction server.

v Stateful junctions
Stateful junctions allow requests from a specific session to always be sent to the
same server on a junction. If the junctioned server being used is throttled, the
stateful session is allowed to continue accessing that server. However, new
stateful sessions are blocked from using that server.
If a junctioned server is taken offline, then stateful sessions are no longer
allowed to access the server. These sessions must choose a new junctioned server
and possibly loose the original state information.

v Step-up authentication
Step-up authentication does not create a new session. The session creation time
is therefore not affected, and the ability of the session to access a throttled
junction does not change.

v Junction modification with Web Portal Manager (WPM)
When you modify a throttled junction using Web Portal Manager, you always
lose the "Throttled at" time. A throttled junction modified by WPM is returned to
an online state. Because WPM has no ability to perform junction throttle
operations, you must use the pdadmin utility to return the junction to a
throttled state again.

Management of cookies
WebSEAL can host cookies on behalf of browsers and provide them to backend
applications in forwarded requests. These stored cookies are held in the session
cache, or cookie jar, rather than being sent to the browser.

The WebSEAL cookie jar is instantiated on a per-user session basis. Cookies not
stored in the cookie jar are passed back to the client for storage.

The cookie jar stores and handles cookies as defined by the following configuration
entries in the [junction] stanza:

managed-cookies-list
Contains a comma-separated list of pattern matched cookie names. Cookies
that match the patterns on this list are stored in the cookie jar. If this list is
empty, the cookie jar is effectively disabled.

reset-cookies-list
Determines which cookies to reset when the user session is logged out. The
request received from the client and the response sent back to the client are

Chapter 24. Advanced junction configuration 405

both examined for matching cookies. The reset clears the cookie in the
client's cache by returning an empty and expired cookie in the logout
response. This essentially implements a basic logout for junctioned
applications.

share-cookies
Determines whether or not cookies stored in the cookie jar will be shared
between different junctions.

validate-backend-domain-cookie
Domain checking on cookies is only performed if this entry is set to true.

allow-backend-domain-cookies
During domain validation, if this entry is set to false, the domain is
removed from the cookie.

Note: All the preceding configuration items, with the exception of share-cookies,
can be customized for a particular junction by adding the adjusted configuration
item to a [junction:{junction_name}] stanza.

where {junction_name} refers to the junction point for a standard junction (including
the leading / character) or the virtual host label for a virtual host junction.

All response cookies pass through the WebSEAL cookie jar. Cookies that match the
patterns defined in managed-cookies-list are stored in the cookie jar and removed
from the response stream to the browser. Those that are not stored in the cookie jar
are passed back to the client.

When a request to a junctioned server is sent from the browser to WebSEAL, the
cookie jar is checked to see if the request requires cookies to be sent to the
junctioned server. If the request does require a cookie from the cookie jar, the
cookie is added to the request. If the cookie has expired, the cookie is removed
from the cookie jar and not sent.

Persistent cookies are not persisted to disk on the WebSEAL machines.

When a user performs a logout, a reset for selected cookies that are not stored in
the cookie jar is sent back in the response. WebSEAL resets any cookies with names
that match the list of patterns in the reset-cookies-list stanza entry. The reset
essentially implements a basic logout for junctioned applications.

Note: The session management server should be deployed in situations where the
cookie jar is used by multiple replicated WebSEAL servers. The session
management server is the mechanism by which the cookie jar can be distributed
amongst the multiple replicated WebSEAL servers. In this type of environment, be
careful which cookies you place in the cookie jar. Do not include cookies which get
updated on a regular basis, as this will put additional load on the session
management server which in turn will have performance implications in the
environment.

Passing of session cookies to junctioned portal servers

A Web portal is a server that offers a broad array of personalized resources and
services. The –k junction option allows you to send the Security Access Manager
session cookie (originally established between the client and WebSEAL) to a
back-end portal server.

406 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

When a client requests a personal resource list from the portal server, the portal
server builds this list by accessing resources located on other supporting
application servers, also protected by WebSEAL. The session cookie allows the
portal server to perform seamless single signon to these application servers, on
behalf of the client.

You include the –k option, without arguments, when you create the junction
between WebSEAL and the back-end portal server.

The –k option is also supported on virtual host junctions. See Chapter 29, “Virtual
host junctions,” on page 479 and Chapter 30, “Command option summary: Virtual
host junctions,” on page 499.

The WebSEAL configuration file includes options that provide some control over
how session cookies are handled during step-up authentication. The
verify-step-up-user option in the [step-up] stanza determines whether the identity
of the user performing the step-up operation must match the identity of the user
that performed the previous authentication. If this option is set to yes, then the
retain-stepup-session option can be used to determine whether the session cookie
issued during the step-up operation can be reused or if a new cookie must be
issued. If verify-step-up-user is set to no, then a new cookie will always be issued
after step-up.

The send-constant-sess option in the [session] stanza enhances the ability to track
authenticated sessions. Setting this option to yes enables WebSEAL to send a
separate cookie to the junctioned server in addition to the session cookie. The
value of this cookie remains constant across a single session, regardless of whether
the session key changes. The name of the cookie is configurable. For more details
regarding the send-constant-sess option, see the IBM Security Web Gateway
Appliance: Web Reverse Proxy Stanza Reference.

Conditions to consider for a portal server configuration:
v For access using user name and password, forms authentication is required. Do

not use basic authentication (BA).
v The value of the ssl-id-sessions stanza entry in the [session] stanza of the

WebSEAL configuration files must be set to no. For HTTPS communication, this
setting forces the use of a session cookie, instead of the SSL session ID, to
maintain session state.

v If the portal server is behind a front-end WebSEAL cluster, enable the failover
type cookie. The failover cookie contains encrypted credential information that
allows authentication to succeed with any replicated WebSEAL server that
processes the request.

v The retain-stepup-session option in the [step-up] stanza is only in effect if the
verify-step-up-user option is set to yes.

v If WebSEAL is configured to use the Session Management Server (SMS) for
session storage, the verify-step-up-user option must be set to yes to enable
step-up operations. If this option is set to no, then WebSEAL does not update the
SMS when user identification changes during step-up authentication.

For more information about step-up authentication, see “Authentication strength
concepts” on page 176.

Chapter 24. Advanced junction configuration 407

Support for URLs as not case-sensitive

By default, Security Access Manager treats URLs as case-sensitive when
performing checks on access controls. The –i junction option is used to specify that
WebSEAL treat URLs as not case-sensitive when performing authorization checks
on a request to a junctioned back-end server.

The –i option is also supported on virtual host junctions. See Chapter 29, “Virtual
host junctions,” on page 479 and Chapter 30, “Command option summary: Virtual
host junctions,” on page 499.

When you set this option on the junction, WebSEAL does not distinguish between
uppercase and lowercase characters when parsing URLs. By default, Web servers
are expected to be case-sensitive.

Although most HTTP servers support the HTTP specification that defines URLs as
case-sensitive, some HTTP servers treat URLs as not case-sensitive.

For example, on not case-sensitive servers, the following two URLS:
http://server/sales/index.htm

http://server/SALES/index.HTM

are viewed as the same URL. This behavior requires an administrator to place the
same access controls (ACLs) on both URLs.

By junctioning a third-party server with the –i option, WebSEAL treats the URLs
directed to that server as not case-sensitive.

To correctly authorize requests for junctions that are not case sensitive, WebSEAL
does the authorization check on a lowercase version of the URL. For example, a
Web server running on Windows treats requests for INDEX.HTM and index.htm as
requests for the same file.

Junctions to such a Web server should be created with the -i [or -w] flags. ACLs or
POPs that are attached to objects beneath the junction point should use the lower
case object name. An ACL attached to /junction/index.htm will apply to all of the
following requests if the -i or -w flags are used:

/junction/INDEX.HTM
/junction/index.htm
/junction/InDeX.HtM

This option is valid for all junctions except for the type of local. Local junctions
are not case-sensitive only on Win32 platforms; all other platforms are
case-sensitive.

Attention: When using the –i option, object names must be lower case in order
for WebSEAL to be able to find any ACLs or POPs attached to those objects. For
more information, see “ACLs and POPs must attach to lower-case object names”
on page 410.

408 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Junctions to Windows file systems

WebSEAL performs security checks on client requests to junctioned back-end
servers based on the file paths specified in the URL. A compromise in this security
check can occur because Win32 file systems allow two different methods for
accessing long file names.

The first method acknowledges the entire file name. For example:
abcdefghijkl.txt

The second method recognizes the old 8.3 file name format for backward
compatibility. For example:
abcdef~1.txt

When you create junctions in a Windows environments, it is important to restrict
access control to one object representation only and not allow the possibility of
"back doors" that bypass the security mechanism.

The –w option on a junction provides the following measures of protection:
v Prevents the use of the 8.3 file name format

When the junction is configured with the –w option, a user cannot avoid an
explicit ACL on a long file name by using the short (8.3) form of the file name.
The server returns a "403 Forbidden" error on any short form file name entered.

v Disallows trailing dots in directory and file names
If a file or directory contains trailing dots, a 403 "Forbidden" error is returned.

v Enforces case-insensitivity by setting the –i option
The –w option automatically invokes the –i option. This option specifies that
WebSEAL treat URLs as case-insensitive when performing authorization checks
on a request to a junctioned back-end server. After a successful ACL check, the
original case of the URL is restored when the request is sent to the back-end
server.

Note: If you require control over case-insensitivity only for file names, use only
the –i option on the junction instead of the –w option.

The –w option is also supported on virtual host junctions. See Chapter 29, “Virtual
host junctions,” on page 479 and Chapter 30, “Command option summary: Virtual
host junctions,” on page 499.

Example

In a Windows environment, the file:
\Program Files\Company Inc\Release.Notes

can also be accessed through the following paths:
1. \progra~1\compan~2\releas~3.not

2. \Program Files\Company Inc.\Release.Notes

3. \program files\company inc\release.notes

Example 1 illustrates how Windows can create an alias (for DOS compatibility) that
contains no spaces in the file names and conforms to the 8.3 format. The –w option
causes WebSEAL to reject this format for ACL checks.

Chapter 24. Advanced junction configuration 409

Example 2 illustrates how Windows can include trailing extension dots. The –w
option causes WebSEAL to reject this format for ACL checks.

Example 3 illustrates how Windows allows case-insensitivity on the file name. The
–w option invokes the –i option to ensure a case-insensitive ACL check.

ACLs and POPs must attach to lower-case object names
When a junction is created with the –w or –i option, WebSEAL performs ACL and
POP comparisons as not case-sensitive. This means that the name of any object
being evaluated for an ACL is placed into lowercase before WebSEAL checks it
against the object list to which ACLs are attached.

As a result, protected objects with names that contain uppercase letters are not
found during the ACL or POP checks. If these objects are not found, the ACL or
POP is not applied to the protected object, and the parent policy is applied instead.

To avoid the possible misapplication of policy in this configuration, you must
create lowercase versions of the same names of the real protected objects to which
you want to attach explicit ACLs or POPs.

Standard junctions to virtual hosts

Virtual hosting refers to the practice of maintaining more than one WebSEAL
instance on the same physical machine. Virtual hosting is used to run multiple
Web services, each with different host names and URLs, and which appear to be
on completely separate sites. Virtual hosting is used by ISPs, hosting sites, and
content providers who need to manage multiple sites but do not want to buy a
new machine for each one. Multiple companies can share a single Web server but
have their own unique domains, such as www.company1.com and
www.company2.com.

Users of virtual host domains do not need to know any extra path information. In
requests to a virtual host domain, browsers simply provide the required hostname
through its Host: header.

In a standard junction create command, the -h host option and argument identifies
the remote junctioned server machine. WebSEAL normally places this server
address in the Host: header of requests to this server.

The additional -v host option and argument identifies a virtual host instance on
this machine. The virtual host information provided by -v is used in the Host:
header instead of the -h information. Requests are now directed to the specific
virtual host instance. The -h information is still used by WebSEAL to locate the
physical host machine.

For mutual junctions the -v host option corresponds to the virtual host name when
the HTTP protocol is used to communicate with the junctioned server.The -V host
option is used as the virtual host name when the HTTPS protocol is used.

The following example illustrates the configuration of two virtual hosts. The
junctioned application server is server.xyz.com. It runs on port 80 and hosts two
virtual servers: site1.xyz.com and site2.xyz.com.

Basic junctions are created as follows (each command entered as one line):

410 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

pdadmin> server task default-webseald-surf.xyz.com create -t tcp
-h server.xyz.com -v site1.xyz.com /jct1
pdadmin> server task default-webseald-surf.xyz.com create -t tcp
-h server.xyz.com -v site2.xyz.com /jct2

See also “Complete Host header information with -v” on page 584.

UTF-8 encoding for HTTP header data

WebSEAL inserts information into HTTP headers for requests to the backend
server. This information can include extended attributes or user data. In WebSEAL
versions prior to version 5.1, the headers were added to the request using a raw
local code page. In WebSEAL versions 5.1 and later, the header data is transmitted
in a configurable format.

By default, WebSEAL now adds information to HTTP headers using UTF-8
encoding. This encoding prevents any potential data loss that could occur when
converting to a non-UTF-8 code page. Also by default, this data is sent URI
encoded. For backward compatibility, the format of the header data can be
configured to raw local code page. In addition, two other formats are supported:
Raw UTF-8 and URI encoded local code page.

The -e junction option specifies the encoding of user name, groups, and other
extended attributes which are sent within the HTTP header to the backend server.

The –e option is also supported on virtual host junctions. See Chapter 29, “Virtual
host junctions,” on page 479 and Chapter 30, “Command option summary: Virtual
host junctions,” on page 499.

The -e encode option can take one of the following arguments:

Argument Description

utf8_uri URI encoded UTF-8 data.

All white space and non-ASCII bytes are encoded %XY, where X
and Y are hex values (0–F).

Client

WebSEAL

surf.xyz.com

server.xyz.com

site1.xyz.com

site2.xyz.com

/jct1

/jct2

Figure 36. Configuring virtual hosts

Chapter 24. Advanced junction configuration 411

Argument Description

utf8_bin Unencoded UTF-8 data.

This setting allows data to be transmitted without data loss, and
the customer does not need to URI-decode the data.

This setting should be used with caution, because it is not part of
the HTTP specification

lcp_uri URI encoded local code page data.

Any UTF-8 characters that cannot be converted to a local code page
will be converted to question marks (?). Use this option with
caution and only in environments where the local code page
produces the desired strings.

lcp_bin Unencoded local code page data.

This mode was used by versions of WebSEAL prior to Version 5.1.
Use of this mode enables migration from previous versions, and is
used in upgrade environments.

Use with caution, because data loss can potentially occur with this
mode.

For more information on WebSEAL support for UTF-8 encoding, see “Multi-locale
support with UTF-8” on page 57.

Bypassing buffering on a per-resource basis
WebSEAL uses an internal buffer when processing data sent in requests to
WebSEAL and responses from junction applications.

About this task

This buffering typically provides performance improvement. For certain
applications that send or return small amounts of data, the buffering can cause the
data to be held temporarily at WebSEAL while the buffer is being filled. For some
applications, it might be preferable to bypass the buffering and stream the data
directly to the junctioned server or to the clients. This scheme is not efficient for
general web traffic; apply it only to particular resources that require streamed data.
For example, apply it to junctions configured for RPC over HTTP communication.
See Chapter 27, “Microsoft RPC over HTTP,” on page 461.

You can apply a protected object policy (POP) to individual resources that directs
WebSEAL to bypass buffering for those resources. To bypass buffering for a
particular resource response, attach a POP to the resource with an attribute named
response-buffer-control set with the value bypass. To bypass buffering for a
particular resource request, attach a POP to the resource with an attribute named
request-buffer-control set with the value bypass.

The following example
v Creates a POP named bypassPOP.
v Sets the response-buffer-control and request-buffer-control attributes to bypass.
v Attaches the POP to a resource named smallCGI

412 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Procedure
1. Create a POP named bypassPOP with the appropriate attributes.

pdadmin> pop create bypassPOP
pdadmin> pop modify bypassPOP set attribute response-buffer-control bypass
pdadmin> pop modify bypassPOP set attribute request-buffer-control bypass

2. Attach the POP to the chosen resource.
pdadmin> pop attach /WebSEAL/myinstance/myjunction/cgi-bin/smallCGI bypassPOP

This POP only affects the data in the body of the request or response that is
received from the client or junction. WebSEAL still buffers the request and
response headers.
When buffering HTTP requests using this POP technique, there are limitations.
Certain WebSEAL functions require the entire request body, and this body is
not available when streaming a request to a junctioned server.
The following WebSEAL functionality cannot be used when using request
streaming:

Note: WebSEAL response streaming can still be applied to resources that use
this WebSEAL functionality.
v Caching of POST data during the authentication process.
v Dynamic authorization decision information (dynADI) when POST data is

part of the decision evaluation.
v Dynamic URLs (dynURL) when POST data is part of the decision evaluation.

Single sign-on solutions across junctions

See Chapter 31, “Single signon solutions across junctions,” on page 511.

Chapter 24. Advanced junction configuration 413

414 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 25. Modification of URLs to junctioned resources

This chapter discusses the configuration options available to ensure that URL links
sent from back-end application servers across standard WebSEAL junctions are
reconstructed appropriately for use by clients.

The challenges of URL filtering are specific to standard WebSEAL junctions.
WebSEAL also supports virtual hosting and, through virtual host junctions, can
eliminate the limitations of URL filtering. WebSEAL uses the HTTP Host header in
client requests to direct those requests to the appropriate document spaces located
on junctioned servers or on the local machine.

For information on using vitual host junctions, see Chapter 29, “Virtual host
junctions,” on page 479.

Topic Index:
v “URL modification concepts”
v “Path types used in URLs” on page 416
v “Modification of URLs in responses” on page 417
v “Modification of URLs in requests” on page 429
v “Handling cookies from servers across multiple -j junctions” on page 438

URL modification concepts

Pages returned to the client from back-end application servers often contain links
to resources located on those servers. It is important that these URLs are
constructed to correctly direct any client requests back to these resources.

For example, in a non-WebSEAL environment, the URL entered by a client for a
resource on an application server might appear as follows:
http://www.example.com/file.html

WebSEAL, as a front-end reverse proxy, provides security services to back-end
application servers via the WebSEAL junctioning feature. This feature requires that
the original URLs to these resources be modified to include the junction
information.

The standard junction feature of WebSEAL changes the server and path
information that must be used to access resources on junctioned back-end systems.
A link to a resource on a back-end junctioned server succeeds only if the URL
contains the identity of the junction.

If this same back-end server is a junctioned server in a WebSEAL environment, the
URL used to access the same resource on a junctioned back-end application server
must appear as follows:
http://webseal.example.com/jct/file.html

To support the standard junction feature and maintain the integrity of URLs,
WebSEAL must, where possible:
1. Modify the URLs (links) found in responses sent to clients

© Copyright IBM Corp. 2002, 2013 415

2. Modify requests for resources resulting from URLs (links) that WebSEAL could
not change

Note: WebSEAL's rules and mechanisms for modifying URLs do not apply to links
that point to resources external to the Security Access Manager junctioned
environment.

The following diagram summarizes the solutions available to WebSEAL for
modifying URLs to junctioned back-end resources:

Path types used in URLs

Any HTML page is likely to contain URLs (links) to other resources on that
back-end server or elsewhere. URL expressions can appear in the following
formats:
v relative
v server-relative
v absolute

Links containing URLs expressed in relative format never require any modification
by WebSEAL. By default, the browser handles relative URLs in links by
prepending the correct scheme (protocol), server name, and directory information
(including the junction) to the relative URL. The browser derives the prepended
information from the location information of the page on which the link is located.

Example relative URL expressions:
abc.html
../abc.html
./abc.html
sales/abc.html

However, difficulties arise with server-relative and absolute path formats.

A server-relative URL contains a full path expression (beginning at /), but contains
to scheme (protocol) or server name. Example server-relative URL expressions:
/abc.html
/accounts/abc.html

An absolute URL contains the scheme (protocol), server name, and full path.
Example absolute URL expression:

Client

WebSEAL

junction

Filtering responses
from back-end servers

Processing requests
for back-end resources

1. junction cookies

2. junction mapping table
(for server-relative URLs)

(for server-relative URLs)
3. referer header
4. process-root-requests

1. tag-based filtering

2. script filtering

(for server-relative and
absolute URLs)

(for absolute URLs)

Application Server

Figure 37. Summary: Modifying URLs to back-end resources

416 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

http://www.example.com/doc/abc.html

Links to back-end resources expressed in absolute or server-relative formats
succeed only if WebSEAL is able to modify the URL path expression to include
junction information. WebSEAL URL modification techniques apply to absolute
and server-relative URLs.

Note: To ensure successful location of resources, all programmers of Web scripts
are encouraged to use relative links (not absolute or server-relative) for
dynamically generated URLs.

Special characters in URLs
HTML pages can contain ASCII special characters. The web content contains
HTML codes that represent the special characters or symbols.

The HTML codes for special characters start with "&#" and end with ";".

The HTML codes use the following format:
&#<numeric_id>;

where

<numeric_id>
A number or hex representation for the character. The maximum value of
the number representation is 255 (Hex: 0xFF).

For example, the percent sign (%) has a numerical code of % and a hex code of
%.

Note: For details about how WebSEAL can filter any special character encoding
that exists in HTTP responses, see “Modification of encoded or escaped URLs” on
page 420.

Modification of URLs in responses

This section describes options for modifying URLs in responses from junctioned
back-end application servers.
v “Filtering of tag-based static URLs”
v “Modifying absolute URLs with script filtering” on page 426
v “Configuring the rewrite-absolute-with-absolute option” on page 427
v “Filtering changes the Content-Length header” on page 427
v “Limitation with unfiltered server-relative links” on page 428

Filtering of tag-based static URLs
WebSEAL uses a set of default rules to scan for (or filter) tag-based static URLs
contained in pages that are responses to client requests. This default filtering
mechanism examines static URLs located within tag-based content (such as HTML
or XML).

The term "filtering" is used to indicate WebSEAL's process of scanning Web
documents for absolute and server-relative links and modifying the links to include
junction information.

Chapter 25. Modification of URLs to junctioned resources 417

An important requirement for this mechanism is that the URLs must be visible to
WebSEAL. For example, tag-based content filtering cannot handle URLs that are
dynamically generated on the client-side.

When the preserve-base-href2 option is also set to "yes" WebSEAL only performs
the minimum filtering of the BASE HREF tag necessary to insert the WebSEAL
host and junction names. The value of the preserve-base-href2 option impacts the
processing of any BASE HREF tags that are missing the trailing slash.

REMINDER: This option has no effect if preserve-base-href is set to "no".

Example 5 (BASE HREF that contains no trailing slash matches a junctioned
server)

v WebSEAL server: www.webseal.com
v The following junction was created:

server task webseal-server create -tcp -h www.example.com /jct

HTML before filtering

NOTE: There is no trailing slash in the BASE HREF value:
<HTML>
<HEAD>
<BASE HREF="http://www.example.com">
</HEAD>
<BODY>
index.html
</BODY>
</HTML>

HTML after filtering when preserve-base-href2 is set to "no".

NOTE: WebSEAL maps the HREF to /jct and then eliminates the /jct because
there is no trailing slash.
<HTML>
<HEAD>
<BASE HREF="http://www.webseal.com/">
</HEAD>
<BODY>
index.html
</BODY>
</HTML>

HTML after filtering when preserve-base-href2 is set to "yes".

NOTE: WebSEAL performs the minimum filtering of the BASE HREF tag
necessary to insert the WebSEAL host and junction names. The missing trailing
slash does not cause the last component in the base HREF URL to be stripped.
<HTML>
<HEAD>
<BASE HREF="http://www.webseal.com/jct/">
</HEAD>
<BODY>
index.html
</BODY>
</HTML>

This section contains the following topics:
v “Filter rules for tag-based static URLs” on page 419

418 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v “Default filtering of tag-based static URLs” on page 420
v “Configuration of filtering for new content (MIME) types” on page 421
v “Tags and attributes for tag-based filtering” on page 422
v “HTML META tags” on page 422
v “HTML BASE HREF tags” on page 422
v “Schemes to ignore in pages using the BASE tag” on page 425

Filter rules for tag-based static URLs

Filter rules for relative URLs:

Relative URLs are always handled appropriately by the browser. Therefore,
WebSEAL does not filter relative URLs.

By default, the browser prepends the correct scheme, server, and directory
information (including the junction) to the relative URL. The prepended
information is derived from the request URL for the page on which the link is
located.

Filter rules for server-relative URLs:

WebSEAL must add the junction name to the path of server-relative URLs that
refer to resources located on junctioned servers.

Server-relative URLs indicate a URL position in relation to the document root of
the junctioned server, for example:
/dir/file.html

Server-relative URLs are modified by adding the junction point of the junctioned
server to the path name. For example:
/jct/dir/file.html

Filter rules for absolute URLs:

WebSEAL must add the junction name to the path of absolute URLs that refer to
resources located on junctioned servers.

Absolute URLs indicate a URL position in relation to a host name or IP address
(and, optionally, a network port). For example:
http://host-name[:port]/file.html, or
https://host-name[:port]/file.html

Absolute URLs are modified according to the following set of rules:
v If the URL is HTTP and the host/port matches a TCP junctioned server, the URL

is modified to be server-relative to WebSEAL and reflect the junction point. For
example:
http://host-name[:port]/file.html

becomes:
/tcpjct/file.html

v If the URL is HTTPS and the host/port matches an SSL junctioned server, the
URL is modified to be server-relative to WebSEAL and reflect the junction point.
For example:
https://host-name[:port]/file.html

Chapter 25. Modification of URLs to junctioned resources 419

becomes:
/ssljct/file.html

See also “Configuring the rewrite-absolute-with-absolute option” on page 427.

See “Modifying absolute URLs with script filtering” on page 426 for an alternative
absolute URL filtering mechanism.

Default filtering of tag-based static URLs

WebSEAL filters tag-based static URLs that are located in pages with content
(MIME) types specified in the [filter-content-types] stanza of the WebSEAL
configuration file.

By default, this stanza specifies MIME types text/html and text/vnd.wap.wml.
[filter-content-types]
type = text/html
type = text/vnd.wap.wml

The [filter-url] stanza of the WebSEAL configuration file specifies the tags and tag
attributes to be filtered in the content. Because most commonly used HTML tags
and tag attributes are listed in this stanza by default, tag-based filtering for the
default text/html and text/vnd.wap.wml MIME types typically operates without
any additional configuration.

Modification of encoded or escaped URLs
WebSEAL modifies and rewrites the URL references in outgoing responses to
ensure that subsequent requests are sent through WebSEAL.

WebSEAL rewrites each URL in its original form with the URI encoding or slash
escaping. If WebSEAL encounters special character encoding, it replaces the HTML
code with the special character that the code represents.

The following table describes the URI encoding types that WebSEAL filters during
this process.

Table 36. Filtered encoding types. WebSEAL filters the following encoding types.

Encoding type Example of encoded URL

Ampersand encoded HTTP://host:port/path?V1=D1
&V2=D2

Ampersand - hex encoded HTTP://host:port
/

Ampersand - dec encoded HTTP:99host:port9

Backslash encoded HTTP:\/\/host:port\/

Percent hex encoded HTTP%3A%2F%2Fhost%3Aport%2F

Example: Filtering of URLs
v WebSEAL server: www.webseal.com
v The following junction was created:

server task webseal-server create -tcp -h www.example.com /jct

The HTML before the WebSEAL filtering process:

420 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

<HTML>
<BODY>
index.html
page2.html
page3.html
page4.html
</BODY>
</HTML>

HTML after the WebSEAL filtering process with the configuration item
[script-filtering] rewrite-absolute-with-absolute set to no:
<HTML>
<BODY>
index.html
page2.html
page3.html
page4.html
</BODY>
</HTML>

HTML after the WebSEAL filtering process with the configuration item
[script-filtering] rewrite-absolute-with-absolute set to yes:
<HTML>
<BODY>
index.html
page2.html
page3.html

page4.html
</BODY>
</HTML>

Configuration of filtering for new content (MIME) types

Additional MIME types can be configured for URL filtering by adding appropriate
entries to the [filter-content-types] stanza.

The default filtering mechanism for new MIME types added to the
[filter-content-types] stanza is script filtering. You must edit the WebSEAL
configuration file to enable script filtering (script filtering is disabled by default):
[script-filtering]
script-filter = yes

The script filtering mechanism examines the entire contents of the response and is
not restricted to tag-based content. However, script filtering only examines and
modifies absolute URLs. See “Modifying absolute URLs with script filtering” on
page 426.

Alternatively, you can enable tag-based filtering of static URLs for new MIME
types added to the [filter-content-types] stanza. To enable tag-based static URL
filtering for new configured MIME types, set the value of the filter-nonhtml-as-
xhtml stanza entry in the [server] stanza of the WebSEAL configuration file to
"yes":
[server]
filter-nonhtml-as-xhtml = yes

Specify any additional tags and tag attributes to be filtered, as described in “Tags
and attributes for tag-based filtering” on page 422.

Chapter 25. Modification of URLs to junctioned resources 421

Tags and attributes for tag-based filtering

Tag-based static URL filtering is constrained to the specific tags and tag attributes
defined in the [filter-url] stanza of the WebSEAL configuration file. The filtering
mechanism looks only for URLs located within the specified tags and tag
attributes.

You can add entries to the [filter-url] stanza to specify any additional tags and tag
attributes to be filtered. Tags and tag attributes can include HTML, XML, XHTML,
or custom data definitions.

HTML META tags

HTML META refresh tags are always filtered. For example:
<META HTTP-EQUIV="Refresh" CONTENT="5;URL=http://server/url">

HTML BASE HREF tags

You can use the preserve-base-href and the preserve-base-href2 entries in the
[server] stanza to control how WebSEAL handles the HREF attributes of HTML
BASE tags in filtered HTML documents.

Note: The value of preserve-base-href2 has no effect unless the preserve-base-href
option is set to "yes".

When preserve-base-href is set to "no", the following statements apply:
v WebSEAL removes the BASE HREF attributes from filtered HTML documents.
v When the BASE HREF URL matches a junctioned server, WebSEAL prepends the

junction point, and any subdirectories, to server-relative and relative links found
on the page.

v When the BASE HREF URL does not match a junctioned server, WebSEAL
prepends the entire BASE HREF URL attribute to server-relative and relative
links on the page. This action is exactly what the browser does when it renders
HTML.

Example 1 (BASE HREF matches a junctioned server)

v WebSEAL server: www.webseal.com
v The following junction was created:

server task webseal-server create -tcp -h www.example.com /jct

HTML before filtering:
<HTML>
<HEAD>
<BASE HREF="http://www.example.com/dir1/dir2/">
</HEAD>
<BODY>
index.html
</BODY>
</HTML>

HTML after filtering:
<HTML>
<HEAD>
<BASE>
</HEAD>

422 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

<BODY>
index.html
</BODY>
</HTML>

Example 2 (BASE HREF does not match a junctioned server)

v WebSEAL server: www.webseal.com
v The following junction was created:

server task webseal-server create -tcp -h www.example.com /jct

HTML before filtering:
<HTML>
<HEAD>
<BASE HREF="http://www.example2.com/dir1/dir2/">
</HEAD>
<BODY>
index.html
</BODY>
</HTML>

HTML after filtering:
<HTML>
<HEAD>
<BASE>
</HEAD>
<BODY>
index.html
</BODY>
</HTML>

When preserve-base-href is set to "yes", the following statements apply:
v WebSEAL does not remove the BASE HREF attributes from filtered HTML

documents.
v When the BASE HREF URL matches a junctioned server, WebSEAL modifies the

BASE HREF URL. WebSEAL replaces the name of the junctioned server with the
WebSEAL server name, plus the junction point of the junctioned server. When
the browser renders the HTML, and prepends the modified HREF URL to
server-relative and relative links, the resulting links can find the resources.

v When the BASE HREF URL does not match a junctioned server, WebSEAL does
not modify the HTML. When the browser renders the HTML, and prepends the
original HREF URLs to server-relative and relative links, the resulting links can
find the resources.

v When WebSEAL filters an HTML document with a BASE HREF tag, WebSEAL
does not preserve the original escaping or encoding of the URL if it contains:
– URI encoding
– Escaped slashes
– Special character encoding

Example 3 (URI Encoded, slash-escaped and Special Character URLS)

v WebSEAL server: www.webseal.com
v The following junction was created:

server task webseal-server create -tcp -h www.example.com /jct

HTML before filtering:

Chapter 25. Modification of URLs to junctioned resources 423

<HTML>
<HEAD>
<BASE HREF="http://www.example2.com/dir1/">
</HEAD>
<BODY>
index.html
contents.html
index2.html
</BODY>
</HTML>

HTML after filtering:
<HTML>
<HEAD>
<BASE>
</HEAD>
<BODY>
index.html
contents.html
index2.html
</BODY>
</HTML>

Example 4 (BASE HREF matches a junctioned server)

v WebSEAL server: www.webseal.com
v The following junction was created:

server task webseal-server create -tcp -h www.example.com /jct

HTML before filtering:
<HTML>
<HEAD>
<BASE HREF="http://www.example.com/dir1/dir2/">
</HEAD>
<BODY>
index.html
</BODY>
</HTML>

HTML after filtering:
<HTML>
<HEAD>
<BASE HREF="http://www.webseal.com/jct/dir1/dir2/">
</HEAD>
<BODY>
index.html
</BODY>
</HTML>

Example 5 (BASE HREF does not match a junctioned server)

v WebSEAL server: www.webseal.com
v The following junction was created:

server task webseal-server create -tcp -h www.example.com /jct

HTML before filtering:
<HTML>
<HEAD>
<BASE HREF="http://www.example2.com/dir1/dir2/">
</HEAD>

424 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

<BODY>
index.html
</BODY>
</HTML>

HTML after filtering:
<HTML>
<HEAD>
<BASE HREF="http://www.example2.com/dir1/dir2/">
</HEAD>
<BODY>
index.html
</BODY>
</HTML>

Example 6 (URI Encoded, slash-escaped and Special Character URLs)

v WebSEAL server: www.webseal.com
v The following junction was created:

server task webseal-server create -tcp -h www.example.com /jct

HTML before filtering:
<HTML>
<HEAD>
<BASE HREF="http://www.example.com/dir1/">
</HEAD>
<BODY>
index.html
contents.html
index2.html
</BODY>
</HTML>

HTML after filtering:
<HTML>
<HEAD>
<BASE HREF="http://www.webseal.com/jct/dir1/">
</HEAD>
<BODY>
index.html
contents.html
index2.html
</BODY>
</HTML>

Schemes to ignore in pages using the BASE tag

The [filter-schemes] stanza lists those URL schemes that are not to be filtered by
WebSEAL in responses from junctioned application servers. A scheme is a protocol
identifier. This list is utilized when WebSEAL encounters documents containing
HREF attributes in HTML BASE tags.

The [filter-schemes] stanza contains a set of default schemes.
v You can extend the list with additional protocols.
v The recommended practice is to not delete entries from this list.
v The "http" and "https" schemes are hard-coded to always be filtered.
v When adding entries to the stanza, the trailing colon (:) on the scheme name is

optional. When the colon is missing, WebSEAL assumes it.

Default scheme entries:

Chapter 25. Modification of URLs to junctioned resources 425

[filter-schemes]
scheme = file
scheme = ftp
scheme = mailto
scheme = news
scheme = telnet

If a URL in a response does not use a scheme from this stanza, and the scheme is
not "http" or "https", then WebSEAL assumes the URL is the same scheme as the
junctioned server (HTTP: or HTTPS:) with it's scheme missing.

Exception! If the response contains an HTML BASE tag with an HREF URL
attribute that uses a scheme from the stanza, WebSEAL filters the URL.

Modifying absolute URLs with script filtering

About this task

WebSEAL requires additional configuration to handle the processing of absolute
URLs embedded in scripts. Web scripting languages include JavaScript, VBScript,
ASP, JSP, ActiveX, and others. The script-filter stanza entry in the [script-filtering]
stanza of the WebSEAL configuration file enables or disables filtering of embedded
absolute URLs. Script filtering is disabled by default:
[script-filtering]
script-filter = no

Procedure

To enable script filtering, set this the value of this stanza entry to "yes":
[script-filtering]
script-filter = yes

The script filtering mechanism examines the entire contents of a response and is
not restricted to, for example, tag-based content.
The script-filter mechanism expects absolute URLs with a standard scheme, server,
resource format:
http://server/resource

The script-filter mechanism replaces the scheme and server portions of the link
with the correct junction information (as a relative pathname):
/junction-name/resource

This filtering solution parses a script embedded in HTML code and therefore
requires additional processing overhead that can negatively impact performance.
The setting applies to all junctions. Only enable the script-filter stanza entry when
your WebSEAL environment requires filtering of embedded absolute URLs.
The following diagram illustrates this absolute URL filtering solution:

426 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Configuring the rewrite-absolute-with-absolute option

About this task

WebSEAL normally filters absolute URLs by adding the junction point and
changing the format to a server-relative expression. This rule for filtering absolute
URLs applies to tag-based filtering and script filtering. You can optionally
configure WebSEAL to rewrite the original absolute URL as an absolute URL,
instead of a relative URL.

Procedure

To enable this type of filtering, set the value of the rewrite-absolute-with-absolute
stanza entry in the [script-filtering] stanza of the WebSEAL configuration file to
equal "yes":
[script-filtering]
rewrite-absolute-with-absolute = yes

When rewrite-absolute-with-absolute is enabled, the following example URL in a
response from a back-end server (connected to WebSEAL through jctA):
http://server/abc.html

is modified as follows:
http://webseal-hostname/jctA/abc.html

Enabling rewrite-absolute-with-absolute affects both tag-based filtering and script
filtering. See:
v “Modifying absolute URLs with script filtering” on page 426 and
v “Filter rules for tag-based static URLs” on page 419

Filtering changes the Content-Length header

About this task

Normally, the Content-Length header in a response from a back-end server
indicates the size of the content being returned. When WebSEAL filters URLs and

WebSEAL
Application Server
(serves Javascript)

Script containing
absolute URL:

http://server/abc.html

Client receives:
/jctA/abc.html

Request

Client makes request
using link:

/jctA/abc.html

abc.html
successfully located

script-filtering=yes
WebSEAL reformats link to:

/jctA/abc.html

/jctA

Client

Figure 38. Filtering absolute URLs

Chapter 25. Modification of URLs to junctioned resources 427

adds junction information to the path of URLs contained in the page, the actual
size of the page becomes larger than indicated in the Content-Length header.

WebSEAL has no way of knowing what the new content length is until it actually
writes the stream to the client. At this point, it is too late to insert a new
Content-Length header. WebSEAL responds to this situation in the following
manner:

Procedure
1. WebSEAL places the value of the original Content-Length header in a new

header called X-Old-Content-Length

Any applets or applications written to look for this header can have access to
the original (pre-filtered) Content-Length value.

2. WebSEAL logs the modified (post-filtered) Content-Length value in the
request.log file.

3. The Content-Length header no longer appears.

Limitation with unfiltered server-relative links

Problem
WebSEAL provides solutions for processing client-side, script-generated,
server-relative URLs to resources on back-end junctioned application servers. The
server-relative URLs generated on the client-side by applets and scripts initially
lack knowledge of the junction point in the path expression. During a client
request for a resource, WebSEAL can attempt to reprocess a server-relative URL
using junction cookies or a junction mapping table.

However, before the processing takes place, the request actually specifies a
resource located on the local Web space of the WebSEAL server itself. The
corrective reprocessing of the URL occurs only after WebSEAL receives the request
and performs an ACL check.

An ACL check on the unprocessed request that specifies an incorrect or nonexistent
local resource, might result in an error. The error might stop the request.

For example, the following sequence takes place during processing:
1. The client makes a request for a resource using a client-side, script-generated,

server-relative URL.
2. The server-relative URL is received by WebSEAL as a request.

The unprocessed URL specifies a resource located in the Web space of the
WebSEAL server itself (obviously, this is not the intended resource).

3. WebSEAL performs an ACL check on this local resource specified in the request
URL.
v If the ACL check fails, all processing of the request stops and the client

receives a 403 error (Forbidden). This error occurs because the ACL check
was performed for the incorrect (and probably nonexistent) resource.

v If the ACL check succeeds and the resource exists in the local Web space, it is
returned. This error results in the client receiving the incorrect resource.

v If the ACL check succeeds and the resource does not exist in the local Web
space, WebSEAL modifies the request URL (using the junction cookie or
junction mapping table method) and performs an internal reprocessing of the
request. This behavior is correct.

428 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

4. WebSEAL performs another ACL check on the modified URL that contains the
corrected path that includes the junction point. This modified URL now allows
an ACL check for the correct resource.

Workaround:

To solve this problem:
1. Always write scripts that generate relative URL links. Avoid absolute and

server-relative URL links.
2. If you must use server-relative links, do not duplicate resource names and

paths on both the WebSEAL server and the junctioned application server.
3. If you must use server-relative links, design your ACL model so that more

prohibitive ACLs do not affect false resources specified by unfiltered URLs.

Modification of URLs in requests

Difficulties arise when URLs are dynamically generated by client-side applications
(such as applets) or embedded in scripts in the HTML code. Web scripting
languages include JavaScript, VBScript, ASP, JSP, ActiveX, and others. These
applets and scripts execute when the page arrives at the client browser. WebSEAL
never has an opportunity to apply its standard filtering rules to these URLs that
are dynamically generated on the client-side.

Three options for modifying URLs in requests are available to WebSEAL and are
applied in the following order of precedence:
1. Junction mapping table
2. Junction cookies
3. HTTP Referer header

This section describes the options for processing server-relative links (used to
make requests for resources located on junctioned back-end application servers)
that are dynamically generated on the client-side.

Note: There are no solutions available for handling absolute URLs generated on
the client-side.

Topic index:
v “Modification of server-relative URLs with junction mapping”
v “Modification of server-relative URLs with junction cookies” on page 431
v “Control on the junction cookie JavaScript block” on page 432
v “Modification of server-relative URLs using the HTTP Referer header” on page

435
v “Controlling server-relative URL processing in requests” on page 436

Modification of server-relative URLs with junction mapping

Server-relative URLs generated on the client-side by applets and scripts initially
lack knowledge of the junction point. WebSEAL cannot filter the URL because it is
generated on the client-side.

During a client request for a resource using this URL, WebSEAL can attempt to
reprocess the server-relative URL using a junction mapping table. A junction

Chapter 25. Modification of URLs to junctioned resources 429

mapping table maps specific target resources to junction names. Junction mapping
is an alternative to the cookie-based solution for filtering dynamically generated
server-relative URLs.

WebSEAL checks the location information in the server-relative URL with the data
contained in the junction mapping table. WebSEAL begins searching from the top
of the table and continues downward through the table. If the path information in
the URL matches any entry in the table during the top-down search, WebSEAL
directs the request to the junction associated with that location.

The table is an ASCII text file called jmt.conf. The name of this file is specified in
the [junction] stanza of the WebSEAL configuration file:
jmt-map = jmt.conf

The format for data entry in the table consists of the junction name, a space, and
the resource location pattern. You can also use wildcard characters to express the
resource location pattern.

In the following example of the junction mapping configuration file, two back-end
servers are junctioned to WebSEAL at /jctA and /jctB:
#jmt.conf
#junction-name resource-location-pattern
/jctA /documents/release-notes.html
/jctA /travel/index.html
/jctB /accounts/*
/jctB /images/weather/*.jpg

You must create the jmt.conf mapping table. This file does not exist by default.
After you create the file and add data, use the jmt load command to load the data
so that WebSEAL has knowledge of the new information.
pdadmin> server task server-name jmt load
JMT table successfully loaded.

The following conditions apply to the junction mapping table solution:
v The junction mapping solution handles inbound requests intercepted by

WebSEAL. Requests made using unfiltered absolute URLs that point to a server
external to the WebSEAL environment (and therefore never intercepted by
WebSEAL) are not handled by the junction mapping table solution.

v This solution does not require the –j option or junction cookie.
v The mapping table requires setup and activation by a security administrator.
v Resource location pattern matching must be unique across the local Web space

and across junctioned Web application servers.
v If there is a duplicate pattern entry in the file, the mapping table does not load.

However, WebSEAL continues to run.
v If there is an error loading the mapping table, the mapping table is not available.

However, WebSEAL continues to run.
v If the mapping table is empty or there is an error in the table entries, the

mapping table does not load. However, WebSEAL continues to run.
v Any errors that occur while loading the mapping table result in serviceability

entries in the WebSEAL server log file (webseald.log).
v By default, WebSEAL modifies the names of non-domain cookies (returned in

responses from back-end applications) across junctions listed in the junction

430 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

mapping table. WebSEAL creates unique cookie names to prevent possible
naming conflicts with cookies returned across other junctions. There are two
methods for disabling this feature:
See “Handling cookies from servers across multiple -j junctions” on page 438.

See also “Controlling server-relative URL processing in requests” on page 436.

Modification of server-relative URLs with junction cookies

This section contains the following topics:
v “Junction cookie concepts”
v “Configuration of WebSEAL junctions to support junction cookies” on page 432

Junction cookie concepts

HTML pages from back-end junctioned application servers can contain embedded
applets or scripts that dynamically generate server-relative links on the client-side.
WebSEAL cannot filter these URLs because they are dynamically generated on the
client-side. Therefore, these server-relative URLs are expressed without knowledge
of the junction point where the application server resides.

This section describes a cookie-based solution to modifying server-relative URLs
dynamically generated on the client-side. When a client receives a page from a
junctioned server, and requests a resource using a dynamically generated
server-relative URL on this page, WebSEAL can attempt to reprocess the URL using
a special cookie. The cookie contains the appropriate junction information.

This solution requires that you initially create the junction to the back-end
application server using the -j option. The following sequence of steps explains the
process flow:
1. Client makes a request for an HTML page from a back-end junctioned

application server.
In addition to other content, the page contains an embedded applet that
generates a server-relative URL once the page is loaded on the client's browser.

2. The page is returned to the client across the junction that was created with the
-j option.
The -j option causes WebSEAL to prepend a JavaScript block at the beginning
of the HTML page.
The purpose of the JavaScript is to set a junction-identifying cookie on the
browser.

3. When the page is loaded on the client's browser, the JavaScript runs and sets
the junction-identifying cookie in the browser's cookie cache.
The cookie is a session cookie containing the name of the junction.

4. The embedded applet on the page dynamically runs and generates the
server-relative URL.

5. The client makes a request for a resource using this server-relative URL. The
junction cookie information is sent as an HTTP header in this request:
IV_JCT = /junction-name

6. Because the server-relative URL in the client request has not been filtered, it
appears to WebSEAL as a request for a local resource.

7. When it fails to locate the resource locally, WebSEAL immediately retries the
request using the junction information supplied by the cookie.

Chapter 25. Modification of URLs to junctioned resources 431

8. With the correct junction information in the URL expression, the resource is
successfully located on the back-end application server.

The following diagram illustrates the junction cookie solution for filtering
server-relative URLs

Configuration of WebSEAL junctions to support junction cookies

Use the following general syntax to create a junction that supports junction
cookies:
pdadmin> server task instance-webseald-host create ... -j ...

The following additional references contain related information:
v “Control on the junction cookie JavaScript block.”
v “Controlling server-relative URL processing in requests” on page 436.
v “Handling cookies from servers across multiple -j junctions” on page 438.

WebSEAL provides an alternative, non-cookie-based solution for handling
dynamically generated server-relative URLs. See “Modification of server-relative
URLs with junction mapping” on page 429.

See also: “Modification of server-relative URLs using the HTTP Referer header” on
page 435

Control on the junction cookie JavaScript block

This section describes two additional configuration options that are available when
you use the -j junction option to modify server-relative URLs (see “Modification of
server-relative URLs with junction cookies” on page 431):
v “Appending the junction cookie JavaScript block (trailer)” on page 433
v “Inserting the JavaScript block for HTML 4.01 compliance (inhead)” on page 433
v “Resetting the junction cookie for multiple -j junctions (onfocus)” on page 434
v “Inserting an XHTML 1.0 compliant JavaScript block (xhtml10)” on page 435

Client

WebSEAL Application Server

Page returned, containing
URL-generating script

/jctA

with -j option

Script runs,
generates link:

/abc.html

request

Client makes request
using link:
/abc.html

abc.html
successfully

located

Cookie sent
with request

WebSEAL retries
request as:

/jctA/abc.html

/jctA

WebSEAL sets cookie
to identify junction

/jctA WebSEAL tries
request locally

and fails

Figure 39. Processing server-relative URLs with junction cookies

432 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Appending the junction cookie JavaScript block (trailer)

About this task

The -j junction option modifies HTML documents returned from junctioned servers
by inserting a JavaScript block that sets a junction identification cookie on the
browser interpreting the document. By default, the JavaScript block is inserted at
the beginning of the page, before the <html> tag.

This prepended location of the JavaScript on the page can cause HTML rendering
problems in some environments. If this type of problem is encountered, you can
configure WebSEAL to append the JavaScript block to the end of the document
instead.

Procedure

To configure WebSEAL to append the junction cookie JavaScript block to the end
of pages returned by the back-end server, add the -J option with the trailer
argument when creating the -j junction. For example (command line fragment):
pdadmin> server task instance-webseald-host create ... -j -J trailer ...

If you are concerned with inserting the JavaScript block in the correct location for
HTML 4.01 compliance, see “Inserting the JavaScript block for HTML 4.01
compliance (inhead).”

Inserting the JavaScript block for HTML 4.01 compliance (inhead)
The -J junction option modifies HTML documents returned from junctioned servers
by inserting a JavaScript block that sets a junction identification cookie on the
browser interpreting the document. By default, the JavaScript block is inserted at
the beginning of the page, before any HTML code.

About this task

This prepended location of the JavaScript on the page can cause HTML rendering
problems in some environments. Additionally, the default prepended location does
not comply with HTML 4.01 specifications. The HTML 4.01 specification requires
<script> tags to be located within the <head> </head> tags.

Procedure

To configure WebSEAL to insert the junction cookie JavaScript block
between<head> </head> tags (HTML 4.01 compliant), add the -J option with the
inhead argument when creating the -J junction. For example (command line
fragment):
pdadmin> server task instance-webseald-host create ... -j -J inhead ...

The xhtml10 argument also addresses compliance with other HTML 4.01 and
XHTML 1.0 specifications. See “Inserting an XHTML 1.0 compliant JavaScript block
(xhtml10)” on page 435.
The trailer argument can be used when compliance with HTML 4.01 specifications
is not required. See “Appending the junction cookie JavaScript block (trailer).”

Chapter 25. Modification of URLs to junctioned resources 433

Resetting the junction cookie for multiple -j junctions (onfocus)

About this task

In environments where multiple instances of a single client access multiple -j
junctions simultaneously, the most recent IV_JCT cookie created by the JavaScript
may erroneously refer to a different junction than the one being currently accessed.
In such a situation, WebSEAL receives the wrong junction information and fails to
correctly resolve links.

For example, consider a scenario where a user has two browser windows open,
each pointing to one of two junctions, jctA and jctB. Both junctions were created
with the -j junction option.

Procedure
1. In the first browser window, the user requests a page from an application

server located on jctA.
The IV_JCT cookie for jctA is set in the browser.

2. The user then leaves the first browser window open, switches to the other
browser window, and requests a page from an application server located on
jctB.
The IV_JCT cookie for jctB is set in the browser (replacing jctA).

3. If the user then returns to the first browser window and clicks a link to a
resource located on jctA, the wrong IV_JCT cookie is sent to WebSEAL.

Results

To eliminate this problem, you can configure WebSEAL to use the onfocus event
handler in the JavaScript. The onfocus handler resets the IV_JCT cookie whenever
users switch the browser focus from one window to another.

To use the JavaScript onfocus event handler, add the -J option with the onfocus
argument when creating the -j junction. For example (command line fragment):
pdadmin> server task instance-webseald-host create ... -j -J onfocus ...

If you create a junction using the onfocus argument, it is best practise to use the
trailer argument as well. The trailer argument ensures that the JavaScript inserted
by WebSEAL does not interfere with the rendering of HTML frame sets. Use a
comma character (,) and no spaces between the two arguments. For example
(command line fragment):
pdadmin> server task instance-webseald-host create ... -j -J trailer,onfocus ...

See also “Appending the junction cookie JavaScript block (trailer)” on page 433.

If compliance with HTML 4.01 and XHTML 1.0 specifications is required, see
“Inserting an XHTML 1.0 compliant JavaScript block (xhtml10)” on page 435.

Note: No error message is provided if the arguments specified for the -J option are
invalid. If the -J junction option does not perform as expected, make sure you are
providing the correct argument.

434 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Inserting an XHTML 1.0 compliant JavaScript block (xhtml10)
The -j junction option modifies HTML documents returned from junctioned servers
by inserting a JavaScript block that sets a junction identification cookie on the
browser interpreting the document. The default script is not compliant with
XHTML 1.0 specifications.

Procedure

To configure WebSEAL to insert a junction cookie JavaScript block that is
compliant with XHTML 1.0 specifications (and HTML 4.01 specifications), add the
-J option with the xhtml10 argument when creating the -j junction. For example
(command line fragment):
pdadmin> server task instance-webseald-host create ... -j -J xhtml10 ...

Note:

v The JavaScript inserted using this option may not execute if the Content-Type of
the document it is inserted into is not text/html. This will typically not be a
problem because most sites issue XHTML with Content-Type: text/html.

v The onfocus and xhtml10 arguments for the -J option are mutually exclusive.
WebSEAL silently ignores xhtml10 if onfocus has also been specified.

If you create a junction using the xhtml10 argument, it is best practise to use the
inhead argument as well. The inhead argument ensures that the placement of the
JavaScript within the HTML code is compliant with HTML 4.01 specifications. For
example (command line fragment):
pdadmin> server task instance-webseald-host create ... -j -J inhead,xhtml10 ...

See also “Inserting the JavaScript block for HTML 4.01 compliance (inhead)” on
page 433.

Modification of server-relative URLs using the HTTP Referer
header

HTML pages from back-end junctioned application servers can contain embedded
applets or scripts that dynamically generate server-relative links on the client-side.
WebSEAL cannot filter these URLs because they are dynamically generated on the
client-side. Therefore, these server-relative URLs are expressed without knowledge
of the junction point where the application server resides.

This section describes a solution for modifying server-relative URLs dynamically
generated on the client-side. This solution involves use of the standard Referer
header in an HTTP request. WebSEAL uses this solution only if a junction cookie
cannot be found in a request or a junction mapping table entry does not match the
request.

The information in the Referer header of an HTTP request can be used to identify
the junction point of the application server responsible for the embedded applet or
script. This solution assumes that the dynamically generated links point to
resources located on the same application server (and therefore would require the
same junction used by that application server)

A page returned from the back-end application server (and containing the links
generated by the embedded applet or script) would provide knowledge of the
junction name. The junction name will appear in the URL value of the Referer

Chapter 25. Modification of URLs to junctioned resources 435

header of a request that results when the user clicks on one of the
client-side-generated links located on this page. For example:
GET /back_end_app/images/logo.jpg
Referer: http://webseal/jctA/back_end_app
...

WebSEAL would not be able to find the resource using the request URL above
(/back_end_app/images/logo.jpg). By using the information in the Referer header
of that request, WebSEAL can modify the request URL to additionally include the
junction name jctA. For example:
GET /jctA/back_end_app/images/logo.jpg

Using the modified URL, WebSEAL can successfully locate the resource. This of
course assumes the resource (logo.jpg) is located on the same server.

If the environment results in client-side-generated links that point to resources
across multiple junctions, the Referer header method for modifying URLs will not
be reliable. In these environments, you must use either the junction mapping table
solution or the junction cookie solution.

See also:
v “Modification of server-relative URLs with junction mapping” on page 429
v “Modification of server-relative URLs with junction cookies” on page 431

Controlling server-relative URL processing in requests

About this task

This section contains the following topics:
v “Process root request concepts”
v “Configuring root request processing” on page 437

Process root request concepts
This section discusses the process followed by WebSEAL when handling
server-relative URLs in requests.

The process-root-requests stanza entry allows you to control the order in which
WebSEAL processes a request involving a server-relative URL. For example, you
can instruct WebSEAL to look for the requested resource at the WebSEAL root
junction first. If the resource is "Not Found", WebSEAL continues processing the
request by using any configured post-processing mechanism (such as junction
cookie, junction mapping table (JMT), or Referer header).

Alternatively, you can have WebSEAL initially processes a server-relative URL
request using any configured post-processing mechanism (such as junction cookie,
junction mapping table (JMT), or Referer header). If the resource is "Not Found" by
this method, WebSEAL then searches the root junction for the resource.

A third configuration allows you to filter specific path patterns.

For any request involving a server-relative URL, WebSEAL searches for the
resource according to the configured setting of the process-root-requests stanza
entry. If a "Not Found" error is returned, WebSEAL continues to process the
request according to the process-root-requests configuration.

436 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

If any other error is returned, such as "Server Error" (500), WebSEAL returns the
error to the client, assumes the resource is found, and stops further processing of
the request. WebSEAL does not attempt to process the request on another junction.
WebSEAL is functioning as intended in this situation.

The purpose of the process-root-requests configuration is to prevent server-relative
URL processing from being performed for incorrect resources before the intended
resource is identified. This action has performance benefits and prevents false
authorization or file type check failures.

Configuring root request processing

About this task

Use the process-root-requests entry in the [server] stanza of the WebSEAL
configuration stanza to configure root junction processing.

For information on junction mapping mechanisms, see the following sections:
v “Modification of server-relative URLs with junction cookies” on page 431
v “Modification of server-relative URLs with junction mapping” on page 429

Procedure

Set the process-root-requests entry in the [server] stanza of the WebSEAL
configuration stanza to one of the values provided. The default value is "always":
[server]
process-root-requests = always

Valid values are:
v never

WebSEAL initially processes a server-relative URL request using any configured
post-processing mechanism. Mechanisms are tried in the following order: 1)
junction mapping table (JMT), 2) junction cookie, 3) HTTP Referer header. If the
resource is not found by this method, WebSEAL then searches the root junction
for the resource.

v always

WebSEAL attempts to process server-relative URL requests at the root junction
first before attempting to use any configured post-processing mechanism (such
as junction cookie, junction mapping table (JMT), or Referer header). This setting
should not be used unless the root junction serves a large set of resources or no
post-processing junction mapping mechanisms are configured for the set of
junctions served by this WebSEAL server.

v filter

All root junction requests are examined to determine whether they start with the
path patterns specified in the [process-root-filter] stanza. If they do, they are
processed at the root junction first. If they do not start with path patterns
specified in the [process-root-filter] stanza, they are remapped immediately.

When process-root-requests = filter, you must specify the patterns for which
you want root junction requests processed at the root junction. Use the
[process-root-filter] stanza. The syntax for specifying a pattern is:
root = path_pattern

Path pattern must be expressed as a standard WebSEAL wildcard pattern. For
example:

Chapter 25. Modification of URLs to junctioned resources 437

[process-root-filter]
root = /index.html
root = /cgi-bin*

Handling cookies from servers across multiple -j junctions

About this task

This section describes how WebSEAL handles cookies generated by back-end
applications and returned to clients across multiple -j junctions.
v “Cookie handling: -j modifies Set-Cookie path attribute”
v “Cookie handling: -j modifies Set-Cookie name attribute” on page 439
v “Preservation of cookie names” on page 439
v “Cookie handling: -I ensures unique Set-Cookie name attribute” on page 440

Cookie handling: -j modifies Set-Cookie path attribute

In addition to providing a junction identifier cookie to the browser, junctions
configured with the –j option, or listed in a junction mapping table, also support
the handling of non-domain cookies sent with responses from the back-end
application.

Cookie handling by the browser:

If a Set-Cookie header in a response from the server contains a path attribute
(such as path=/xyz), the browser returns the cookie only when a request URL
(activated from the returned page) begins with this path (such as /xyz/memo.html).

Problem:

When the junction environment contains mixed solutions for handling visible and
embedded URLs in responses, the ability of the browser to return cookies can be
compromised. For example, standard WebSEAL filtering of visible server-relative
URLs normally adds the junction name to the value of the path attribute of a
server cookie (for example, path=/jct/xyz), in addition to modifying the URL
itself. This match between URL path name and the cookie path value allows the
browser to return the cookie when the link is activated by the user.

However, the -j junction-cookie-based solution adds the junction name to a URL
only after the link (URL) has been activated by the user. When the link is activated,
the pre-modified URL path name (/xyz/memo.html) does not match the Set-Cookie
path attribute value (path=/jct/xyz). The server cookie is not returned with the
request.

Solution:

The -j option converts the value of the path attribute for any server cookie to "/"
(for example, path=/). Because all server-relative path names begin with a "/", all
server cookies are returned regardless of the requirements of the original path
attribute specifications.

438 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Cookie handling: -j modifies Set-Cookie name attribute

Junctions configured with the –j option, or listed in a junction mapping table, also
provide a solution for preserving cookies returned from servers across multiple
junctions.

Cookie handling by the browser:

Browsers always replace any stored cookie with a newly arrived cookie that
contains the same Set-Cookie name attribute, unless the path or domain attributes,
or both, are unique.

Problem:

The previous section describes how the -j junction option modifies the value of the
path attribute of a Set-Cookie header. This modification allows the browser to
return cookies in an environment where WebSEAL is applying different filtering
rules for visible and embedded URLs contained in the response pages.

In a scenario where multiple back-end servers are connected to WebSEAL across
different junctions (such as in a WebSphere environment), it is possible for each
server to send cookies with the same name attribute.

If the junctions use the -j option, the values of the path attribute for each cookie
become identical (path=/). Because the same WebSEAL server is the point of
contact for the browser, the domain attribute likewise becomes identical. Although
these identical cookies arrive from unique back-end applications, the browser
overwrites the identically named cookies.

Solution:

The -j junction option provides an additional feature that uniquely renames any
cookie returned with a response from a back-end application server. The name
attribute of a Set-Cookie header is prepended with a special string. The string
contains the identifier AMWEBJCT, plus the name of the specific junction
responsible for delivering the response (with cookie). The exclamation point (!) is
used as a separator character in the string.
AMWEBJCT!jct-name!

For example, if a cookie with the name, ORDERID, arrives across a junction called
/jctA, the cookie name is changed to :
AMWEBJCT!jctA!ORDERID

To disable this default cookie-renaming feature, see “Preservation of cookie
names.”

Preservation of cookie names

By default, WebSEAL modifies the name of cookies returned in responses from
back-end applications across multiple junctions created with the -j option, or listed
in the junction mapping table. WebSEAL creates unique cookie names to prevent
possible naming conflicts with cookies returned across other -j junctions.

Chapter 25. Modification of URLs to junctioned resources 439

WebSEAL prepends the name attribute of a Set-Cookie header with a special
string. The string contains the identifier AMWEBJCT, plus the name of the specific
junction responsible for delivering the response (with cookie).
AMWEBJCT!jct-name!

For example, if a cookie with the name, ORDERID, arrives across a junction called
/jctA, the cookie name is changed to:
AMWEBJCT!jctA!ORDERID

However, if front-end browsers and applications depend on the specific cookie
name generated by the application, you can disable cookie-renaming for:
v All cookies across any junction configured with the -n option.

See “Preserving names of all cookies.”
v Specific cookies, configured in the [preserve-cookie-names] stanza of the

WebSEAL configuration file, across all junctions.
See “Preserving names of specified cookies.”

Preserving names of all cookies

About this task

You can prevent renaming of non-domain cookies across a specific -j junction by
additionally configuring that junction with the -n option. The -n option specifies
that no modification of the names of non-domain cookies are to be made. For
example, use this option when client-side scripts depend on the specific names of
cookies.

Preserving names of specified cookies
You can list the names of specific cookies that are not to be modified when
returned from back-end application servers across junctions.

About this task

The name stanza entry in the [preserve-cookie-names] stanza of the WebSEAL
configuration file allows you to list the specific cookie names that are not to be
renamed by WebSEAL. The specified cookie names are protected across any
existing junction.

Example
[preserve-cookie-names]
name = cookie-name1
name = cookie-name2

Cookie handling: -I ensures unique Set-Cookie name attribute

A junction configured with a -j option causes Set-Cookie headers in responses
from back-end servers to have their path attribute value converted to "/", and their
name attribute modified by including the junction point. Sometimes the
modification of the name attribute with the junction point does not result in
mutually exclusive cookies.

Standard -j option operation:

If the following header:
Set-Cookie: ORDERID=123456; path=/orders

440 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

is received from a backend server for the -j junction /sales, then the modified
header sent to the browser would be:
Set-Cookie: AMWEBJCT!/sales!ORDERID=123456; path=/

However, if another Set-Cookie header with the same name attribute, but a
different path value, is received over the same junction, the modified header
would result in the exactly same name and path information.

For example:
Set-Cookie: ORDERID=123456; path=/invoices

is modified to:
Set-Cookie: AMWEBJCT!/sales!ORDERID=123456; path=/

Because the second modified Set-Cookie header has the same cookie name and
path as the first header, it overwrites the first. The junction point is not enough to
uniquely identify the Set-Cookie header.

Solution:

You can configure a -j junction with the additional -I option to add the original
path attribute value (for example, /orders) to the modified name of the cookie.
Now the cookie names are unique. The following rules apply when using the -I
option:
v If the Set-Cookie header from the junctioned server contains a path attribute,

the value of that path is URI-encoded and used to modify the name attribute.
v If the Set-Cookie header from the junctioned server does not contain a path

attribute, the basedir of the request URI is extracted, URI-encoded, and used to
modify the name attribute.
For example, if the client request was for /dir1/dir2/mypage.html, then the
value /dir1/dir2 would be URI-encoded and used.

v The Set-Cookie name attribute is then modified using the junction point (unless
this is the root junction "/") plus the URI-encoded path value (or basedir value).

v The value of the Set-Cookie path attribute is still converted to "/"

For example, if the following header:
Set-Cookie: ORDERID=123456; path=/orders

is received from a backend server for the -j -I junction /sales, then the modified
header sent to the browser would be:
Set-Cookie: AMWEBJCT!/sales/orders!ORDERID=123456; path=/

Chapter 25. Modification of URLs to junctioned resources 441

442 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 26. HTTP transformations

HTTP transformation rules let you modify HTTP requests and responses as they
pass through WebSEAL. XSLT is used for this functionality. You can configure a
Protected Object Policy (POP) to trigger the specified rules.

WebSEAL administrators can configure the following modifications. You can apply
these transformations to HTTP requests and HTTP responses (except where
otherwise noted):
v Add a header
v Remove a header
v Modify an existing header
v Modify the URI (request only)
v Modify the method (request only)
v Modify the HTTP version
v Modify the HTTP status code (response only)
v Modify the status reason (response only)
v Add a cookie
v Remove a cookie
v Modify an existing cookie
v Add a body (response only)

Note:

1. It is not possible to modify the body of the request or response. Similarly, you
cannot modify cookies or headers that are inserted by WebSEAL. For example,
the Host, iv-user and iv-creds junction headers.

2. WebSEAL pages under the lib/html directory are referred to as HTML server
response pages. These response pages are grouped into:
v Account management pages.
v Error message pages.
You can configure the location of these response pages in the [acnt-mgt] and
[content] stanzas.

HTTP transformation rules

The HTTP requests and responses received by WebSEAL are expressed as XML
objects and can be manipulated using XSL transformations.

You can use XSLT rules to represent the changes that you want to apply to the
HTTP requests and responses as they pass through WebSEAL. WebSEAL uses the
following two inputs for the HTTP transformations:
v An XML representation of the HTTP request or HTTP response.
v An XSLT that determines how the request or response is modified.

The output from the transformation is an XML document that outlines the changes
required to the HTTP request or HTTP response.

Note:

© Copyright IBM Corp. 2002, 2013 443

v The XSLT rules are contained in a rules file. If a rules file is changed, you must
restart the WebSEAL server for the changes to take effect.

v Header fields must be URL encoded to avoid any XML issues. WebSEAL uses
URL encoded header values during the transformation process.

Extensible Stylesheet Language Transformation (XSLT)

Extensible Stylesheet Language (XSL) is the language used to specify rules, while
Extensible Markup Language (XML) is the language used for the data that forms
an input to the rules. The combination of XML and XSL provides a
platform-independent way to express both inputs to the rules evaluator and rules
themselves.

You can use XML to express complex data types in a structured and standard
manner in text format. Using this text format, you can write rules for processing
the XML data without having to cater to platform and programming language
specifics.

You can use XSL Transformation (XSLT) rules to convert an XML document into
another document in XML, PDF, HTML, or other format. A transformation rule
must be defined as an XSL template in an XSL stylesheet. The rule must be written
in a valid XSL template rule format. XSL possesses an inherent ability to analyze
and evaluate XML data, which is becoming the standard for data representation in
e-business models.

HTTP request objects

The following example shows the XML representation of a HTTPRequest:
<?xml version="1.0" encoding="UTF-8"?>
<HTTPRequest>
<RequestLine>
<Method>GET</Method>
<URI>/en/us/</URI>
<Version>HTTP/1.1</Version>
</RequestLine>
<Headers>
<Header name="User-Agent">curl%2F7.18.2%20(i486-pc-linux-gnu)%20libcurl
%2F7.18.2%20OpenSSL%2F0.9.8g%20zlib%2F1.2.3.3%20libidn%2F1.8</Header>
<Header name="Host">www.ibm.com</Header>
<Header name="Accept">*%2F*</Header>
</Headers>
<Cookies>
<Cookie name="PD-S-SESSION-ID">2_orQUNJCbjdxqIEdDPMXj31UHMXuU3hRCU</Cookie>
</Cookies>
</HTTPRequest>

HTTP response objects

The following example shows the XML Representation of a HTTPResponse:
<?xml version="1.0" encoding="UTF-8"?>
<HTTPResponse>
<ResponseLine>
<Version>HTTP/1.1</Version>
<StatusCode>200</StatusCode>
<Reason>OK</Reason>
</ResponseLine>
<Headers>
<Header name="Date">Thu%2C%2016%20Sep%202010%2010%3A57%3A52%20GMT</Header>
<Header name="Server">IBM_HTTP_Server</Header>

444 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

<Header name="ContentLength">4096</Header>
<Header name="Content-Type">text%2Fhtml%3Bcharset%3DUTF-8</Header>
<Header name="Content-Language">en-US</Header>
</Headers>
<Cookies>
<Cookie name="PD-S-SESSION-ID">
<Content>2_orQUNJCbjdxqIEdDPMXj31UiHMXuU3hRCUtpN7xe6J1xZhxt0</Content>
<Path>/</Path>
<Domain>domainA.ibm.com</Domain>
<Expires>Wed, 09 Jun 2021 10:18:14 GMT</Expires>
<Secure>1</Secure>
<HTTPOnly>0</HTTPOnly>
</Cookie>
</Cookies>
</HTTPResponse>

Replacing the HTTP response

You can create an entirely new HTTP response for a specified HTTP request. To
achieve this behavior, modify an HTTP Request to produce an
HTTPResponseChange XML document with action="replace" in the base XML
element.

For example:
<?xml version="1.0" encoding="UTF-8"?>
<HTTPResponseChange action="replace">
<Version>HTTP/1.1</Version>
<StatusCode>503</StatusCode>
<Reason>Not Implemented</Reason>
<Body>%3Ch1%3EError%3C%2Fh1%3E%0A%3Cp%3EInvalid%20cookie%20%3C%2Fp%3E</Body>
</HTTPResponseChange>

See “Scenario 5: Providing a response to a known HTTP request” on page 457 for
an example scenario.

The HTTPResponseChange document can result from HTTP Request or HTTP
Response modifications.

If WebSEAL receives an HTTPResponseChange document with action="replace"
as a result of an HTTP Request modification then WebSEAL:
v Interrupts the normal flow of processing and does not generate a response in the

usual manner.
v Constructs a new HTTP response based on the provided XML document.

You can use this functionality to intercept particular HTTP Requests and provide a
predefined response.

Note: Similarly, if WebSEAL receives an HTTPResponseChange document with
action="replace" as a result of an HTTP Response modification then WebSEAL:
v Discards the original response.
v Uses the response that is specified in the XML.

XSL transformation rules

A valid XSLT document can be used to transform the contents of the HTTP
requests and responses.

Chapter 26. HTTP transformations 445

The XSL transformation must output an XML document that defines the required
changes. The output document contains a series of XML elements describing
changes that must be made to the HTTP request or HTTP response.

Important: Author the XSLT documents carefully. Review and test the XSL
transformation rules thoroughly before you implement it in a production
environment. Incorrect syntax or badly formed XSLT might cause errors, or
unexpected behavior.

The following table describes the base XML elements that WebSEAL requires in the
transformed document:

Table 37. Base elements

Source document Base XML element

HTTP Request <HTTPRequestChange>

HTTP Response <HTTPResponseChange>

The XSL transformation rules must handle the contents of the HTTP input. The
content includes:
v The ResponseLine/RequestLine element.
v The Headers element.
v The Cookies element.
v The Body element. (HTTPResponseChange only)

If elements of the RequestLine/ResponseLine are included in the transformed
XML document, WebSEAL applies the corresponding changes to the HTTP
request/response.

Header elements require an action attribute in the XSLT document to determine
how WebSEAL transforms the header. The available actions are:
1. add - adds a new header with a specific name and value.
2. update - updates the value of an existing header (if the header does not exist, it

is added).
3. remove - removes the header with a specific name and value.

The Cookie elements require an action attribute in the XSLT document to
determine how WebSEAL transforms the cookie. The available actions are:
1. add - adds a new cookie with the specified name and values.
2. update - updates the value of an existing cookie. (If the cookie does not exist, it

is added).
3. remove - removes the cookie with a specific name.

Note: Cookies are represented differently in requests and responses. Only the
response contains the attributes beyond name and value. When updating a cookie,
specify the cookie name and the fields that you want to update. When adding a
cookie, the minimum fields that you must specify are cookie name and value.

You can optionally include the Body element to insert a body into an HTTP
response. The content of the Body must be URL encoded. WebSEAL decodes the
content when it creates the response. WebSEAL replaces any existing body in the
HTTP response with the new content that is provided in this Body element. This
element does not require an action.

446 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note: It is not possible to replace the body content in requests.

Reprocessing considerations
If an HTTP transformation rule modifies the URI or host header of the request,
WebSEAL reprocesses the transformed request.

This reprocessing ensures that the transformation does not bypass WebSEAL
authorization. This behavior also means that administrators can define HTTP
transformations rules to send requests to different junctions.

WebSEAL performs reprocessing (and authorization) on the first HTTP
transformation only. Transformed requests undergo HTTP transformation again if
there is an appropriate POP attached to the associated object space. See “Protected
Object Policy (POP)” on page 448. However, WebSEAL does not reprocess the new
requests that result from these subsequent transformations.

XSLT templates

The following table describes the template XSLT files that are located on your
WebSEAL server. These templates are available through the Local Management
Interface (LMI). Go to Secure Reverse Proxy Settings > Global Settings > HTTP
Transformation. Click New to create an HTTP Transformation Rules File that uses
one of the available templates.

Table 38. XSLT Template files

Template Description

Request A sample XSLT template for HTTP requests.

Response A sample XSLT template for HTTP
responses.

Note: When creating transformation rules, use case insensitive matching on header
names to ensure consistency with the HTTP specification for header names.

For scenarios with sample XSLT documents, see “Example HTTP transformation
scenarios” on page 448.

Configuration

For efficiency, it is important that transactions only undergo the transformation
process when necessary. You can use the [http-transformations] stanza and
associated POPs to configure the objects that require HTTP transformation
processing.

You must attach a POP to desired objects in the object space. The POP must
contain the name of a resource as an extended attribute. This resource name is
matched against the name of an entry in the [http-transformations] configuration
stanza. The value of this matching [http-transformations] stanza entry specifies the
name of the file that contains the applicable XSLT rules.

Configuration file updates
You can use the [http-transformations] stanza to define HTTP transformation
resources.

Chapter 26. HTTP transformations 447

The configuration entries in this stanza must be in the following format:
resource-name = resource-file

where:

resource-name
The name of the HTTP transformation resource.

resource-file
The name of the resource XSL file.

For more information, see the [http-transformations] stanza in the IBM Security
Web Gateway Appliance: Web Reverse Proxy Stanza Reference.

Protected Object Policy (POP)

You can use a POP to enable the predefined XSLT resource for appropriate parts of
the object space. This mechanism lets you specify the resources that need to
undergo HTTP transformations.

The POP must have an extended attribute with the name HTTPTransformation and
a value in the form:
v Request=resource, or
v Response=resource

where:

resource
Identifies one of the HTTP transformation resource names defined in the
WebSEAL configuration file.

Only one HTTP transformation is performed on each request and response. If
multiple HTTPTransformation attributes exist with Request or Response values,
the first is chosen.

The following listing shows an example POP:
pdadmin sec_master> pop show http-transformation-pop attribute HTTPTransformation
HTTPTransformation

Request=resource_a
Response=resource_b

Example HTTP transformation scenarios

The following scenarios provide example input and output documents for the
HTTP transformation process.

Scenario 1: Modifying the URI, headers, and cookies
(HTTPRequest)

This scenario illustrates how to modify the RequestLine/URI element, as well as
the header and cookie elements in the original HTTP request.

The following changes are made to the HTTP request in this example:
1. Append /test to the existing URI value.

448 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

2. Add a new header called NAME_A with the value VALUE_A if it does not
exist.

3. Update the NAME_B header value to be UPDATED_B.
4. Remove the header called NAME_C.
5. Add a cookie called MY_COOKIE.
6. Update the EXISTING_COOKIE cookie content to be NEW_COOKIE_VALUE.

Input documents

The following sample input documents are used for this scenario:

HTTP Request
<?xml version="1.0" encoding="UTF-8"?>
<HTTPRequest>
<RequestLine>
<Method>GET</Method>
<URI>/en/us/</URI>
<Version>HTTP/1.1</Version>
</RequestLine>
<Headers>
<Header name="Host">www.ibm.com</Header>
<Header name="NAME_B">ORIGINAL_B</Header>
<Header name="NAME_C">ORIGINAL_C</Header>
</Headers>
<Cookies>
<Cookie name="EXISTING_COOKIE">2_orQUNJCbjdxqIEdDPMXj31UHMXuU3hRCU...</Cookie>
</Cookies>
</HTTPRequest>

XSLT Rules

Note: These rules must be stored in an XSL document that is defined as a request
resource with an associated POP. See “Configuration” on page 447.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!--Firstly, strip any space elements -->
<xsl:strip-space elements="*" />

<!--
Perform a match on the root of the document. Output the required
HTTPRequestChange elements and then process templates.
-->
<xsl:template match="/">
<HTTPRequestChange>
<xsl:apply-templates />
</HTTPRequestChange>
</xsl:template>

<!--
Do nothing to the Method.
-->
<xsl:template match="//HTTPRequest/RequestLine/Method" />

<!--
Match on the URI. Append "test/" to the URI.
-->
<xsl:template match="//HTTPRequest/RequestLine/URI">
<URI>
<xsl:value-of select="node()" />
test/

Chapter 26. HTTP transformations 449

</URI>
</xsl:template>

<!--
Do nothing to the Version
-->
<xsl:template match="//HTTPRequest/RequestLine/Version" />

<!--
Match on the Headers. Add a new header called NAME_A if
it does not exist.
-->
<xsl:template match="//HTTPRequest/Headers">
<xsl:choose>
<xsl:when test="Header/@name=’NAME_A’" />
<xsl:otherwise>
<Header action="add" name="NAME_A">
VALUE_A
</Header>
</xsl:otherwise>
</xsl:choose>
<xsl:apply-templates select="//HTTPRequest/Headers/Header" />
</xsl:template>

<!-- Process the header elements -->
<xsl:template match="//HTTPRequest/Headers/Header">
<xsl:choose>
<!-- Update the value of the NAME_B header -->
<xsl:when test="@name = ’NAME_B’">
<Header action="update" name="NAME_B">
UPDATED_B
</Header>
</xsl:when>
<!-- Delete the NAME_C header -->
<xsl:when test="contains(@name, ’NAME_C’)">
<Header action="remove" name="NAME_C">
<xsl:value-of select="node()" />
</Header>
</xsl:when>
</xsl:choose>
</xsl:template>

<!--
Match on the Cookies. Add a new cookie called MY_COOKIE if
it does not exist.
-->
<xsl:template match="//HTTPRequest/Cookies">
<xsl:choose>
<xsl:when test="Cookie/@name=’MY_COOKIE’" />
<xsl:otherwise>
<Cookie action="add" name="MY_COOKIE">
MY_COOKIE_VALUE
</Cookie>
</xsl:otherwise>
</xsl:choose>
<xsl:apply-templates select="//HTTPRequest/Cookies/Cookie" />
</xsl:template>

<!-- Process the cookie elements -->
<xsl:template match="//HTTPRequest/Cookies/Cookie">
<xsl:choose>
<!-- Update the value of the EXISTING_COOKIE cookie -->
<xsl:when test="@name = ’EXISTING_COOKIE’">
<Cookie action="update" name="EXISTING_COOKIE">
NEW_COOKIE_VALUE
</Cookie>
</xsl:when>

450 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

</xsl:choose>
</xsl:template>

</xsl:stylesheet>

Output XML document

In this scenario, the following XML document is output from the XSL
transformation. This document outlines changes for WebSEAL to perform on the
original HTTP request.
<?xml version="1.0" encoding="UTF-8"?>
<HTTPRequestChange>
<URI>/en/us/test/</URI>
<Header action="add" name="NAME_A">VALUE_A</Header>
<Header action="update" name="NAME_B">UPDATED_B</Header>
<Header action="remove" name="NAME_C">ORIGINAL_C</Header>
<Cookie action="add" name="MY_COOKIE">MY_COOKIE_VALUE</Cookie>
<Cookie action="update" name="EXISTING_COOKIE">NEW_COOKIE_VALUE</Cookie>
</HTTPRequestChange>

Scenario 2: Modifying the headers only (HTTPResponse)
This scenario illustrates how to modify the headers in an HTTP Response. The
XSLT in this example adds a new header called RESPONSE_A with the value
VALUE_A if it does not exist.

Input documents

The following sample input documents are used for this scenario:

HTTP Response
<?xml version="1.0" encoding="UTF-8"?>
<HTTPResponse>
<ResponseLine>
<Version>HTTP/1.1</Version>
<StatusCode>200</StatusCode>
<Reason>OK</Reason>
</ResponseLine>
<Headers>
<Header name="Date">Thu%2C%2016%20Sep%202010%2010
%3A57%3A52%20GMT</Header>
<Header name="Server">IBM_HTTP_Server</Header>
<Header name="Content-Type">text%2Fhtml%3Bcharset%3DUTF-8</Header>
<Header name="Content-Language">en-US</Header>
</Headers>
<Cookies>
<Cookie name="PD-S-SESSION-ID">
<Content>2_orQUNJCbjdxqIEdDPMXj31UiHMXuU3hRCUtpN7xe6J1xZhxt0</Content>
<Path>/</Path>
<Domain>domainA.com</Domain>
<Expires>Wed, 09 Jun 2021 10:18:14 GMT</Expires>
<Secure>1</Secure>
<HTTPOnly>0</HTTPOnly>
</Cookie>
</Cookies>
</HTTPResponse>

XSLT Rules

Note: These rules must be stored in an XSL document that is defined as a response
resource with an associated POP. See “Configuration” on page 447.

Chapter 26. HTTP transformations 451

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!--Firstly, strip any space elements -->
<xsl:strip-space elements="*" />

<!--
Perform a match on the root of the document. Output the required
HTTPResponseChange elements and then process templates.
-->
<xsl:template match="/">
<HTTPResponseChange>
<xsl:apply-templates />
</HTTPResponseChange>
</xsl:template>

<!--
Do nothing to the Version
-->
<xsl:template match="//HTTPResponse/ResponseLine/Version" />

<!--
Do nothing to the StatusCode
-->
<xsl:template match="//HTTPResponse/ResponseLine/StatusCode" />

<!--
Do nothing to the Reason
-->
<xsl:template match="//HTTPResponse/ResponseLine/Reason" />

<!--
Match on the Headers. Add a new header called RESPONSE_A
if it does not exist.
-->
<xsl:template match="//HTTPResponse/Headers">
<xsl:choose>
<xsl:when test="Header/@name=’RESPONSE_A’"/>
<xsl:otherwise>
<Header action="add" name="RESPONSE_A">
VALUE_A
</Header>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

<!--
Do nothing to the Cookies
-->
<xsl:template match="//HTTPResponse/Cookies" />

</xsl:stylesheet>

Output XML document

In this scenario, the following XML document is output from the XSL
transformation. This document outlines changes for WebSEAL to perform on the
original HTTP response.
<?xml version="1.0" encoding="UTF-8"?>
<HTTPResponseChange>
<Header action="add" name="RESPONSE_A">VALUE_A</Header>
</HTTPResponseChange>

452 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Scenario 3: Modifying the ResponseLine/StatusCode only
(HTTPResponse)

This scenario illustrates how to modify the StatusCode and Reason elements in an
HTTP Response. The XSLT in this example makes the following updates:
v 503 status codes are changed to be 501.
v When a status code update occurs, the reason is also updated to reflect the

change. The reason for the 501 status is “Not Implemented".

Input documents

The following sample input documents are used for this scenario:

HTTP Response
<?xml version="1.0" encoding="UTF-8"?>
<HTTPResponse>
<ResponseLine>
<Version>HTTP/1.1</Version>
<StatusCode>503</StatusCode>
<Reason>Service Unavailable</Reason>
</ResponseLine>
<Headers>
<Header name="Date">Thu%2C%2016%20Sep%202010%2010
%3A57%3A52%20GMT</Header>
<Header name="Server">IBM_HTTP_Server</Header>
<Header name="Content-Type">text%2Fhtml%3Bcharset%3DUTF-8</Header>
<Header name="Content-Language">en-US</Header>
</Headers>
<Cookies>
<Cookie name="PD-S-SESSION-ID">
<Content>2_orQUNJCbjdxqIEdDPMXj31UiHMXuU3hRCUtpN7xe6J1xZhxt0</Content>
<Path>/</Path>
<Domain>domainA.com</Domain>
<Expires>Wed, 09 Jun 2021 10:18:14 GMT</Expires>
<Secure>1</Secure>
<HTTPOnly>0</HTTPOnly>
</Cookie>
</Cookies>
</HTTPResponse>

XSLT Rules

Note: These rules must be stored in an XSL document that is defined as a response
resource with an associated POP. See “Configuration” on page 447.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!--Firstly, strip any space elements -->
<xsl:strip-space elements="*" />

<!--
Perform a match on the root of the document. Output the required
HTTPResponseChange elements and then process templates.
-->
<xsl:template match="/">
<HTTPResponseChange>
<xsl:apply-templates />
</HTTPResponseChange>
</xsl:template>

Chapter 26. HTTP transformations 453

<!--
Do nothing to the Version
-->
<xsl:template match="//HTTPResponse/ResponseLine/Version" />

<!--
If the original StatusCode is 503 then update the
StatusCode to 501.
-->
<xsl:template match="//HTTPResponse/ResponseLine/StatusCode">
<xsl:choose>
<xsl:when test="503">
<StatusCode>501</StatusCode>
</xsl:when>
</xsl:choose>
</xsl:template>

<!--
Update the Reason to match the StatusCode change.
-->
<xsl:template match="//HTTPResponse/ResponseLine/Reason">
<xsl:choose>
<xsl:when test="’Service Unavailable’">
<Reason>Not Implemented</Reason>
</xsl:when>
</xsl:choose>
</xsl:template>

<!--
Do nothing to the Headers.
-->
<xsl:template match="//HTTPResponse/Headers" />

<!--
Do nothing to the Cookies.
-->
<xsl:template match="//HTTPResponse/Cookies" />

</xsl:stylesheet>

Output XML document

In this scenario, the following XML document is output from the XSL
transformation. This document outlines changes for WebSEAL to perform on the
original HTTP response.
<?xml version="1.0" encoding="UTF-8"?>
<HTTPResponseChange>
<StatusCode>501</StatusCode>
<Reason>Not Implemented</Reason>
</HTTPResponseChange>

Scenario 4: Modifying cookies only (HTTPResponse)

This scenario illustrates how to add, modify, and remove cookies in an HTTP
Response. The XSLT in this example makes the following updates:
v Adds a cookie called NEW_COOKIE.
v Updates the EXISTING_COOKIE cookie domain to be domainB.com.
v Removes the cookie called OLD_COOKIE.

454 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Input documents

The following sample input documents are used for this scenario:

HTTP Response
<?xml version="1.0" encoding="UTF-8"?>
<HTTPResponse>
<ResponseLine>
<Version>HTTP/1.1</Version>
<StatusCode>503</StatusCode>
<Reason>Service Unavailable</Reason>
</ResponseLine>
<Headers>
<Header name="Date">Thu%2C%2016%20Sep%202010%2010
%3A57%3A52%20GMT</Header>
<Header name="Server">IBM_HTTP_Server</Header>
<Header name="Content-Type">text%2Fhtml%3Bcharset%3DUTF-8</Header>
<Header name="Content-Language">en-US</Header>
</Headers>
<Cookies>
<Cookie name="EXISTING_COOKIE">
<Content>2_orQUNJCbjdxqIEdDPMXj31UiHMXuU3hRCUtpN7xe6J1xZhxt0</Content>
<Path>/</Path>
<Domain>domainA.com</Domain>
<Expires>Wed, 09 Jun 2021 10:18:14 GMT</Expires>
<Secure>1</Secure>
<HTTPOnly>0</HTTPOnly>
</Cookie>
<Cookie name="OLD_COOKIE">
<Content>2_orQUNJCbjdxqIEdDPMXj31UiHMXuU3hRCUtpN7xe6J1xZhxt0</Content>
<Path>/</Path>
<Domain>domainA.com</Domain>
<Expires>Mon, 07 Jun 2021 11:18:21 GMT</Expires>
<Secure>1</Secure>
<HTTPOnly>0</HTTPOnly>
</Cookie>
</Cookies>
</HTTPResponse>

XSLT Rules

Note: These rules must be stored in an XSL document that is defined as a response
resource with an associated POP. See “Configuration” on page 447.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!--Firstly, strip any space elements -->
<xsl:strip-space elements="*" />

<!--
Perform a match on the root of the document. Output the required
HTTPResponseChange elements and then process templates.
-->
<xsl:template match="/">
<HTTPResponseChange>
<xsl:apply-templates />
</HTTPResponseChange>
</xsl:template>

<!--
Do nothing to the Version
-->
<xsl:template match="//HTTPResponse/ResponseLine/Version" />

Chapter 26. HTTP transformations 455

<!--
Do nothing to the StatusCode
-->
<xsl:template match="//HTTPResponse/ResponseLine/StatusCode" />

<!--
Do nothing to the Reason
-->
<xsl:template match="//HTTPResponse/ResponseLine/Reason" />

<!--
Do nothing to the Headers.
-->
<xsl:template match="//HTTPResponse/Headers" />

<!--
Match on the Cookies. Add a new cookie called NEW_COOKIE if
it does not exist.
-->
<xsl:template match="//HTTPResponse/Cookies">

<xsl:choose>
<xsl:when test="Cookie/@name='NEW_COOKIE'" />
<xsl:otherwise>
<Cookie action="add" name="NEW_COOKIE">
<Content>2_orQUNJCbjdxqIEdDPMXj31UiHMXuU3hRCUtpN7xe6J1xZhxt0</Content>
<Path>/</Path>
<Domain>domainA.com</Domain>
<Expires>Mon, 07 Jun 2021 10:12:14 GMT</Expires>
<Secure>1</Secure>
<HTTPOnly>0</HTTPOnly>
</Cookie>
</xsl:otherwise>
</xsl:choose>

<!-- Update the value of the EXISTING_COOKIE cookie -->
<xsl:if test="Cookie/@name=’EXISTING_COOKIE’">
<Cookie action="update" name="EXISTING_COOKIE">
<Domain>domainB.com</Domain>
</Cookie>
</xsl:if>

<!-- Delete the OLD_COOKIE cookie -->
<xsl:if test="Cookie/@name=’OLD_COOKIE’">
<Cookie action="remove" name="OLD_COOKIE" />
</xsl:if>

</xsl:template>
</xsl:stylesheet>

Output XML document

In this scenario, the following XML document is output from the XSL
transformation. This document defines the changes for WebSEAL to perform on the
original HTTP response.
<?xml version="1.0" encoding="UTF-8"?>
<HTTPResponseChange>
<Cookie action="add" name="NEW_COOKIE">
<Content>2_orQUNJCbjdxqIEdDPMXj31UiHMXuU3hRCUtpN7xe6J1xZhxt0</Content>
<Path>/</Path>
<Domain>domainA.com</Domain>
<Expires>Mon, 07 Jun 2021 10:12:14 GMT</Expires>
<Secure>1</Secure>
<HTTPOnly>0</HTTPOnly>
</Cookie>

456 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

<Cookie action="update" name="EXISTING_COOKIE">
<Domain>domainB.com</Domain>
</Cookie>
<Cookie action="remove" name="OLD_COOKIE"></Cookie>
</HTTPResponseChange>

Scenario 5: Providing a response to a known HTTP request
This scenario illustrates how a HTTPResponseChange document can be used to
generate a response directly from a request. In this scenario, if a cookie with name
'invalid-cookie' exists in the HTTP Request then the XSL transformation produces
an HTTP Response that indicates an invalid cookie was detected.

Input documents

The following sample input documents are used for this scenario:

HTTP Request
<?xml version="1.0" encoding="UTF-8"?>
<HTTPRequest>
<RequestLine>
<Method>GET</Method>
<URI>/en/us/</URI>
<Version>HTTP/1.1</Version>
</RequestLine>
<Headers>
<Header name="User-Agent">curl%2F7.18.2%20(i486-pc-linux-gnu)%20libcurl
%2F7.18.2%20OpenSSL%2F0.9.8g%20zlib%2F1.2.3.3%20libidn%2F1.8</Header>
<Header name="Host">www.ibm.com</Header>
<Header name="Accept">*%2F*</Header>
</Headers>
<Cookies>
<Cookie name="invalid-cookie">0</Cookie>
</Cookies>
</HTTPRequest>

XSLT Rules

Note: These rules must be stored in an XSL document that is defined as a response
resource with an associated POP. See “Configuration” on page 447.
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
version="1.0">

<!-- Firstly, strip any space elements -->
<xsl:strip-space elements="*" />

<!--
Perform a match on the root of the document. Output the required
HTTPRequestChange elements and then process templates.
-->
<xsl:template match="/">
<xsl:apply-templates />
</xsl:template>

<!--
Do nothing with Method
-->
<xsl:template match="//HTTPRequest/RequestLine/Method" />

<!--
Do nothing with URI
-->

Chapter 26. HTTP transformations 457

<xsl:template match="//HTTPRequest/RequestLine/URI"/>

<!--
Do nothing with Version
-->
<xsl:template match="//HTTPRequest/RequestLine/Version" />

<!--
Do nothing with Headers
-->
<xsl:template match="//HTTPRequest/Headers" />

<!--
Check for the presence of a cookie name ’invalid-cookie’
-->
<xsl:template match="//HTTPRequest/Cookies/Cookie">
<xsl:choose>
<xsl:when test="@name = ’invalid-cookie’">
<HTTPResponseChange action="replace">
<Version>HTTP/1.1</Version>
<StatusCode>503</StatusCode>
<Reason>Not Implemented</Reason>
<Header name="Date" action="add">Thu%2C%2016%20Sep%202010%2010</Header>
<Header name="Server" action="add">IBM_HTTP_Server</Header>
<Header name="Content-Type" action="add">text%2Fhtml%3Bcharset%3DUTF-8</Header>
<Header name="Content-Language" action="add">en-US</Header>
<Body>%3Ch1%3EError%3C%2Fh1%3E%0A%3Cp%3EInvalid%20cookie%20%3C%2Fp%3E</Body>
</HTTPResponseChange>
</xsl:when>
</xsl:choose>
</xsl:template>

</xsl:stylesheet>

Output XML document

In this scenario, the following XML document is output from the XSL
transformation. This document defines the response that WebSEAL provides to the
original HTTP request.
<?xml version="1.0" encoding="UTF-8"?>
<HTTPResponseChange action="replace">
<Version>HTTP/1.1</Version>
<StatusCode>503</StatusCode>
<Reason>Not Implemented<Reason>
<Header name="Date" action="add">Thu%2C%2016%20Sep%202010%2010</Header>
<Header name="Server" action="add"></Header>
<Header name="Content-Type" action="add">text%2Fhtml%3Bcharset%3DUTF-8</Header>
<Header name="Content-Language" action="add">en-US</Header>
<Body>%3Ch1%3EError%3C%2Fh1%3E%0A%3Cp%3EInvalid%20cookie%20%3C%2Fp%3E</Body>
</HTTPResponseChange>

Transformation errors
Most errors are printed in the server log or returned to the browser as an error
page.

Note: For more detailed output, you can use the pdweb.http.transformation
component to trace the HTTP transformation processing. This component traces
the header information in the request, which might contain sensitive information.
For example, a BA header.

458 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Invalid rules file

If an invalid rules file is supplied to WebSEAL as part of the configuration then:
v The server will fail to start.
v An appropriate error will be logged.

Undefined resource

If you specify a resource in a POP that is not defined in the WebSEAL
configuration file, a warning message will be printed in the server log.

HTTP transformation error

If an error occurs during HTTP transformation processing, a 501 Internal Server
Error is returned to the browser.

WebSEAL error responses

WebSEAL error responses (not related to HTTP transformation processing) will be
transformed if there is an appropriate POP attached to the junction or object that
caused the error.

Chapter 26. HTTP transformations 459

460 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 27. Microsoft RPC over HTTP

RPC over HTTP is a Microsoft protocol that allows Microsoft Outlook clients to
access Microsoft Exchange servers over HTTP. The RPC over HTTP protocol uses
one HTTP connection for request data and one HTTP connection for response data.
These HTTP connections are long lived. The protocol tunnels multiple
requests/responses in a single HTTP request.

A typical usage scenario is an Outlook user outside the corporate network who
wants to connect to an internal Exchange server. This connection is achieved by
accessing a reverse proxy (such as WebSEAL) using HTTP. The HTTP connection is
terminated inside the corporate network and a configured IIS relays the RPC
commands to the Exchange server.

RPC over HTTP support in WebSEAL

WebSEAL can act as the reverse proxy if you are using the RPC over HTTP version
2 protocol. See “Support for Microsoft RPC over HTTP” on page 47.

Figure 40 illustrates a typical scenario using the RPC over HTTP protocol.
1. Microsoft Outlook makes an RPC_IN_DATA request to WebSEAL. The request

contains the user name and password in a BA Header.
2. WebSEAL authenticates and authorizes the request. WebSEAL passes the

request (including the BA header) to Microsoft Exchange.
3. Outlook makes an RPC_OUT_DATA request to WebSEAL. The request

contains the user name and password in a BA Header.
4. WebSEAL authenticates and authorizes the request. WebSEAL passes the

request (including the BA header) to Exchange.
5. Exchange sends a 200 OK response back to WebSEAL.
6. WebSEAL forwards the response back to Outlook.
7. Outlook sends RPC data to Exchange via WebSEAL on the RPC_IN_DATA

connection.
8. Exchange sends RPC data to Outlook via WebSEAL on the RPC_OUT_DATA

connection.

Outlook Client

WebSEAL
Microsoft

Exchange

Server

firewall
DMZ

1

3

2

4

5

7

8

Figure 40. WebSEAL RPC over HTTP

© Copyright IBM Corp. 2002, 2013 461

Junction configuration

To use WebSEAL as a reverse proxy for RPC over HTTP requests between Outlook
and Exchange, you must use a transparent path junction or a virtual host junction.
When issuing an RPC over HTTP request, the Outlook client tries to access the URI
/rpc/rpcproxy.dll on the junctioned IIS server that is configured to communicate
with the Exchange server.

To authenticate the user to WebSEAL and the Exchange server, you must use the -b
ignore parameter when creating the junction. This parameter ensures that the BA
header used by WebSEAL for authentication is also used to authenticate to the IIS
server that communicates with the Exchange server. For more details, see
“Authentication limitations” on page 463.

You must use an SSL junction for this configuration; Outlook does not support
HTTP when using BA authentication.

Transparent path junctions

The following command illustrates how to create a transparent path junction:
server task instance_name-webseald-host_name create -t ssl
-h exchange_host -p exchange_port -b ignore -x /rpc

where:

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

exchange_host
Specifies the DNS host name or IP address of the Exchange server.

exchange_port
Specifies the TCP port of the Exchange server. The default value is 80 for
TCP junctions and 443 for SSL junctions.

Virtual host junctions

The following command illustrates how to create a virtual host junction:
server task instance_name-webseald-host_name virtualhost create -t ssl
-h exchange_host -p exchange_port -v virtual_host -b ignore exchange

where:

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

exchange_host
Specifies the DNS host name or IP address of the Exchange server.

exchange_port
Specifies the TCP port of the Exchange server. The default value is 80 for
TCP junctions and 443 for SSL junctions.

462 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

virtual_host
Specifies the value of the Host header of the request sent to the Exchange
server.

POP configuration

You must configure a POP to control request and response streaming on the
junction used for communication between Outlook and Exchange:
1. Create a POP that sets the response-buffer-control and request-buffer-control

attributes to bypass. For example:
pdadmin> pop create streaming
pdadmin> pop modify streaming set attribute response-buffer-control bypass
pdadmin> pop modify streaming set attribute request-buffer-control bypass

2. Attach this POP to the junction that you are using for the RPC over HTTP
communication.

Transparent Path Junction example:
pdadmin> pop attach /WebSEAL/webseal-server/rpc streaming

Virtual Host Junction example:
pdadmin> pop attach /WebSEAL/webseal-server/@exchange streaming

For details, see “Bypassing buffering on a per-resource basis” on page 412.

Authentication limitations

The credentials presented to WebSEAL by Outlook are used in the RPC data and
the authentication to Exchange. The WebSEAL user credentials must match the AD
credentials for Exchange.

You must configure the WebSEAL server to connect to Exchange using a BA header
over HTTPS. The value for ba-auth in the [ba] stanza must be set to https.
ba-auth = https

The BA credentials for the user must be passed through the junction to the
Exchange server. Specify the -b ignore option when creating the junction

Note:

1. Microsoft NT LAN Manager (NTLM) authentication is not supported.
2. The /RpcWithCert endpoint is not supported. It expects client certificate

authentication. WebSEAL cannot authenticate using a client certificate for the
configured junction.

Timeout considerations

When you configure WebSEAL as a reverse proxy for RPC over HTTP requests, set
the following values in the [server] stanza of the WebSEAL configuration file:
v client-connect-timeout

v intra-connection-timeout

These timeout configuration entries affect the Outlook client connection. To keep
the connection open longer for data streaming, use large timeout values. For
example:

Chapter 27. Microsoft RPC over HTTP 463

[server]
client-connect-timeout = 36000
intra-connection-timeout = 36000

When these timeout limits are reached, the Outlook client renegotiates a connection
to the Exchange server.

WebSEAL server log errors
Due to the nature of RPC over HTTP, socket errors might be printed in the
WebSEAL server log.

Note: The server-log-cfg configuration entry in the [logging] stanza specifies the
logging agent configuration.

For example:
2010-10-26-05:45:25.836+10:00I----- 0x38AD5424 webseald ERROR wiv socket
WsSslListener.cpp 1737 0xafb3fb90
DPWIV1060E Could not read from socket (406)
2010-10-26-05:45:25.838+10:00I----- 0x38AD5425 webseald ERROR wiv socket
WsSslListener.cpp 1658 0xafb3fb90
DPWIV1061E Could not write to socket (406)

These error messages are expected when request/response streaming is active and
the connection is closed before the full content-length has been received.

You can turn off these error messages by setting the suppress-client-ssl-errors in
the [ssl] stanza of the WebSEAL configuration file to true. See “Configuration file
name and location” on page 34 for details about the location of this configuration
file.

Worker thread consideration

Microsoft Outlook creates multiple HTTP connections when communicating with
Microsoft Exchange using RPC over HTTP. Each Outlook client connection uses
multiple worker threads in WebSEAL. The number of worker threads that each
Outlook client uses in WebSEAL can exceed 10. These threads are held for the
length of time that the Outlook client remains connected to the Exchange server.
The use of numerous worker threads for every RPC over HTTP client connection
via WebSEAL can lead to worker thread starvation.

WebSEAL has a limited number of worker threads available. Limited threads limits
the number of clients that can access WebSEAL at any point in time. When
deploying WebSEAL for use with RPC over HTTP in an Outlook and Exchange
environment, consider the number of worker threads being used. For more
information, see “Worker thread allocation” on page 51.

464 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 28. Command option summary: standard junctions

The pdadmin utility provides an interactive command-line prompt from which
you can perform WebSEAL junction tasks. This section describes the pdadmin
server task command for creating standard WebSEAL junctions. Refer to the IBM
Security Access Manager for Web: Command Reference for complete syntax information
for the pdadmin utility. Options for virtual host junctions are described in
Chapter 30, “Command option summary: Virtual host junctions,” on page 499.

Note: You can also use the Security Access Manager Web Portal Manager to
manage junctions. For more information, see the Web Portal Manager online help
screens.

Topic Index:
v “Using pdadmin server task to create junctions”
v “Server task commands for junctions” on page 466
v “Creation of a junction for an initial server” on page 467
v “Addition of server to an existing junction” on page 473

Using pdadmin server task to create junctions

Before you begin

Before using pdadmin, you must login to a secure domain as a user with
administration authorization, such as sec_master.

For example:
pdadmin> login
Enter User ID: sec_master
Enter Password:
pdadmin>

Procedure

To create WebSEAL junctions, you use the pdadmin server task create command:
pdadmin> server task instance_name-webseald-host_name create options

For example, if the configured name of a single WebSEAL instance is web1 ,
installed on a host named www.pubs.com, the complete server name would be
expressed as follows:
web1-webseald-www.pubs.com

Use the pdadmin server list command to display the correct format of the
complete server name:
pdadmin> server list
web1-webseald-www.pubs.com

For more information, see the reference page for pdadmin server task create in
Appendix B, “Command reference,” on page 615 or the IBM Security Access
Manager for Web: Command Reference.

© Copyright IBM Corp. 2002, 2013 465

Server task commands for junctions

The following junction commands are available with pdadmin server task:

Command Description

add
Add an additional server to an existing junction point.

Syntax:

add -h host-name options junction-point

See “Addition of server to an existing junction” on page 473.

create
Create a new junction for an initial server.

Syntax:

create -t type -h host-name options junction-point

See “Creation of a junction for an initial server” on page 467.

delete
Remove the specified junction point.

Syntax:

delete junction-point

jmt load
jmt clear

The jmt load command provides WebSEAL with junction
mapping table data (jmt.conf) to handle processing of
dynamically generated server-relative URLs.

The jmt clear command removes junction mapping table data
from WebSEAL.

list
List all configured junction points on this server.

Syntax:

list

offline
Places the server located at this junction in an offline
operational state. No additional requests are sent to the
specified server. If a server is not specified, then all servers
located at this junction are placed in an offline operational
state.

Syntax:

offline [-i server_uuid] junction_point

online
Places the server located at this junction in an online
operational state. The server now resumes normal operation. If
a server is not specified, then all servers located at this
junction are placed in an online operational state.

Syntax:

online [-i server_uuid] junction_point

466 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Command Description

remove
Remove the specified server from a junction point.

Syntax:

remove –i server-id junction-point

Use the show command to determine the ID of a particular
server.

show
Display the details of a junction.

Syntax:

show junction-point

throttle
Places the server located at this junction in a throttled
operational state. While in this state, only requests from
pre-established user sessions are processed. If a server is not
specified, then all servers located at this junction are placed in
a throttled operational state.

Syntax:

throttle [-i server_uuid] junction_point

Creation of a junction for an initial server

Operation: Creates a new junction point and junctions an initial server.

Syntax:
create -t type -h host-name options junction-point

Junction type

–t type Type of junction. One of: tcp, ssl, tcpproxy,sslproxy, local,
mutual.

Default port for –t tcp is 80. Default port for –t ssl is 443.

Required. See “Standard WebSEAL junction
configuration” on page 369.

Host name

–h host-name The DNS host name or IP address of the target back-end
server.

Required. See “Standard WebSEAL junction
configuration” on page 369.

General options

Standard junction types

Chapter 28. Command option summary: standard junctions 467

–a address Specifies the local IP address that WebSEAL uses when
communicating with the target back-end server. If this
option is not provided, WebSEAL uses the default address
as determined by the operating system.

If you supply an address for a particular junction,
WebSEAL will be modified to bind to this local address
for all communication with the junctioned server.

–f Forces the replacement of an existing junction.

See “Forcing a new junction” on page 396.

–i WebSEAL server treats URLs as case insensitive.

See “Support for URLs as not case-sensitive” on page 408.

–q location Provides WebSEAL with the correct name of the
query_contents program file and where to find the file. By
default, the Windows file is called query_contents.exe
and the UNIX file is called query_contents.sh. By default,
WebSEAL looks for the file in the cgi_bin directory of the
back-end Web server.

Required for back-end Windows and UNIX Web servers.

See “Installing and configuring query_contents on
Windows-based Web servers” on page 383.

–T resource/resource-group Name of GSO resource or resource group. Required for
and used only with –b gso option.

See “Configuring a GSO-enabled WebSEAL junction” on
page 525.

–w Windows filesystem support.

See “Junctions to Windows file systems” on page 409.

TCP and SSL junction types

–p port TCP port of the back-end third-party server. Default is 80
for TCP junctions; 443 for SSL junctions.

See “Creating TCP type standard junctions” on page 370
and “Creating SSL type standard junctions” on page 371.

Stateful junctions

See “Stateful junctions” on page 392.

–s Specifies that the junction should support stateful
applications. By default, junctions are not stateful.

–u UUID Specifies the UUID of a back-end server connected to
WebSEAL using a stateful junction (–s).

468 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Mutual junctions

See “Stateful junctions” on page 392.

–p HTTP port HTTP port of the back-end third-party server.

See “Creating mutual junctions” on page 371.

–P HTTPS port HTTPS port of the back-end third-party server.

See “Creating mutual junctions” on page 371.

Mutual authentication over Basic Authentication and SSL certificates

See “Mutually authenticated SSL junctions” on page 387.

–B WebSEAL uses BA header information to authenticate to
back-end server. Requires –U, and –W options.

–D "DN" Specifies the distinguished name of back-end server
certificate. This value, matched with actual certificate DN
enhances authentication.

–K "key-label" Key label of WebSEAL's client-side certificate, used to
authenticate to back-end server.

–U "username" WebSEAL user name. Use with –B to send BA header
information to back-end server.

–W "password" WebSEAL password. Use with –B to send BA header
information to back-end server.

Proxy junction (requires –t tcpproxy or –t sslproxy)

See “TCP and SSL proxy junctions” on page 390.

–H host-name The DNS host name or IP address of the proxy server.

–P port The TCP port of the proxy server.

Supply identity information in HTTP headers

–b BA-value Defines how the WebSEAL server passes client identity
information in HTTP basic authentication (BA) headers to
the back-end server. One of:

filter (default), ignore, supply, gso

See “Single sign-on using HTTP BA headers” on page 514.

Chapter 28. Command option summary: standard junctions 469

–c header-types Inserts client identity information specific to Security
Access Manager in HTTP headers across the junction. The
header-types argument can include any combination of the
following Access Manager HTTP header types: iv-user,
iv-user-l, iv-groups, iv-creds, all.

See “Identity information supplied in HTTP headers” on
page 519.

–e encoding-type Specifies the encoding to use when generating HTTP
headers for junctions. This encoding applies to headers
that are generated with both the –c junction option and
tag-value. Possible values for encoding are:

v utf8_bin

v utf8_uri

v lcp_bin

v lcp_uri

See “UTF-8 encoding for HTTP header data” on page 411.

–I Cookie handling: -I ensures unique Set-Cookie header
name attribute.

See “Cookie handling: -I ensures unique Set-Cookie name
attribute” on page 440.

–j Supplies junction identification in a cookie to handle script
generated server-relative URLs.

See “Modification of server-relative URLs with junction
cookies” on page 431.

–J {trailer,inhead,
onfocus,xhtml10}

Controls the junction cookie JavaScript block.

Use –J trailer to append (rather than prepend) the junction
cookie JavaScript to HTML page returned from back-end
server.

Use –J inhead to insert the JavaScript block between
<head> </head> tags for HTML 4.01 compliance.

Use –J onfocus to use the onfocus event handler in the
JavaScript to ensure the correct junction cookie is used in
a multiple-junction/multiple-browser-window scenario.

Use –J xhtml10 to insert a JavaScript block that is HTML
4.01 and XHTML 1.0 compliant.

For complete details on this option, see “Control on the
junction cookie JavaScript block” on page 432.

–k Sends session cookie to back-end portal server.

See “Passing of session cookies to junctioned portal
servers” on page 406.

470 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

–n Specifies that no modification of the names of non-domain
cookies are to be made. Use when client-side scripts
depend on the names of cookies.

By default, if a junction is listed in the JMT or if the -j
junction option is used, WebSEAL prepends the names of
non-domain cookies that are returned from the junction to
with: AMWEBJCT_junction_point_

See “Preservation of cookie names” on page 439.

–r Inserts incoming IP address in HTTP header across the
junction.

See “Client IP addresses in HTTP headers (–r)” on page
521.

Junction fairness

See “Allocation of worker threads for junctions (junction fairness)” on page 52.

–l percent-value Defines the soft limit for consumption of worker threads.

–L percent-value Defines the hard limit for consumption of worker threads.

WebSphere single signon (LTPA) junctions

See “Single signon to IBM WebSphere (LTPA)” on page 526.

–A Enables junctions to support LTPA cookies (tokens). LTPA
version 1 cookies (LtpaToken) and LTPA version 2 cookies
(LtpaToken2) are both supported. LTPA version 1 cookies
are specified by default. LTPA version 2 cookies must be
specified with the additional -2 option.

Also requires –F, and –Z options.

–2 Used with the -A option, this option specifies that LTPA
version 2 cookies (LtpaToken2) are used. The -A option
without the -2 option specifies that LTPA version 1 cookies
(LtpaToken) are used.

–F "keyfile" Name of the key file used to encrypt LTPA cookie data.
Only valid with -A option.

–Z "keyfile-password" Password for the key file used to encrypt LTPA cookie
data. Only valid with -A option.

Tivoli Federated Identity Manager SSO junctions

“Single signon using Tivoli Federated Identity Manager” on page 511

-Y Enables Tivoli Federated Identity Manager single-signon
(SSO) for the junction.

NOTE: Before using this option, you must first configure
the WebSEAL configuration files to support Tivoli
Federated Identity Manager single-signon over junctions.

Chapter 28. Command option summary: standard junctions 471

WebSEAL-to-WebSEAL SSL junctions

See “WebSEAL-to-WebSEAL junctions over SSL” on page 390.

–C Mutual authentication between a front-end WebSEAL
server and a back-end WebSEAL server over SSL. Requires
–t ssl or –t sslproxy type.

Forms single signon

See “Forms single signon authentication” on page 529.

–S file_name
Name of the forms single signon configuration file.

Virtual hosts

See “Standard junctions to virtual hosts” on page 410.

–v virtual-host-name[:HTTP-
port]

Virtual host name represented on the back-end server.
This option supports a virtual host setup on the back-end
server. For mutual junctions this value corresponds to the
virtual host which is used for HTTP requests.

You use –V when the back-end junction server expects a
Host header because you are junctioning to one virtual
instance of that server. The default HTTP header request
from the browser does not know that the back-end server
has multiple names and multiple virtual servers. You must
configure WebSEAL to supply that extra header
information in requests destined for a back-end server set
up as a virtual host.

–V virtual-host-
name[:HTTPS-port]

Virtual host name represented on the back-end server.
This option supports a virtual host setup on the back-end
server. The value corresponds to the virtual host which is
used for HTTPS requests. Only used for mutual junctions.

You use –V when the back-end junction server expects a
Host header because you are junctioning to one virtual
instance of that server. The default HTTPS header request
from the browser does not know that the back-end server
has multiple names and multiple virtual servers. You must
configure WebSEAL to supply that extra header
information in requests destined for a back-end server set
up as a virtual host.

Transparent junctions

See “Transparent path junctions” on page 373.

–x Creates a transparent path junction.

Junction Point

Name of the location in the WebSEAL namespace where the root of the back-end
application server namespace is mounted.

Required. See “Standard WebSEAL junction configuration” on page 369.

472 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Addition of server to an existing junction

Operation: Adds an additional server to an existing junction point.

Syntax:
add -h host-name options junction-point

Host name

–h host-name The DNS host name or IP address of the target back-end
server to add.

Required. See “Standard WebSEAL junction
configuration” on page 369.

General options

Standard junction types

–a address Specifies the local IP address that WebSEAL uses when
communicating with the target back-end server. If this
option is not provided, WebSEAL uses the default address
as determined by the operating system.

If you supply an address for a particular junction,
WebSEAL binds to this local address for all
communication with the junctioned server.

–i WebSEAL server treats URLs as case insensitive.

See “Support for URLs as not case-sensitive” on page 408.

–q url Relative path for query_contents script. By default,
WebSEAL looks for query_contents in /cgi_bin/. If this
directory is different or the query_contents file name is
different, use this option to indicate to WebSEAL the new
URL to the file. Required for back-end Windows servers.

See “Installing and configuring query_contents on
Windows-based Web servers” on page 383.

–w Windows filesystem support.

See “Junctions to Windows file systems” on page 409.

TCP and SSL junction types

–p port TCP port of the back-end third-party server. Default is 80
for TCP junctions; 443 for SSL junctions.

See “Creating TCP type standard junctions” on page 370
and “Creating SSL type standard junctions” on page 371.

Mutual junction types

–p HTTP-port HTTP port of the back-end third-party server.

See “Creating mutual junctions” on page 371.

Chapter 28. Command option summary: standard junctions 473

–P HTTPS-port HTTPS port of the back-end third-party server.

See “Creating mutual junctions” on page 371.

Stateful junctions

See “Stateful junctions” on page 392.

–u UUID Specifies the UUID of a back-end server connected to
WebSEAL via a stateful junction (–s).

Mutual authentication over SSL

See “Mutually authenticated SSL junctions” on page 387.

–D "DN" Specifies distinguished name of back-end server certificate.
This value, matched with an actual certificate DN,
enhances authentication.

Proxy junction (requires –t tcpproxy or –t sslproxy)

See “TCP and SSL proxy junctions” on page 390.

–H host-name DNS host name or IP address of the proxy server.

–P port The TCP port of the proxy server.

Virtual hosts

See “Standard junctions to virtual hosts” on page 410.

–v virt-host-name Virtual host name represented on the back-end server.
This option supports a virtual host setup on the back-end
server. For mutual junctions this value corresponds to the
virtual host which is used for HTTP requests.

You use –V when the back-end junction server expects a
host name header because you are junctioning to one
virtual instance of that server. The default HTTP header
request from the browser does not know that the back-end
server has multiple names and multiple virtual servers.
You must configure WebSEAL to supply that extra header
information in requests destined for a back-end server set
up as a virtual host.

–V virt-host-name Virtual host name represented on the back-end server.
This option supports a virtual host setup on the back-end
server. The value corresponds to the virtual host which is
used for HTTPS requests. Only used for mutual junctions.

You use –V when the back-end junction server expects a
host name header because you are junctioning to one
virtual instance of that server. The default HTTPS header
request from the browser does not know that the back-end
server has multiple names and multiple virtual servers.
You must configure WebSEAL to supply that extra header
information in requests destined for a back-end server set
up as a virtual host.

474 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Junction Point

Add server to this existing junction point.

Chapter 28. Command option summary: standard junctions 475

476 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Part 8. Virtual Hosting

© Copyright IBM Corp. 2002, 2013 477

478 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 29. Virtual host junctions

This chapter contains the following topics.
v “Virtual host junction concepts”
v “Creation of a remote type virtual host junction” on page 483
v “Scenario 1: Remote virtual host junctions” on page 486
v “Definition of interfaces for virtual host junctions” on page 487
v “Scenario 2: Virtual host junctions with interfaces” on page 490
v “Use of virtual hosts with existing WebSEAL features” on page 492
v “Scenario 3: Advanced virtual host configuration” on page 496
v “Virtual host junction limitations” on page 498

Virtual host junction concepts

This section contains the following topics:
v “Standard WebSEAL junctions”
v “Challenges of URL filtering” on page 480
v “Virtual hosting” on page 480
v “Virtual host junction solution” on page 480
v “Stanzas and stanza entries ignored by virtual host junctions” on page 482
v “Virtual hosts represented in the object space” on page 482

Standard WebSEAL junctions

Security Access Manager is a product for authenticating and authorizing requests
to protected back-end Web application servers. The protection of back-end Web
servers is achieved by blocking direct access to the servers, and then routing the
requests to WebSEAL. WebSEAL authorizes each request and, if permitted, passes
on the request to the protected Web server. WebSEAL returns any response back to
the client.

WebSEAL acts as a single host Web server. To allow WebSEAL to protect many
back-end Web servers, and still act as a single host server, WebSEAL merges all of
the back-end server document spaces into a single document space. The term
junctioning describes the action of merging a back-end Web server's document
space into WebSEAL's single unified virtual document space.

For successful communication across junctions, WebSEAL must filter absolute and
server relative URLs in HTML response documents returned from the protected
Web servers so that the URLs are correct when viewed as a part of WebSEAL's
single host document space. The junction feature of WebSEAL changes the server
and path information that must be used to access resources on junctioned back-end
systems. A link to a resource on a back-end junctioned server can only succeed if
the URL contains the identity of the junction.

© Copyright IBM Corp. 2002, 2013 479

Challenges of URL filtering

WebSEAL supports a number of solutions for filtering and processing URLs
returned in responses from back-end junctioned application servers. In all cases,
these solutions require WebSEAL to parse the HTML content in search of the
URLs. Because HTML is an evolving and complex specification, parsing HTML is
equally complex.

More challenging is the ability of embedded JavaScript to avoid filtering by
dynamically generating URLs on the client-side. A full discussion of WebSEAL
solutions for handling URL filtering over standard junctions can be found in
Chapter 25, “Modification of URLs to junctioned resources,” on page 415.

Virtual hosting

The term virtual hosting refers to the practice of maintaining more than one server
on one machine, as differentiated by their apparent host names. Virtual hosting
allows you to run multiple Web services, each with a different host name and URL,
that appear to be completely separate sites. For example, the following two virtual
hosts can reside on the same machine:
v www.exampleA.com
v www.exampleB.com

The virtual hosts are internally configured to use unique sections of the host
server's document space. However, the outside user only needs to reference the
virtual hosts by their individual domain names, without requiring knowledge of
any extra path information.

Access to resources using virtual hosting is possible because the HTTP/1.1
specification requires client browsers to include, in any request, the HTTP Host
header. The Host header contains the host name of the server where the requested
resource is located.

Virtual host junction solution
WebSEAL supports virtual hosting. Through virtual host junctions, it can eliminate
the limitations of URL filtering.

WebSEAL can use virtual host junctions to communicate with local or remote
virtual hosts. WebSEAL uses the HTTP Host header in client requests to direct
those requests to the appropriate document spaces on junctioned servers or on the
local computer.

A user can access resources directly with the host name of the junctioned server
(http://protected-server/resource), rather than indirectly with the host name of
the WebSEAL server and a potentially modified resource path
(http://webseal/junction/resource). Direct access to the resource by using the
host name of the junctioned server does not require URL filtering.

Virtual host junctions preserve the content of response pages in the same form as
the original content on the junctioned web servers. Clients can use the unmodified
absolute and server relative URL links on these response pages to successfully
locate the resources.

480 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Configuration for virtual host junctions requires that the external DNS maps all
virtual host names to the IP address (or addresses) of the WebSEAL server. When
the user makes a request to the host name of the junctioned server, the request is
routed to WebSEAL.

The HTTP/1.1 specification requires that requests contain an HTTP Host header.
WebSEAL uses the value of the Host header, rather than the URL of the request, to
select the appropriate virtual host junction for dispatching the request.

WebSEAL chooses the appropriate virtual host junction as follows:
v If the Host header is in the request and its value matches the host name of a

configured virtual host junction, WebSEAL uses the virtual host junction.
You must include the port number in the Host header when the virtual host
uses a non-standard port for the protocol. The standard port for TCP is 80 and
the standard port for SSL is 443.
The Host header that WebSEAL sends to the virtual host junction contains the
value specified by -v when the virtual host junction was created.

v In all other cases, WebSEAL uses a standard junction based on the URL of the
request. For example, WebSEAL uses a standard junction in the following
situations:
– If the value of the Host header does not match any virtual host junctions (-v

vhost_name[:port]).
– If there is no Host header, such as in an HTTP/1.0 request.

By default, virtual host junctions take precedence over standard junctions. You can
use the match-vhj-first configuration entry in the [junction] stanza to reverse
this behavior. If this configuration entry is no, WebSEAL searches for a standard
junction that matches the request. If no match is found, WebSEAL checks the Host
header to determine whether a virtual host junction can handle the request.

If you set match-vhj-first to no in an environment that maintains sessions, you
must set the shared-domain-cookie configuration entry to yes. By default,
WebSEAL maintains a separate session cache for each virtual host junction and a
separate session cache for all standard junctions. For session affinity, use the
shared-domain-cookie parameter so that WebSEAL can use the same session,
regardless of which junction services the request. You can also use the
session-cookie-domain stanza to specify the domains that share session cookies.
For more information about these configuration entries, see the Security Access
Manager: WebSEAL Configuration Stanza Reference.

Unlike standard junctions, WebSEAL does not define virtual host junctions as a
mount point in the document space. WebSEAL accesses virtual host resources by
virtual host junction designations, which are always at the root of the document
space of WebSEAL. These designations are called virtual host labels.

The junctioned server with the virtual host name in the HTTP Host header returns
its own responses, which can contain server-relative or absolute URLs. WebSEAL
returns these responses, unfiltered, directly to the client. Absolute URLs in the
responses from junctioned servers that reference the server itself must use the
virtual host name and not the server IP address. Clients can use the unmodified
absolute and server relative URL links on these response pages to successfully
locate the resources.

Other features of virtual host junctions include:

Chapter 29. Virtual host junctions 481

v Support for both HTTP and HTTPS protocols. To support both protocols
between the client and WebSEAL, you must use two virtual host junctions. Use
a separate virtual host junction for each protocol.
A virtual host junction responds only to a single protocol (port). The junctioned
server must support both HTTP and HTTPS so that you can create the two
junctions with unique SSL and TCP ports on that server.

v WebSEAL can also provide multiple local virtual host junctions of its own to
serve protected local content.

v Virtual host junctions share many configuration options with standard WebSEAL
junctions. Virtual host junctions do not support several standard junction
options. There are also several new options specific to virtual host junctions.

v Each WebSEAL instance can support multiple interfaces, ports, or both. With
multiple interfaces and ports, you can configure an SSL certificate for each
HTTPS interface and port on which listening occurs.
If virtual host names resolve to different interfaces or ports that WebSEAL is
listening on, then WebSEAL can present different certificates to the connecting
clients.

Stanzas and stanza entries ignored by virtual host junctions

Virtual host junctions do not parse or filter URLs in HTML response pages from
junctioned servers. For this reason, the following WebSEAL configuration file
stanzas and stanza entries are ignored by virtual host junctions:
v [server], preserve-base-href
v [server], process-root-requests
v [process-root-filter]
v [junction], jmt-map
v [filter-url]
v [filter-events]
v [filter-schemes]
v [filter-content-types]
v [script-filtering]
v [preserve-cookie-names]
v [junction], allow-backend-domain-cookies

Virtual hosts represented in the object space

Standard WebSEAL junctions are represented in the protected object space as a
mount point within WebSEAL's document space in the following format:
/WebSEAL/instance-name/junction-name/path

Virtual host junctions are represented in the protected object space by virtual host
junction designations which are always located at the root of WebSEAL's document
space. These designations are called virtual host labels. For example:
/WebSEAL/instance-name/@vhost-label/path

The following example shows the representation of the resource, readme.html,
under the directory, pubs, on a virtual host junction with the label
support.ibm.com-http . The full path in the protected object space appears as
follows:
/WebSEAL/instance-name/@support.ibm.com-http/pubs/readme.html

482 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Virtual host junctions created using the -g options also appear in the protected
object space so management ACL's can be placed on them. However the directories
and resources protected by those junctions are not displayed. Those directories and
resources are only visible under the primary junction (the -g option forces
WebSEAL to recognize only a single object space). For example:
/WebSEAL/instance-name/@support.ibm.com-http/pubs/readme.html
/WebSEAL/instance-name/@support.ibm.com-https

Configuration of a virtual host junction

This section contains the following topics:
v “Creation of a remote type virtual host junction”
v “Creation of a local type virtual host junction” on page 485

Creation of a remote type virtual host junction

You can use the server task...virtualhost commands of the pdadmin utility to
configure virtual host junctions. You can also use the Web Portal Manager to
configure virtual host junctions.

The following example (entered as one line) specifies the syntax for the pdadmin
server task virtualhost create command (entered as one line):
pdadmin> server task instance_name-webseald-host_name virtualhost create
options vhost-label

The following table described the common and required virtualhost create options:

Table 39. Remote type virtual host junction options

Option Description

–t type Type of junction. One of: tcp, ssl, tcpproxy, sslproxy.

Required for all virtual host junctions.

–h host-name The DNS host name or IP address of the target back-end server.

The same host name can be used for a TCP junction and an SSL
junction. The port of each virtual host differentiates one from the
other so that they are each considered unique.

Required by tcp, ssl, tcpproxy, and sslproxy type junctions.

–v vhost-name[:port] WebSEAL selects a virtual host junction to process a request if the
request's HTTP Host header matches the virtual host name and
port number specified by the -v option.

The -v option is also used to specify the value of the Host header
of the request sent to the back-end server.

The port number is required if the virtual host uses a
non-standard port for the protocol. Standard port for TCP is 80;
standard port for SSL is 443.

If -v is not specified for tcp, ssl, tcpproxy, and sslproxy type
junctions, then the junction is selected from the information
contained in the -h host and -p port options (or their defaults).

Chapter 29. Virtual host junctions 483

Table 39. Remote type virtual host junction options (continued)

Option Description

–g vhost-label If both HTTP and HTTPS protocols need to be supported between
the client and WebSEAL, then two junctions to the same virtual
host (-h) are required, one for each protocol (-t). By default, each
junction recognizes its own unique protected object space, even
though the junctions (which are differentiated by protocol only)
point to a single object space.

The -g option causes a second additional junction to share the
same protected object space as the initial junction. This single
object space reference allows you to maintain a single access
control list (ACL) on each protected object.

An initial virtual host junction cannot be deleted if a second
virtual host junction exists that used -g against the first. An error
message is returned at such an attempt.

This option is appropriate for junction pairs only (two junctions
using complementary protocols). The option does not support the
association of more than two junctions.

Optional.

Virtual host label:

The virtual host label (vhost-label) is simply a name for the virtual host junction.
v The junction label is used to indicate the junction in the display of the protected

object space (Web Portal Manager).
v Virtual host junctions are by default always mounted at the root of the

WebSEAL object space.
v You can refer to a junction in the pdadmin utility using this label.
v The virtual host junction label must be unique within each instance of

WebSEAL.
v Because the label is used to represent virtual host junctions in the protected

object space, the label name must not contain the forward slash character (/).

Example TCP and SSL virtual host junctions:

See “Scenario 1: Remote virtual host junctions” on page 486.

See “Scenario 2: Virtual host junctions with interfaces” on page 490.

References:

Refer to Chapter 30, “Command option summary: Virtual host junctions,” on page
499 for a summary of the virtualhost junction commands.

Refer to the IBM Security Access Manager for Web: Command Reference for complete
syntax information for the pdadmin utility.

484 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Creation of a local type virtual host junction

A local virtual host junction (-t localtcp and -t localssl) is a mount point for
specific content located locally on the WebSEAL server. Like the content from
junctioned remote servers, local junction content is incorporated into WebSEAL's
unified protected object space view.

The following options are appropriate for local virtual host junctions:

Table 40. Local type virtual host junction options

Option Description

–t type Type of junction (localtcp or localssl). Required.

–g vhost-label The -g option causes a second additional junction to share the
same protected object space as the initial junction.

See “Creation of a remote type virtual host junction” on page 483.

–v vhost-name[:port] WebSEAL selects a virtual host junction to process a request if the
request's HTTP Host header matches the virtual host name and
port number specified by the -v option.

The -v option is also used to specify the value of the Host header
of the request sent to the back-end server.

The port number is required if the virtual host uses a
non-standard port for the protocol. Standard port for TCP is 80;
standard port for SSL is 443.

The -v option is required for localtcp and localssl type junctions.

See “Creation of a remote type virtual host junction” on page 483.

–z replica-set-name Optional. Specifies the replica set that sessions on the virtual host
junction are managed under and provides the ability to group or
separate login sessions among multiple virtual hosts.

If -z is not used to specify the replica set for the virtual host
junction, the virtual host junction is automatically assigned to a
replica set matching its virtual hostname. For example, if the
virtual host name is vhostA.example.com, the replica set is named
vhostA.example.com. The replica set used for the virtual host
junction must be present in the [replica-sets] stanza of the
WebSEAL configuration file.

See Chapter 20, “Configuration for WebSEAL using SMS,” on page
319.

–f Force the replacement of an existing junction.

See “Forcing a new junction” on page 396.

–l percent-value Defines the soft limit for consumption of worker threads.

See “Allocation of worker threads for junctions (junction fairness)”
on page 52.

Chapter 29. Virtual host junctions 485

Table 40. Local type virtual host junction options (continued)

Option Description

–L percent-value Defines the hard limit for consumption of worker threads.

See “Allocation of worker threads for junctions (junction fairness)”
on page 52.

Example local virtual host junction:

The first command (entered as one line) creates a local virtual junction that
responds to HTTP requests with Host header value of p.s.com.
pdadmin> server task default-webseald-webseal.ibm.com virtualhost create
-t localtcp -v p.s.com vhost-local-ps-http

The second command (entered as one line) creates a local virtual junction that
responds to HTTPS requests with Host header value of p.s.com:444. The -g option
pairs this SSL junction with the first TCP junction so that they share the same
protected object space.
pdadmin> server task default-webseald-webseal.ibm.com virtualhost create
-t localssl -v p.s.com:444 -g vhost-local-ps-http vhost-local-ps-https

Scenario 1: Remote virtual host junctions

The following scenario sets up junction support for two remote virtual hosts
located on a single back-end server. Refer to the accompanying diagram as you
proceed through the steps.

Required architecture:

v By default, the WebSEAL configuration file is set to support all IP addresses:
[server]
network-interface = 0.0.0.0

For this virtual host scenario, WebSEAL (webseal.ibm.com) is configured to use
a specific network address:
[server]
network-interface = 9.0.0.3

v In this setup, the WebSEAL server is protecting 2 virtual hosts on one back-end
junctioned server:
– Virtual host a.b.com (on server cruz1.ibm.com)
– Virtual host x.y.com (on server cruz1.ibm.com)

v Direct access to the protected junctioned server (cruz1.ibm.com) is prevented by
appropriate firewall protection. The user is not aware of this blocked access
because the external DNS entries, used by the browser to lookup the virtual host
names, are configured to point to WebSEAL at IP address 9.0.0.3.

External DNS

a.b.com 9.0.0.3

x.y.com 9.0.0.3

v Virtual host a.b.com accepts HTTP access only.
v Virtual host x.y.com accepts secure HTTPS access.

486 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Procedure:

1. The following pdadmin command (entered as one line) creates a virtual host
junction named (labeled) vhost-ab-http that responds to the Host: a.b.com
header in TCP (HTTP) requests to WebSEAL:
pdadmin> server task default-webseald-webseal.ibm.com virtualhost create
-t tcp -h cruz1.ibm.com -v a.b.com vhost-ab-http

2. The following command (entered as one line) creates a virtual host junction
named (labeled) vhost-xy-https that responds to the Host: x.y.com header in
SSL (HTTPS) requests to WebSEAL:
pdadmin> server task default-webseald-webseal.ibm.com virtualhost create
-t ssl -h cruz1.ibm.com -v x.y.com vhost-xy-https

3. The client user clicks on the following (example) link located on an HTML
page:
http://a.b.com/doc/readme.txt

The (example) request for this resource appears as follows:
GET /doc/readme.txt HTTP/1.1
Host: a.b.com
User-Agent: Mozilla 4.0 (X; I; Linux-2.0.35i586)
Accept: image/gif, image/jpeg, */*

DNS determines that communication to the requested server (a.b.com) is routed
to the WebSEAL host (9.0.0.3).
WebSEAL detects the Host header and routes the request across the junction for
virtual host a.b.com, located on the back-end server cruz1.ibm.com.

Definition of interfaces for virtual host junctions

WebSEAL can be configured to listen on multiple interfaces. Multiple interface
capability is important when setting up certificate support (SSL) for multiple
virtual host junctions. A digital certificate contains the name of the host being
accessed. Therefore it is necessary to have a unique certificate exchange for each
virtual host configured for SSL. Browsers produce a warning message when there
is a name mismatch between certificate and host.

Client

a.b.com - 9.0.0.3
x.y.com - 9.0.0.3

External DNS

cruz1.ibm.com
9.0.0.5

a.b.com

Virtual Hosts

x.y.comx.y.com:443

a.b.com:80

Virtual Host
Junctions

WebSEAL

webseal.ibm.com
9.0.0.3

request

firewall DMZ

Figure 41. Virtual host junction scenario 1

Chapter 29. Virtual host junctions 487

This section contains the following topics:
v “Default interface specification”
v “Defining additional interfaces”

Default interface specification

A network interface is defined as the combined set of values for a specific group of
settings that include HTTP or HTTPS port setting, IP address, worker threads
setting, and certificate handling setting.

The single default interface for a WebSEAL instance is defined by the values for
the following stanza entries in the WebSEAL configuration file:
[server]
http
http-port
https
https-port
worker-threads
network-interface

[ssl]
webseal-cert-keyfile-label

[certificate]
accept-client-certs

Defining additional interfaces

About this task

To configure additional interfaces, define each custom-named interface within the
[interfaces] stanza of the WebSEAL configuration file.

Each interface definition includes a list of properties. Most properties imitate
equivalent stanza entry names found in the WebSEAL configuration file and that
are part of the default interface specification (see “Default interface specification”).

A custom interface specification uses the following format:
[interfaces]
interface-name = property=value[;property=value[;...]]

The following table lists the available properties and values used to configure a
custom interface:

Table 41. Valid properties and values for additional interface definitions

Property Values Description

http-port v port number

v disabled (default)

Port number to listen for HTTP requests on
the specified network-interface. The value can
also be set to disabled.

One of either http-port or https-port must be
specified when defining an interface.

488 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Table 41. Valid properties and values for additional interface definitions (continued)

Property Values Description

https-port v port number

v disabled (default)

Port number to listen for HTTPS requests on
the specified network-interface. The value can
also be set to disabled.

One of either http-port or https-port must be
specified when defining an interface.

worker-threads v count

v default (default)

Number of worker threads used to process
requests received only on this interface.

The default value can be used to specify use
of the worker thread pool belonging to the
default interface (see “Default interface
specification” on page 488).

network-interface v ip-address

v 0.0.0.0 (default)

IP address to listen for requests on the
specified http-port or https-port.

Both IPv4 and IPv6 formats are supported.

certificate-label v key-file-label Label name of a certificate in the pdsrv.kdb
key database file.

Only valid when https-port is specified.

This is the server-side certificate WebSEAL
uses to authenticate to the client.

accept-client-certs v never (default)

v required

v optional

v prompt_as_needed

Specifies how WebSEAL is to handle
client-side certificates.

Only valid when https-port is specified.

See “Client-side certificate authentication” on
page 143.

Syntax rules for property values:

v A value containing a semicolon (;), double-quote ("), or backslash (\) must be
preceded by a backslash (\).

v Double-quotes (") must be used to specify values containing leading or trailing
spaces.

v If a semicolon (;) appears inside a double-quoted value, it does not require a
preceding backslash.

Example
[interfaces]
support = network-interface=9.0.0.8;https-port=444;certificate-label=WS6;
worker-threads=16

This example (entered as one line) creates an interface named "support" with the
following properties:
v Allows WebSEAL to listen for requests at IP address 9.0.0.8, on HTTPS port 444.
v The HTTP port defaults to "disabled".
v WebSEAL authenticates to SSL clients using a server-side certificate named

"WS6" stored in the WebSEAL key database file.
v The interface uses its own pool of 16 worker threads to service requests.

Chapter 29. Virtual host junctions 489

v The interface defaults to never requiring (prompting for) client-side certificates
during authentication.

Note: When you configure WebSEAL to have multiple DNS aliases that are
assigned to its interfaces, you must ensure that each alias (and interface) is
assigned to a virtual host junction. WebSEAL does not support multiple DNS
aliases assigned to its interface definitions which are not assigned to virtual host
junctions.

Scenario 2: Virtual host junctions with interfaces

The following scenario sets up:
v Virtual host junctions are created on separate WebSEAL interfaces.
v Two junctions are configured to share a common protected object space.

Refer to the accompanying diagram as you proceed through the steps.

Required architecture:

v WebSEAL protects three virtual hosts over the following protocols:
– a.b.com (on host cruz1.ibm.com) over HTTP and HTTPS
– w.x.com (on host cruz2.ibm.com) over HTTP
– y.z.com (on host cruz2.ibm.com) over HTTPS

v Direct access to the protected junctioned servers (cruz1.ibm.com >
cruz2.ibm.com) is prevented by appropriate firewall protection. The user is not
aware of this blocked access because the external DNS entries, used by the
browser to lookup the virtual host names, are configured to point to WebSEAL
at IP address 9.0.0.3 or 9.0.0.4.

v The virtual hosts are configured in the external DNS to point to the WebSEAL
server:

External DNS

a.b.com 9.0.0.3

x.y.com 9.0.0.3

y.z.com 9.0.0.4

v The WebSEAL server is known to browsers by the following host names:
– webseal.ibm.com (WebSEAL's true host name)
– a.b.com

– w.x.com

– y.z.com

v WebSEAL is configured for two interfaces (to allow serving unique server-side
certificates over HTTPS for a.b.com > y.z.com):
– 9.0.0.3
– 9.0.0.4

490 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Procedure - general setup:

1. Install and configure a default WebSEAL with the first of the two required
interfaces (to support SSL communication with a.b.com:443):
[server]
network-interface = 9.0.0.3
http = yes
http-port = 80
https = yes
https-port = 443

2. To support SSL communication between browsers and the a.b.com virtual host
(over port 443), install a server-side certificate (named ab in this example) in
WebSEAL's pdsrv.kdb key file database. This certificate must be generated and
signed by a Certificate Authority (CA). WebSEAL presents this certificate, on
behalf of the interface, to authenticate to client browsers.
[ssl]
webseal-cert-keyfile-label = ab

Note: WebSEAL provides an option to configure a separate certificate key
database for junction SSL operations rather than sharing the one used for client
certificates specified in the [ssl] stanza. For more information, see
“Configuration of the WebSEAL key database file” on page 355 and the
description of the jct-cert-keyfile option in the IBM Security Web Gateway
Appliance: Web Reverse Proxy Stanza Reference.

3. Configure a second interface to support SSL communication with y.z.com:443:
[interfaces]
yz-interface = network-interface=9.0.0.4; certificate-label=yz; https-port=443

Client

a.b.com - 9.0.0.3
w.x.com - 9.0.0.3
y.z.com - 9.0.0.4

External DNS

cruz1.ibm.com
9.0.0.5

w.x.com

Virtual Hosts

y.z.comy.z.com:443

w.x.com:80

Virtual Host
Junctions

WebSEAL

webseal.ibm.com
9.0.0.3
9.0.0.4

request cruz2.ibm.com
9.0.0.6

a.b.com

Virtual Hosts

a.b.com:443

a.b.com:80

Virtual Host
Junctions

firewall DMZ

Figure 42. Virtual host junction scenario 2

Chapter 29. Virtual host junctions 491

4. To support SSL communication between browsers and the y.z.com virtual host
(over port 443), install a server-side certificate (named yz in this example) in
WebSEAL's pdsrv.kdb key file database. This certificate must be generated and
signed by a Certificate Authority (CA). WebSEAL presents this certificate, on
behalf of the interface, to authenticate to client browsers.

Note: WebSEAL provides an option to configure a separate certificate key
database for junction SSL operations rather than sharing the one used for client
certificates specified in the [ssl] stanza. For more information, see
“Configuration of the WebSEAL key database file” on page 355 and the
description of the jct-cert-keyfile option in the IBM Security Web Gateway
Appliance: Web Reverse Proxy Stanza Reference.

5. To ensure that the primary WebSEAL host name is used when required (for
example, by standard WebSEAL junctions), assign the appropriate name as a
value to the web-host-name stanza entry in the WebSEAL configuration file:
[server]
server-name = webseal.ibm.com-default
web-host-name = webseal.ibm.com

Procedure - create virtual host junctions:

1. Create two virtual host junctions (entered as one line) to support HTTP and
HTTPS communication to a.b.com. Use the -g option to allow the two junctions
to share the same object space:
pdadmin> server task default-webseald-webseal.ibm.com virtualhost create
-t tcp -h cruz1.ibm.com -v a.b.com vhost-ab-tcp
pdadmin> server task default-webseald-webseal.ibm.com virtualhost create
-t ssl -h cruz1.ibm.com -v a.b.com -g vhost-ab-tcp vhost-ab-ssl

2. Create a virtual host junction (entered as one line) to support communication
with w.x.com:80:
pdadmin> server task default-webseald-webseal.ibm.com virtualhost create
-t tcp -h cruz2.ibm.com -v w.x.com vhost-wx-tcp

3. Create a virtual host junction (entered as one line) to support communication
with y.z.com:443:
pdadmin> server task default-webseald-webseal.ibm.com virtualhost create
-t ssl -h cruz2.ibm.com -v y.z.com vhost-yz-ssl

Use of virtual hosts with existing WebSEAL features

This section contains the following topics:
v “E-community single signon with virtual hosts”
v “Cross-domain single signon with virtual hosts” on page 494
v “Dynamic URLs with virtual host junctions” on page 494
v “Using domain session cookies for virtual host single sign-on” on page 495
v “Junction throttling” on page 496

E-community single signon with virtual hosts

E-community single signon can be used to perform single signon between multiple
virtual hosts located on a single WebSEAL instance. The virtual hosts all share the
same configuration file belonging to the WebSEAL instance.

To support virtual host junctions, e-community single signon allows:

492 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v A single virtual host to act as the Master authentication server (MAS) on a
machine with more than one virtual hosts.

v Specification of per-domain single signon keys for environments with multiple
virtual hosts supporting different domains.

Configuration enhancements to e-community include:
v On a machine with multiple virtual hosts, use the master-authn-server stanza

entry to designate one of the virtual hosts as the MAS.
[e-community-sso]
is-master-authn-server = yes
master-authn-server = virtual-host

v The [e-community-domain-keys] stanza is only appropriate for use with standard
WebSEAL junctions.
[e-community-domain-keys]

v The [e-community-domains] stanza lists the domains supported by virtual hosts.
[e-community-domains]

v The [e-community-domain-keys:domain] stanzas contain the appropriate keys for
each domain defined in the [e-community-domains] stanza.
[e-community-domain-keys:domain]

Example:
v One WebSEAL instance
v Three virtual hosts (four virtual host junctions) forming an e-community:

www.ibm.com:80
www.ibm.com:443
www.lotus.com:80
www.tivoli.com:80

Note: www.ibm.com:80 and www.ibm.com:443 are a virtual host junction protocol
pair. They were created with the -g virtual host junction option and therefore
share the same object space. They server the single virtual host www.ibm.com.

v MAS is the virtual host www.ibm.com
v WebSEAL configuration file:

[e-community-sso]
is-master-authn-server = yes
master-authn-server = www.ibm.com

[e-community-domains]
name = ibm.com
name = tivoli.com
name = lotus.com

[e-community-sso-domain-keys:ibm.com]
ibm.com = ibm.key
tivoli.com = ibm-tivoli.key
lotus.com = ibm-lotus.key

[e-community-sso-domain-keys:tivoli.com]
tivoli.com = tivoli.key
ibm.com = ibm-tivoli.key

[e-community-sso-domain-keys:lotus.com]
lotus.com = lotus.key
ibm.com = ibm-lotus.key

Chapter 29. Virtual host junctions 493

Cross-domain single signon with virtual hosts

Cross-domain single signon can be used to perform single signon between multiple
virtual hosts located on a single WebSEAL instance. The virtual hosts all share the
same configuration file belonging to the WebSEAL instance. However,
cross-domain single signon with virtual hosts has certain configuration limitations.

Unlike e-community single signon with virtual hosts, cross-domain single signon
configuration does not allow specification of per-domain single signon keys for
environments with multiple virtual hosts supporting different domains. All virtual
hosts associated with the WebSEAL instance must share the one [cdsso-peers]
stanza used for key configuration. Therefore, the virtual hosts must share a
common key used by each domain to communicate to another given domain.

In the following example, two virtual hosts reside on a single WebSEAL instance:
v a.a.com

v b.b.com

Both domains are owned by separate entities and each of these entities has a
separate CDSSO arrangement with another WebSEAL server, c.c.com. Ideally,
a.a.com and b.b.com would have separate keys to use for single signon with
c.c.com.The ideal configuration would appear as follows:
[cdsso-peers]
used by a.a.com to communicate with c.c.com
c.c.com = c-a.key
used by b.b.com to communicate with c.c.com
c.c.com = c-b.key

This configuration is not possible on a single WebSEAL instance (hosting both
a.a.com and b.b.com virtual hosts) because the [cdsso-peers] stanza only allows
one key to be specified for a given target domain.

The only configuration allowed forces both a.a.com and b.b.com to use the same
key. For example:
[cdsso-peers]
used by both a.a.com and b.b.com to communicate with c.c.com
c.c.com = c-ab.key

Each owner of the a.a.com and b.b.com domains must accept the condition that
they share the same key.

In addition if the one key is compromised, both a.a.com and b.b.com are
compromised.

Dynamic URLs with virtual host junctions

In the dynurl.conf configuration file, virtual host junctions are expressed as:
/@vhost-label

For example, the following dynurl.conf configuration file entry specifies that a
virtual host junction labeled test-http map all URLs under the directory /mapfrom
to the protected object /@test-http/mapto:
/@test-http/mapto/@test-http/mapfrom/*

494 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Standard WebSEAL junctions and virtual host junctions can co-exist in the
dynurl.conf configuration file. For example:
/mapto/@test-http/mapfrom/*
/@test-http/mapto/mapfrom/*

Using domain session cookies for virtual host single sign-on

About this task

In a WebSEAL environment, you can use domain cookies to support single sign-on
and the sharing of a single credential across multiple virtual host junctions in the
same WebSEAL instance. Alternatively, you can configure an SMS environment to
support single sign-on across multiple virtual hosts. In an SMS environment, the
session can be distributed between different WebSEAL instances.

WebSEAL normally uses host cookies for cookie-based session identification. A
browser only returns a host cookie to the originating host. Using host cookies in a
virtual host environment results in each virtual host having its own login and
credentials.

Use domain cookies if all virtual hosts are located on the same WebSEAL instance
and contain the same network domain name.

In an environment without SMS, you must set an additional configuration item for
WebSEAL to handle single sign-on across virtual host junctions in the same
WebSEAL instance. The shared-domain-cookie configuration item in the [session]
stanza of the WebSEAL configuration file must be set to yes. You do not need to
use this configuration item in an SMS environment. In an SMS environment, this
item must be set to no or not defined at all.

Both standard WebSEAL junctions and virtual host junctions can support domain
cookies:
v The domain used by the session cookie for a specific virtual host junction is

determined by the closest match to an entry in the [session-cookie-domains]
stanza.

v The domain used by the session cookie for a specific standard WebSEAL
junction is determined by the closest match to the value of the web-host-name
entry in the [server] stanza.

If there is no match, then a host type cookie is used.

Other instances of WebSEAL in the same domain also receive the same domain
cookies configured for a particular WebSEAL instance. You can customize the
names of the WebSEAL session cookies for a specific WebSEAL instance. The
WebSEAL instance configuration file provides default names for both TCP and SSL
cookies:
[session]
tcp-session-cookie-name = PD-H-SESSION-ID
ssl-session-cookie-name = PD-S-SESSION-ID

See also “Customization of the session cookie name” on page 292.

Chapter 29. Virtual host junctions 495

Procedure

To enable domain cookies, modify the WebSEAL configuration file to specify the
names of the appropriate domains where domain type cookies are to be used. For
example:
[session-cookie-domains]
domain = ibm.com
domain = cruz.tivoli.com

Example

Matching example:
[session-cookie-domains]
domain = ibm.com
domain = tivoli.com

Technical notes for using domain cookies with virtual hosts
v Security warning! It is possible for an untrusted host to exist among the

collection of hosts for a specific domain.
v To use domain cookies, all virtual hosts must be in the same DNS domain.
v You can perform single sign-on across virtual host junctions in the same

WebSEAL instance using WebSEAL alone. Alternatively, you can configure an
SMS environment to perform single sign-on across virtual host junctions, which
can be distributed across WebSEAL instances.

v If you are using SMS to achieve single sign-on across virtual host junctions, you
must not enable the shared-domain-cookie configuration item in the WebSEAL
[session] stanza.

v See also “Single signon within a session realm” on page 334.

Junction throttling

For complete information on junction throttling, see “Junction throttling” on page
397.

Scenario 3: Advanced virtual host configuration

The following scenario is based on scenario 2. The scenario additionally sets up:
v Forms authentication.
v Single signon using e-community.
v Authenticated access to specific resources.

Required architecture:

v Single signon is required between all hosts and protocols. Each virtual host has
its own session credential. Standard e-community SSO logout restrictions apply.

v Forms login is required
v Authenticated-only access is required for the following resources:

– http(s)://a.b.com/sales/

– https://w.x.com/doc/

– https://y.z.com/code/

496 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Procedure - general setup:

1. Enable forms authentication for both HTTP and HTTPS:
[ba]
ba-auth = none

[forms]
forms-auth = both

2. Configure e-community single signon:
[e-community-sso]
e-community-sso-auth = both
e-community-name = ecomm
is-master-authn-server = yes
master-authn-server = a.b.com

[e-community-domain-keys]

[e-community-domains]
name = b.com
name = x.com
name = z.com
name = ibm.com

[e-community-domain-keys:b.com]
b.com = bb.key
x.com = bx.key
z.com = bz.key

[e-community-domain-keys:x.com]
x.com = xx.key
b.com = bx.key

Client

a.b.com - 9.0.0.3
w.x.com - 9.0.0.3
y.z.com - 9.0.0.4

External DNS

cruz1.ibm.com
9.0.0.5

w.x.com

Virtual Hosts

y.z.comy.z.com:443

w.x.com:80

Virtual Host
Junctions

WebSEAL

webseal.ibm.com
9.0.0.3
9.0.0.4

request cruz2.ibm.com
9.0.0.6

a.b.com

Virtual Hosts

a.b.com:443

a.b.com:80

Virtual Host
Junctions

firewall DMZ

Figure 43. Virtual host junction scenario 3

Chapter 29. Virtual host junctions 497

[e-community-domain-keys:z.com]
z.com = zz.key
b.com = bz.key

3. Use the LMI to generate the following keys:
v bb.key

v bx.key

v bz.key

v xx.key

v zz.key

4. Restart WebSEAL and login as sec_master to the pdadmin command.

Procedure - control access to /restricted directories:

1. Create an open (unrestricted) ACL for general unauthenticated access:
pdadmin> sec_master> acl create open
pdadmin> sec_master> acl modify open set user sec_master TcmdbsvaBRlrx
pdadmin> sec_master> acl modify open set any-other Trx
pdadmin> sec_master> acl modify open set unauthenticated Trx
pdadmin> sec_master> acl modify open set group iv-admin TcmdbsvaBRrxl
pdadmin> sec_master> acl modify open set group webseal-servers Tgmdbsrxl

2. Create a restricted ACL for access requiring authentication:
pdadmin> sec_master> acl create restricted
pdadmin> sec_master> acl modify restricted set group iv-admin TcmdbsvaBRrxl
pdadmin> sec_master> acl modify restricted set group webseal-servers Tgmdbsrxl
pdadmin> sec_master> acl modify restricted set user sec_master TcmdbsvaBRlrx
pdadmin> sec_master> acl modify restricted set any-other Trx
pdadmin> sec_master> acl modify restricted set unauthenticated T

3. Attach the open ACL to the default WebSEAL instance:
pdadmin> sec_master> acl attach /WebSEAL/webseal.ibm.com-default open

4. Attach the restricted ACL to the /sales directory on a.b.com (entered as one
line):
pdadmin sec_master> acl attach
/WebSEAL/webseal.ibm.com-default/@vhost-ab-tcp/sales restricted

5. Attach the restricted ACL to the /doc directory on w.x.com (entered as one
line):
pdadmin sec_master> acl attach
WebSEAL/webseal.ibm.com-default/@vhost-wx-tcp/doc restricted

6. Attach the restricted ACL to the /code directory on y.z.com (entered as one
line):
pdadmin sec_master> acl attach
/WebSEAL/webseal.ibm.com-default/@vhost-yz-ssl/code restricted

Virtual host junction limitations

This section contains the following topics:
v “SSL session IDs not usable by virtual hosts”

SSL session IDs not usable by virtual hosts

SSL session IDs are not usable for maintaining login sessions between a browser
and different virtual hosts located on the same WebSEAL instance.

498 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 30. Command option summary: Virtual host junctions

The pdadmin utility provides an interactive command-line prompt from which
you can perform WebSEAL virtual host junction tasks. This section describes the
pdadmin server task virtualhost command for creating WebSEAL virtual host
junctions. Refer to the IBM Security Access Manager for Web: Command Reference for
complete syntax information for the pdadmin utility. Options for standard
WebSEAL junctions are described in Chapter 28, “Command option summary:
standard junctions,” on page 465.

Note: You can also use the Security Access Manager Web Portal Manager to
manage virtual host junctions. For more information, see the Web Portal Manager
online help screens.

Topic Index:
v “Using pdadmin server task to create virtual host junctions”
v “Server task commands for virtual host junctions” on page 500
v “Creation of a virtual host junction” on page 501
v “Addition of a server to a virtual host junction” on page 506

Using pdadmin server task to create virtual host junctions

Before you begin

Before using pdadmin, you must login to a secure domain as a user with
administration authorization, such as sec_master.

For example:
pdadmin> login
Enter User ID: sec_master
Enter Password:
pdadmin>

Procedure

To create virtual host junctions, you use the pdadmin server task virtualhost
create command (entered as one line):
pdadmin> server task instance_name-webseald-host_name virtualhost create
options vhost-label

For example, if the configured name of a single WebSEAL instance is web1,
installed on a host named www.pubs.com, the complete server name would be
expressed as follows:
web1-webseald-www.pubs.com

Use the pdadmin server list command to display the correct format of the
complete server name:
pdadmin> server list
web1-webseald-www.pubs.com

© Copyright IBM Corp. 2002, 2013 499

For more information, see the reference page for pdadmin server task virtualhost
create in Appendix B, “Command reference,” on page 615 or the IBM Security
Access Manager for Web: Command Reference.

Server task commands for virtual host junctions

The following virtual host junction commands are available with pdadmin server
task virtualhost:

Command Description

virtualhost add
Add additional server(s) to an existing virtual host junction.

Syntax:

virtualhost add options vhost-label

See “Addition of a server to a virtual host junction” on
page 506.

virtualhost create
Create a new virtual host junction for an initial server.

Syntax:

virtualhost create options vhost-label

See “Creation of a virtual host junction” on page 501.

virtualhost delete
Remove the specified virtual host junction.

A virtual host junction cannot be deleted if a second virtual
host junction refers to it through the -g option. An error
message is returned at such an attempt.

Syntax:

virtualhost delete vhost-label

virtualhost list
List all configured virtual host junctions by label name.

Syntax:

virtualhost list

virtualhost offline
Places the server located at this virtual host junction in an
offline operational state. No additional requests are sent to
the specified server. If a server is not specified, then all
servers located at this virtual host junction are placed in an
offline operational state.

Syntax:

virtualhost offline [-i server_uuid] vhost_label

virtualhost online
Places the server located at this virtual host junction in an
online operational state. The server now resumes normal
operation. If a server is not specified, then all servers
located at this virtual host junction are placed in an online
operational state.

Syntax:

virtualhost online [-i server_uuid] vhost_label

500 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Command Description

virtualhost remove
Remove the specified server from a virtual host junction.

Syntax:

virtualhost remove –i server-id vhost-label

Use the virtualhost show command to determine the ID of
a particular server.

virtualhost show
Display the details of a virtual host junction with the
specified label.

Syntax:

virtualhost show vhost-label

virtualhost throttle
Places the server located at this virtual host junction in a
throttled operational state. Only requests from users who
have created a session with WebSEAL prior to the
invocation of this command continue to have their requests
processed by the specified server. If a server is not
specified, then all servers located at this virtual host
junction are placed in a throttled operational state.

Syntax:

virtualhost throttle [-i server_uuid] vhost_label

Creation of a virtual host junction

Operation: Creates a new virtual host junction.

Syntax:
virtualhost create -t type -h host-name options vhost-label

Junction type

–t type Type of virtual host junction. One of: tcp, ssl, tcpproxy,
sslproxy, localtcp, localssl.

Default port for –t tcp is 80. Default port for –t ssl is 443.

Required. See “Creation of a remote type virtual host
junction” on page 483.

Host name

–h host-name The DNS host name or IP address of the target back-end
server.

Required (for tcp, ssl, tcpproxy, sslproxy type
junctions). See “Creation of a remote type virtual host
junction” on page 483.

Virtual host options

Chapter 30. Command option summary: Virtual host junctions 501

–v vhost-name[:port] WebSEAL selects a virtual host junction to process a
request if the request's HTTP Host header matches the
virtual host name and port number specified by the -v
option.

The -v option is also used to specify the value of the Host
header of the request sent to the back-end server.

The port number is required if the virtual host uses a
non-standard port for the protocol. Standard port for TCP
is 80; standard port for SSL is 443.

If -v is not specified for tcp, ssl, tcpproxy, and sslproxy
type junctions, then the junction is selected from the
information contained in the -h host and -p port options.

The -v option is required for localtcp and localssl type
junctions.

See “Creation of a remote type virtual host junction” on
page 483.

–g vhost-label The -g option causes a second additional virtual host
junction to share the same protected object space as the
initial virtual host junction.

This option is appropriate for junction pairs only (two
junctions using complementary protocols). The option
does not support the association of more than two
junctions.

Optional. See “Creation of a remote type virtual host
junction” on page 483.

General options

TCP and SSL junction types

–a address Specifies the local IP address that WebSEAL uses when
communicating with the target back-end server. If this
option is not provided, WebSEAL uses the default address
as determined by the operating system.

If you supply an address for a particular junction,
WebSEAL binds to this local address for all
communication with the junctioned server.

–f Force the replacement (overwrite) of an existing virtual
host junction.

See “Forcing a new junction” on page 396.

–i WebSEAL server treats URLs as case insensitive.

See “Support for URLs as not case-sensitive” on page 408.

502 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

–p port TCP port of the back-end third-party server. Default is 80
for TCP junctions; 443 for SSL junctions.

See “Creating TCP type standard junctions” on page 370
and “Creating SSL type standard junctions” on page 371.

–q path Provides WebSEAL with the correct name of the
query_contents program file and where to find the file. By
default, the Windows file is called query_contents.exe
and the UNIX file is called query_contents.sh. By default,
WebSEAL looks for the file in the cgi_bin directory of the
back-end Web server.

Required for back-end Windows and UNIX Web servers.

See “Installing and configuring query_contents on
Windows-based Web servers” on page 383.

–T resource/resource-group Name of GSO resource or resource group. Required for
and used only with –b gso option.

See “Configuring a GSO-enabled WebSEAL junction” on
page 525.

–w Windows 32-bit (Win32) filesystem support.

See “Junctions to Windows file systems” on page 409.

Stateful junctions

See “Stateful junctions” on page 392.

–s Specifies that the virtual host junction should support
stateful applications. By default, junctions are not stateful.

–u UUID Specifies the UUID of a back-end server connected to
WebSEAL via a stateful virtual host junction (–s).

Mutual authentication over Basic Authentication and SSL certificates

See “Mutually authenticated SSL junctions” on page 387.

–B WebSEAL uses BA header information to authenticate to
back-end virtual host. Requires –U, and –W options.

–D "DN" Specify Distinguished Name of back-end server certificate.
This value, matched with actual certificate DN enhances
authentication.

–K "key-label" Key label of WebSEAL's client-side certificate, used to
authenticate to back-end virtual host.

–U "username" WebSEAL user name. Use with –B to send BA header
information to back-end server.

–W "password" WebSEAL password. Use with –B to send BA header
information to back-end server.

Chapter 30. Command option summary: Virtual host junctions 503

Proxy junction (requires –t tcpproxy or –t sslproxy)

See “TCP and SSL proxy junctions” on page 390.

–H host-name The DNS host name or IP address of the proxy server.

–P port The TCP port of the proxy server.

Supply identity information in HTTP headers

–b BA-value Defines how the WebSEAL server passes client identity
information in HTTP basic authentication (BA) headers to
the back-end virtual host. One of:

filter (default), ignore, supply, gso

See “Single sign-on using HTTP BA headers” on page 514.

–c header-types Insert client identity information specific to Security
Access Manager in HTTP headers across the virtual host
junction. The header-types argument can include any
combination of the following Security Access Manager
HTTP header types: iv-user, iv-user-l, iv-groups, iv-creds,
all.

See “Identity information supplied in HTTP headers” on
page 519.

–e encoding-type Specifies the encoding to use when generating HTTP
headers for virtual host junctions. This encoding applies to
headers that are generated with both the –c junction
option and tag-value. Possible values for encoding are:

v utf8_bin

v utf8_uri

v lcp_bin

v lcp_uri

See “UTF-8 encoding for HTTP header data” on page 411.

–I NOT VALID. This option is not valid because cookie
handling is not required over virtual host junctions.

–j NOT VALID. This option is not valid because the junction
cookie solution is not required over virtual host junctions.

–J trailer[,onfocus] NOT VALID. This option is not valid because the junction
cookie solution is not required over virtual host junctions.

–k Send session cookie to back-end virtual host.

See “Passing of session cookies to junctioned portal
servers” on page 406.

–n NOT VALID. This option is not valid because the junction
cookie solution is not required over virtual host junctions.

504 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

–r Insert incoming IP address in HTTP header across the
virtual host junction.

See “Client IP addresses in HTTP headers (–r)” on page
521.

Junction fairness

See “Allocation of worker threads for junctions (junction fairness)” on page 52.

–l percent-value Defines the soft limit for consumption of worker threads.

–L percent-value Defines the hard limit for consumption of worker threads.

WebSphere single signon (LTPA) junctions

See “Single signon to IBM WebSphere (LTPA)” on page 526.

–A Enables virtual host junctions to support LTPA cookies
(tokens). LTPA version 1 cookies (LtpaToken) and LTPA
version 2 cookies (LtpaToken2) are both supported. LTPA
version 1 cookies are specified by default. LTPA version 2
cookies must be specified with the additional -2 option.

Also requires –F, and –Z options.

–2 Used with the -A option, this option specifies that LTPA
version 2 cookies (LtpaToken2) are used. The -A option
without the -2 option specifies that LTPA version 1 cookies
(LtpaToken) are used.

–F "keyfile" Name of the key file used to encrypt LTPA cookie data.
Only valid with –A option.

–Z "keyfile-password" Password for the key file used to encrypt LTPA cookie
data. Only valid with –A option.

Tivoli Federated Identity Manager SSO junctions

“Single signon using Tivoli Federated Identity Manager” on page 511

-Y Enables Tivoli Federated Identity Manager single-signon
(SSO) for the junction.
Note: Before using this option, you must first configure
the WebSEAL configuration files to support Tivoli
Federated Identity Manager single-signon over junctions.

WebSEAL-to-WebSEAL SSL junctions

See “WebSEAL-to-WebSEAL junctions over SSL” on page 390.

–C Mutual authentication between a front-end WebSEAL
server and a back-end WebSEAL server over SSL. Requires
–t ssl or –t sslproxy type.

Chapter 30. Command option summary: Virtual host junctions 505

Forms single signon

See “Forms single signon authentication” on page 529.

–S path
Name of the forms single signon configuration file.

Transparent path junctions

–x NOT VALID.

SMS

–z replica-set-name SMS environment: Optional. Specifies the replica set that
sessions on the virtual host junction are managed under
and provides the ability to group or separate login
sessions among multiple virtual hosts.

If -z is not used to specify the replica set for the virtual
host junction, the virtual host junction is automatically
assigned to a replica set matching its virtual hostname.
For example, if the virtual host name is
vhostA.example.com, the replica set is named
vhostA.example.com. The replica set used for the virtual
host junction must be present in the [replica-sets] stanza
of the WebSEAL configuration file.

Non-SMS environment: This option cannot be used in a
non-SMS environment.

See Chapter 20, “Configuration for WebSEAL using SMS,”
on page 319.

Virtual host junction label

The virtual host label (vhost-label) is simply a name for the virtual host junction. This
junction label is used to indicate the junction in the display of the protected object
space (Web Portal Manager). You can refer to a junction in the pdadmin utility using
this label.

Required. See “Creation of a remote type virtual host junction” on page 483.

Addition of a server to a virtual host junction

Operation: Adds an additional server to an existing virtual host junction.

Syntax:
virtualhost add -h host-name options vhost-label

Host name

–h host-name The DNS host name or IP address of the target back-end
server to add.

Required. See “Standard WebSEAL junction
configuration” on page 369.

General options

506 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

TCP and SSL junction types

–a address Specifies the local IP address that WebSEAL uses when
communicating with the target back-end server. If this
option is not provided, WebSEAL uses the default address
as determined by the operating system.

If you supply an address for a particular junction,
WebSEAL binds to this local address for all
communication with the junctioned server.

–i WebSEAL server treats URLs as case insensitive.

See “Support for URLs as not case-sensitive” on page 408.

–p port TCP port of the back-end third-party server. Default is 80
for TCP junctions; 443 for SSL junctions.

See “Creating TCP type standard junctions” on page 370
and “Creating SSL type standard junctions” on page 371.

–q url Relative path for query_contents script. By default,
WebSEAL looks for query_contents in /cgi_bin/. If this
directory is different or the query_contents file name is
different, use this option to indicate to WebSEAL the new
URL to the file. Required for back-end Windows servers.

See “Installing and configuring query_contents on
Windows-based Web servers” on page 383.

–w Windows filesystem support.

See “Junctions to Windows file systems” on page 409.

Stateful junctions

See “Stateful junctions” on page 392.

–u UUID Specifies the UUID of a back-end server connected to
WebSEAL via a stateful virtual host junction (–s).

Mutual authentication over SSL

See “Mutually authenticated SSL junctions” on page 387.

–D "DN" Specify Distinguished Name of back-end server certificate.
This value, matched with actual certificate DN enhances
authentication.

Proxy junction (requires –t tcpproxy or –t sslproxy)

See “TCP and SSL proxy junctions” on page 390.

–H host-name DNS host name or IP address of the proxy server.

–P port The TCP port of the proxy server.

Virtual host junction label

Chapter 30. Command option summary: Virtual host junctions 507

The label (vhost-label) of the virtual host junction where the additional back-end server
is added.

508 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Part 9. Single Signon Solutions

© Copyright IBM Corp. 2002, 2013 509

510 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 31. Single signon solutions across junctions

This chapter discusses solutions for single signon access to protected Web resources
located on junctioned back-end servers in a WebSEAL proxy configuration.

Topic Index:
v “Single signon using Tivoli Federated Identity Manager”
v “Single sign-on using HTTP BA headers” on page 514
v “Identity information supplied in HTTP headers” on page 519
v “Global signon (GSO)” on page 523
v “Single signon to IBM WebSphere (LTPA)” on page 526
v “Forms single signon authentication” on page 529

Single signon using Tivoli Federated Identity Manager

WebSEAL is able to obtain tokens, which can be used for single sign-on to
junctions, from Tivoli Federated Identity Manager. Examples of Tivoli Federated
Identity Manager token types which can be used for single sign-on include:
v Kerberos credentials.
v LTPA tokens.
v SAML tokens.

Tivoli Federated Identity Manager provides the ability to generate SSO tokens
using STS modules, which are available in Tivoli Federated Identity Manager.
WebSEAL retrieves Tivoli Federated Identity Manager SSO tokens by delegating
the token request to the module in the following manner:
1. The client authenticates to WebSEAL over HTTPS or HTTP and requests an

object on the junctioned server. However, a Tivoli Federated Identity Manager
SSO credential is required before access can be granted to the junctioned server.

2. WebSEAL sends a simple object access protocol (SOAP) request to the STS
module, requesting an SSO token.

3. Tivoli Federated Identity Manager generates the token, based on the
requirements of the STS module.

4. Tivoli Federated Identity Manager returns the token to WebSEAL, and then
WebSEAL forwards the token to the junction.

A trust chain must be created in Tivoli Federated Identity Manager to handle the
generation of the security token. The following table highlights the configuration
requirements for the trust chain.

Table 42. Configuration requirements for a Tivoli Federated Identity Manager trust chain

Trust
Chain
Element Requirement

Request
Type

Issue Oasis URI

Lookup
Type

Use Traditional WS-Trust Elements (AppliesTo, Issuer, and TokenType)

© Copyright IBM Corp. 2002, 2013 511

Table 42. Configuration requirements for a Tivoli Federated Identity Manager trust
chain (continued)

Trust
Chain
Element Requirement

AppliesTo Address Corresponds to the applies-to option in the [tfimsso:<jct id>]
stanza of the WebSEAL configuration file

Service
Name

Corresponds to the service-name option in the [tfimsso:<jct id>]
stanza of the WebSEAL configuration file
Note: The fields in this entry should either both be set to asterisk
(*), to match all service names, or the second field should be set to
the value defined by [tfimsso:<jct id>] service-name. Refer to the
Tivoli Federated Identity Manager documentation for further
details on configuring Trust Chains.

Port Type Not set

Issuer Address amwebrte-sts-client

Service
Name

Not set

Port Type Not set

TokenType One of the supported Tivoli Federated Identity Manager SSO token types

Trust
Service
Chain
Modules

1.

com.tivoli.am.fim.trustserver.sts.modules.STSTokenIVCred:
-mode = validate

2.

com.tivoli.am.fim.trustserver.sts.modules.
any_STS_module: -mode = issue

To create a junction for Tivoli Federated Identity Manager single signon, use the
junction create command (server task create) with option -Y. For more information,
see "Options" under “server task create” on page 624 or “server task virtualhost
create” on page 655.

Note: The WebSEAL configuration file must be configured to support the specific
junctions for Tivoli Federated Identity Manager single-signon before you can use
the junction create command with option -Y.

Configuration options for using the Tivoli Federated Identity Manager single
signon approach are specified in the [tfimsso:<jct-id>] stanza. This stanza
contains the Tivoli Federated Identity Manager single sign-on configuration
information for a single junction. For standard junctions, the stanza name must be
qualified with the name of the junction point, including the leading forward slash;
for example: [tfimsso:/junction_a]. For virtual host junctions, the stanza name
must be qualified with the virtual host label, for example: [tfimsso:www.ibm.com].

The tfim-cluster-name option in the [tfimsso:<jct-id>] stanza defines the name
of the WebSphere cluster for the Tivoli Federated Identity Manager service. Use the
corresponding [tfim-cluster:<cluster>] stanza to specify options for the cluster.

In the [tfim-cluster:<cluster>] server stanza entry, specify the priority level and
URL for a web server that acts as a proxy for Tivoli Federated Identity Manager.

512 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The [tfim-cluster:<cluster>] stanza can contain multipleserver entries, which
enables you to specify multiple server entries for failover and load balancing
purposes. Once the Tivoli Federated Identity Manager cluster is configured,
WebSEAL checks the status of the Tivoli Federated Identity Manager proxy web
server once every minute. Tivoli Federated Identity Manager

For more information about these configuration options, see the
[tfimsso:<jct-id>] and [tfim-cluster:<cluster>] stanzas in the IBM Security
Web Gateway Appliance: Web Reverse Proxy Stanza Reference.

This method of single signon can be implemented only by using the STS module
in Tivoli Federated Identity Manager. For more information, refer to Tivoli
Federated Identity Manager documentation.

GSKit configuration for connections with Tivoli Federated
Identity Manager

There are a number of GSKit attributes that you can use to control how GSKit
creates SSL connections.

You can configure WebSEAL to use particular GSKit attributes when it initializes
SSL connections.

The gsk-attr-name configuration entry in the [tfim-cluster:<cluster>] stanza
controls the GSKit attributes that WebSEAL uses when initializing a connection
with Tivoli Federated Identity Manager. You can specify this configuration entry
multiple times. Include each desired GSKit attribute as a new entry.
[tfim-cluster:<cluster>]
gsk-attr-name = {enum | string | number}:id:value

Note: Similar configuration entries exist in the [ssl] stanza for connections with
clients and junctioned web servers.

For further details about these configuration entries, see the IBM Security Web
Gateway Appliance: Web Reverse Proxy Stanza Reference.

Use of Kerberos credentials

One of the token types which can be provided by TFIM is Kerberos delegated
credentials. The use of the Kerberos credentials generated by TFIM for single sign
on provides some advantages over traditional Asset Manager single signon
mechanisms, including:
v Kerberos credentials are easily utilized by ASP.NET Web applications without

requiring special code to be deployed.
v Kerberos credentials can be forwarded across applications while maintaining a

cryptographic signature, providing stronger security.

There are some limitations to using Kerberos credentials as a solution for single
signon to junctions in WebSEAL. Tivoli Federated Identity Manager must be
running on a Windows system. Also, depending on the configuration of the
environment, the introduction of a Kerberos single signon solution for junctioned
servers slows down performance. Each Kerberos token is valid only for a single
Kerberos authentication. Therefore, WebSEAL must request a new Kerberos token
for each separate transaction. The fact that WebSEAL must request tokens
indirectly, through a SOAP request to TFIM, can also diminish performance. This

Chapter 31. Single signon solutions across junctions 513

solution has the least negative effect on performance in an environment where the
junctioned Web server is capable of maintaining session state.

Because Kerberos tokens are designed for one-time use only, WebSEAL provides
the following features that help minimize performance issues:
v Configurable option to retrieve SSO tokens only if a 401 (authorization required)

response is received from the back-end Web server; if the back-end server is
capable of maintaining session state, WebSEAL does not retrieve Kerberos tokens
unnecessarily. Use the always-send-tokens option in the [tfimsso:<jct-id>]
stanza to specify whether a security token should be sent for every HTTP
request or if WebSEAL should wait for a 401 response before requesting the
token.

v Multiple SSO tokens are requested from TFIM in the same SOAP request, using
the WS-Trust Web service specification. Use the token-collection-size option in
the [tfimsso:<jct-id>] stanza to specify the number of tokens to retrieve from
TFIM. The tokens are cached in the user's session and used on subsequent
requests; WebSEAL requests additional tokens from TFIM only after all of the
cached tokens have been used or have expired.

Single sign-on using HTTP BA headers

This section discusses the possible solutions for creating single signon
configurations across WebSEAL junctions using the –b options.
v “Single signon (SSO) concepts”
v “Client identity in HTTP BA headers” on page 515
v “Client identity and generic password” on page 515
v “Forwarding of original client BA header information” on page 516
v “Removal of client BA header information” on page 517
v “User names and passwords from GSO” on page 518
v “Client identity information across junctions” on page 518

Single signon (SSO) concepts

When a protected resource is located on a back-end Web application server, a client
requesting that resource can be required to perform multiple logins — one for the
WebSEAL server and one for the back-end server. Each login likely requires
different login identities.

The problem of administering and maintaining multiple login identities can often
be solved with a single signon (SSO) solution. A single signon solution allows the

Client

WebSEAL

Web
Application

Server

Junction

Login #1 Login #2

Figure 44. Multiple logins

514 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

user to access a resource, regardless of the resource's location, using only one
initial login. Any further login requirements from back-end servers are handled
transparently to the user.

Client identity in HTTP BA headers

You can configure WebSEAL junctions to supply the back-end server with original
or modified client identity information. The set of –b options allows you to supply
specific client identity information in HTTP Basic Authentication (BA) headers.

As the administrator, you must analyze your network architecture and security
requirements, and determine answers to the following questions:
1. Is authentication information required by the back-end server?

(WebSEAL uses the HTTP Basic Authentication header to convey authentication
information.)

2. If authentication information is required by the back-end server, where does
this information come from?
(What information does WebSEAL place in the HTTP header?)

3. Does the connection between WebSEAL and the back-end server need to be
secure?
(TCP or SSL junction?)

After the initial authentication between the client and WebSEAL, WebSEAL can
build a new Basic Authentication header. The request uses this new header as it
continues across the junction to the back-end server. You use the –b options to
dictate what specific authentication information is supplied in this new header.

Client identity and generic password

The –b supply option instructs WebSEAL to supply the authenticated Security
Access Manager user name (client's original identity) with a static, generic
("dummy") password. The original client password is not used in this scenario.

A generic password eliminates password administration and supports the
application on a per-user basis. The "dummy" password is set in the
basicauth-dummy-passwd stanza entry of the WebSEAL configuration file:
[junction]
basicauth-dummy-passwd = password

This scenario assumes that the back-end server requires authentication from a
Security Access Manager identity. By mapping a client user to a known Security

WebSEAL

junction

request request

Authentication results
in user credentials

Web
Application

Server

BA header contains
authentication

information

Figure 45. Supplying authentication information to back-end application servers

Chapter 31. Single signon solutions across junctions 515

Access Manager user, WebSEAL manages authentication for the back-end server
and provides a simple domain-wide single signon solution.

The following conditions exist for this solution:
v WebSEAL is configured to supply the back-end server with the user name

contained in the original client request plus a generic ("dummy") password.
v The "dummy" password is configured in the WebSEAL configuration file.
v The back-end server registry must recognize the Security Access Manager

identity supplied in the HTTP BA header.
v Because sensitive authentication information (user name and password) is

passed across the junction, the security of the junction is important. Therefore,
an SSL junction is appropriate.

Limitations of the -b supply option

The same Security Access Manager "dummy" password is used for all requests; all
users have the same password in the back-end server registry. The use of the
common "dummy" password offers no basis for the application server to prove the
legitimacy of the client logging in with that user name.

If clients always go through WebSEAL to access the back-end server, this solution
does not present any security problems. However, it is important to physically
secure the back-end server from other possible means of access.

Because this scenario has no password-level security, the back-end server must
implicitly trust WebSEAL to verify the legitimacy of the client.

The back-end server registry must also recognize the Security Access Manager
identity in order to accept it.

Forwarding of original client BA header information

The –b ignore option instructs WebSEAL to pass the original client basic
authentication (BA) header straight to the back-end server without interference.
WebSEAL can be configured to authenticate this BA client information or ignore
the BA header supplied by the client and forward the header, without
modification, to the back-end server.

Note: This is not a true single signon mechanism, but rather a direct login to the
third-party server, transparent to WebSEAL.

WebSEAL

SSL junction

Any
authentication

mechanism

Registry Registry

Client Web
Application

Server

Identity and
"dummy" password

supplied

Figure 46. BA Header contains identity and "dummy" password

516 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The following conditions exist for this solution:
v The back-end server requires client identity information through BA.

The back-end server will send a Basic Authentication challenge back to the
client. The client responds with user name and password information that the
WebSEAL server passes through without modification.

v The back-end server maintains its own client-supplied passwords.
v WebSEAL is configured to supply the back-end server with the user name and

password contained in the original client request.
v Because sensitive authentication information (user name and password) is

passed across the junction, the security of the junction is important. An SSL
junction is most appropriate.

Removal of client BA header information

The –b filter option instructs WebSEAL to remove all basic authentication header
information from any client requests before forwarding the requests to the
back-end server. In this scenario, WebSEAL becomes the single security provider.

The following conditions exist for this solution:
v Basic authentication is configured between the client and WebSEAL.
v The back-end server does not require basic authentication.
v The back-end server can be accessed only through WebSEAL.
v WebSEAL handles authentication on behalf of the back-end server.

If you need to supply the back-end server with some client information, you can
combine this option with the –c option to insert Security Access Manager client
identity information into HTTP header fields. See “Client identity in HTTP headers
(–c)” on page 519.

WebSEAL

junction

Basic
Authentication

Registry Registry

Client Web
Application

Server

Original BA header
information

supplied

Figure 47. WebSEAL forwards original client identity information

WebSEAL

junction

Basic
Authentication

Web
Application

Server

Original identity
information removed

from BA header

no authentication
required

Client

Figure 48. Removing client BA header information

Chapter 31. Single signon solutions across junctions 517

User names and passwords from GSO

The –b gso option instructs WebSEAL to supply the back-end server with
authentication information (user name and password) obtained from a server that
is set up to handle global signon (GSO).

The following conditions exist for this solution:
v The back-end server applications require different user names and passwords

that are not contained in the WebSEAL registry.
v Security is important for both WebSEAL and the back-end server.

Because sensitive authentication information (user name and password) is passed
across the junction, the security of the junction is important. An SSL junction is
appropriate.

This mechanism is fully described in “Global signon (GSO)” on page 523.

Client identity information across junctions

A junction can be set up to specify client identity information in BA headers. The
–b option allows four possible arguments: filter, supply, ignore, gso. You can find
detailed information about these arguments in “Single sign-on using HTTP BA
headers” on page 514.

The –b option has an impact on the junction settings for mutual authentication and
you must consider the correct combination of options.

Use of –b supply
v WebSEAL authentication using a BA header is not allowed with this option. This

option uses the BA header for the original client user name and a "dummy"
password.

v WebSEAL authentication using a client certificate is allowed with this option.

Use of –b ignore
v WebSEAL authentication using a BA header is not allowed with this option. This

option uses the BA header for the original client user name and password.
v WebSEAL authentication using a client certificate is allowed with this option.

Use of –b gso
v WebSEAL authentication using a BA header is not allowed with this option. This

option uses the BA header for user name and password information supplied by
the GSO server.

v WebSEAL authentication using a client certificate is allowed with this option.

Use of –b filter
v Internally, the –b filter option is used when WebSEAL authentication is set to

use BA header information.
The WebSEAL BA header is used for all subsequent HTTP transactions. To the
back-end server, WebSEAL appears logged on at all times.

v WebSEAL authentication using a client certificate is allowed with this option.
v If the back-end server requires actual client identity (from the browser), the CGI

variables HTTP_IV_USER, HTTP_IV_GROUP, and HTTP_IV_CREDS can be

518 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

used. For scripts and servlets, use the corresponding Security Access
Manager-specific HTTP headers: iv-user, iv-groups, iv-creds.

Identity information supplied in HTTP headers

This section contains the following topics.
v “Client identity in HTTP headers (–c)”
v “Client IP addresses in HTTP headers (–r)” on page 521
v “Limiting the size of WebSEAL-generated HTTP headers” on page 522

Client identity in HTTP headers (–c)

The –c junction option allows you to insert client identity, group membership, and
credential information specific to Security Access Manager into the HTTP headers
of requests destined for junctioned third-party application servers. This HTTP
header information enables applications on junctioned third-party servers to
perform user-specific actions (such as single signon) based on the client's Security
Access Manager identity.

HTTP header information must be transformed to environment variable format for
use by a service on the back-end server. To support CGI programming, header
information is transformed into a CGI environment variable format by replacing all
dashes (-) with underscores (_) and prepending "HTTP" to the beginning of the
header string. The Security Access Manager-specific HTTP header entries are
available to CGI programs as the environment variables HTTP_IV_USER,
HTTP_IV_USER_L, HTTP_IV_GROUPS, and HTTP_IV_CREDS.

For other application framework products, refer to the appropriate product
documentation for instructions on extracting headers from HTTP requests.

HTTP Headers specific to
Security Access Manager

CGI Environment
Variable Headers Description

iv-user HTTP_IV_USER
The user name of the client (login
ID). Defaults to "Unauthenticated"
if client is unauthenticated
(unknown).

iv-user-l HTTP_IV_USER_L
The distinguished name (DN) of
the client.

iv-groups HTTP_IV_GROUPS
A list of groups to which the client
belongs. Consists of comma
separated quoted entries.

Chapter 31. Single signon solutions across junctions 519

HTTP Headers specific to
Security Access Manager

CGI Environment
Variable Headers Description

iv-creds HTTP_IV_CREDS
Encoded opaque data structure
representing an Security Access
Manager credential. Supplies
credentials to remote servers so
mid-tier applications can use the
authorization API to call the
authorization service. Refer to the
IBM Security Access Manager for
Web: Authorization C API Developer
Reference.

The –c option to the junction create command (see Chapter 28, “Command option
summary: standard junctions,” on page 465) specifies what Security Access
Manager-specific HTTP header data is sent across a junction to the back-end
application server:
-c header-types

The header-types arguments include:

Argument Description

iv_user
Provides the user name (short form) to the iv-user HTTP header of
the request.

iv_user_l
Provides the full DN of the user (long form) to the iv-user-l HTTP
header of the request.

iv_groups
Provides the user's list of groups to the iv-groups HTTP header of
the request.

iv_creds
Provides the user's credential information to the iv-creds HTTP
header of the request.

all
Provides identity information for iv-user, iv-groups, and iv-creds
HTTP headers of the request.

The –c option is also supported on virtual host junctions. See Chapter 29, “Virtual
host junctions,” on page 479 and Chapter 30, “Command option summary: Virtual
host junctions,” on page 499.

Conditions of use for -c junctions
v Separate multiple arguments to the -c option with commas only. Do not enter

any spaces.
v The -c all option passes only the iv-user (HTTP_IV_USER), iv-groups

(HTTP_IV_GROUPS), and iv-creds (HTTP_IV_CREDS) headers across the
junction.

Note: The -c all option does not pass iv-user-l (HTTP_IV_USER_L)) headers.
v You must individually specify all four header options to pass all four header

types across the junction:

520 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

-c iv_user,iv_user_l,iv_groups,iv_creds

v The HTTP_IV_USER header is used for either iv-user and iv-user-l when only
one of them is specified. If both iv-user and iv-user-l headers are specified,
HTTP_IV_USER_L is used for iv-user-l.

v To ensure security of the iv-creds header value, use SSL junctions.
v The content caching mechanism does not cache responses to requests over

junctions configured with the –c and –C options.

Note: See the WebSEAL section in the IBM Security Access Manager for Web:
Performance Tuning Guide for a description of how to configure environment
variables that cache –c junction information. It is possible to improve the WebSEAL
performance under –c junction conditions by applying the cache configuration.

Examples of -c junctions
-c iv_user,iv_user_l

The iv-user (HTTP_IV_USER) and iv-user-l (HTTP_IV_USER_L) headers are
passed to the back-end application server.

-c iv_user_l

The iv-user-l (HTTP_IV_USER) header is passed to the back-end application
server.

-c all

The iv-user (HTTP_IV_USER), iv-groups (HTTP_IV_GROUPS), and iv-creds
(HTTP_IV_CREDS) headers are passed to the back-end application server.

-c iv_user,iv_user_l,iv_groups,iv_creds

The iv-user (HTTP_IV_USER), iv-user-l (HTTP_IV_USER_L), iv-groups
(HTTP_IV_GROUPS), and iv-creds (HTTP_IV_CREDS) headers are passed to the
back-end application server.

Client IP addresses in HTTP headers (–r)

The –r junction option allows you to insert client IP address information into the
HTTP headers of requests destined for junctioned application servers. The HTTP
header information enables applications on junctioned third-party servers to
perform actions based on this IP address information.

HTTP header information must be transformed by the back-end server to
environment variable format for use by a service on the back-end server. Header
information is transformed into a CGI environment variable format by replacing all
dashes (-) with underscores (_) and prepending "HTTP" to the beginning of the
string. The value of the HTTP header becomes the value of the new environment
variable.

Chapter 31. Single signon solutions across junctions 521

HTTP Header Field
specific to

Security Access Manager
CGI Environment

Variable Equivalent Description

iv-remote-address HTTP_IV_REMOTE_ADDRESS
The IP address of the
client. This value could
also represent the IP
address of a proxy server
or a network address
translator (NAT).

iv-remote-address-ipv6 HTTP_IV_REMOTE_ADDRESS_IPV6
The IP address of the
client in IPv6 format.

The –r option specifies that the IP address of the incoming request be sent to the
back-end application server. The option is expressed without any arguments.

The –r option is also supported on virtual host junctions. See Chapter 29, “Virtual
host junctions,” on page 479 and Chapter 30, “Command option summary: Virtual
host junctions,” on page 499.

Limiting the size of WebSEAL-generated HTTP headers

About this task

You can limit the size of WebSEAL-generated HTTP headers that are inserted in
requests to junctioned back-end servers. The max-webseal-header-size stanza entry
in the [junction] stanza of the WebSEAL configuration file specifies the maximum
size, in bytes, of WebSEAL-generated HTTP headers. A value of "0" disables this
function:
[junction]
max-webseal-header-size = 0

Note: The max-webseal-header-size entry does not limit the maximum size of
HTTP-Tag-Value headers.

This stanza entry can be useful if a back-end application server rejects
WebSEAL-generated HTTP headers because they are too large. For example, an
iv-creds header for a user belonging to many groups could be too large.

When configured, this stanza entry causes WebSEAL-generated headers exceeding
the maximum value to split across multiple headers. The following example output
from a CGI application illustrates the effect of split headers:
HTTP_IV_CREDS_1=Version=1, BAKs3DCCBnMMADCCBm0wggZpAgIDkDCCAYUwKzA
HTTP_IV_CREDS_2=+0+8eAgI8iAICEdYCAgCkAgFUBAaSVNCJqncMOWNuPXNlY21==
HTTP_IV_CREDS_SEGMENTS=2

If you enable this function, you must modify the back-end application to recognize
split headers, instead of standard WebSEAL-specific HTTP headers.

522 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Global signon (GSO)

Global signon (GSO) is a single signon solution that can provide alternative user
names and passwords to the back-end Web application server.

This section contains the following topics:
v “Global sign-on overview”
v “Authentication information mapping” on page 524
v “Configuring a GSO-enabled WebSEAL junction” on page 525
v “Configuration of the GSO cache” on page 525

Global sign-on overview
Global sign-on grants users access to the computing resources that they are
authorized to use through a single login. Designed for large enterprises consisting
of multiple systems and applications within heterogeneous, distributed computing
environments, GSO eliminates the need for end users to manage multiple user
names and passwords.

The integration is achieved by creating "aware" junctions between WebSEAL and
back-end Web servers. GSO resources and GSO resource groups must first be
created using the Web Portal Manager or the pdadmin utility.

When WebSEAL receives a request for a resource located on the junctioned server,
WebSEAL asks the user registry server for the appropriate authentication
information. The user registry server contains a database of mappings—for each
registered user—that provides alternative user names and passwords for specific
resources and applications.

The following figure illustrates how the GSO mechanism is used to retrieve user
names and passwords for back-end application resources.

junctions (-b gso)

WebSEAL

Secure Domain

Resources:
- accounts-app
- travel-app

HTTPS

HTTP

Host: sales_svr

Host: adm_svr

/

identity username
and

password

1

2
3

4

User Registry
Server

Client

/admin

WebSEAL

/sales

Resources:
- expenses-app
- payroll-app

Figure 49. Global sign-on mechanism

Chapter 31. Single signon solutions across junctions 523

1. The client authenticates to WebSEAL with a request for access to an application
resource on an back-end server. A Security Access Manager identity is obtained.

Note: The single signon process is independent of the initial authentication
method.

2. WebSEAL passes the Security Access Manager identity to the user registry
server.

3. The registry returns a user name and password appropriate for the user and
the requested application resource.

4. WebSEAL inserts the user name and password information in the HTTP Basic
Authentication header of the request that is sent across the junction to the
back-end server.

Authentication information mapping
The following example illustrates how the user registry provides authentication
information to WebSEAL.

If user Michael wants to run the travel-app application resource, WebSEAL asks
the user registry server for Michael's authentication information. See the Figure 49
on page 523 section for details.

The user registry server maintains a complete database of authentication
information in the form of mappings of resources to specific authentication
information. The authentication information is a user name and password
combination known as a resource credential. Resource credentials can be created
only for registered users.

The registry contains a database for Michael that maps the resource travel-app to a
specific resource credential.

The following table illustrates the structure of the GSO resource credential
database:

Michael Paul

resource: travel-app
username=mike
password=123

resource: travel-app
username=bundy
password=abc

resource: payroll-app
username=powell
password=456

resource: payroll-app
username=jensen
password=xyz

In this example, the registry returns user name "mike" and password "123" to
WebSEAL. WebSEAL uses this information when it constructs the Basic
Authentication header in the request sent across the junction to the back-end
server.

524 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Configuring a GSO-enabled WebSEAL junction

About this task

Support for GSO is configured at the junction between WebSEAL and a back-end
server.

To create a junction that enables GSO, use the create command with the –b gso
option. The following example illustrates the syntax for the create command:
create -t tcp -h host-name -b gso -T resource jct-point

Options for setting up GSO junctions are listed below:

Options Description

–b gso Specifies that GSO should provide authentication
information for all requests crossing this junction.

–T resource/resource-group Specifies the GSO resource or resource group. The
resource name used as the argument to this option
must exactly match the resource name as listed in the
GSO database. Required for gso junctions.

A junction used in a WebSEAL/GSO solution can be made secure through SSL by
additionally applying the –t ssl option when creating the junction.

Always use SSL junctions with GSO to ensure encryption of credentials and all
data.

Examples of GSO-enabled WebSEAL junctions

Junction the application resource travel-app on host sales_svr to junction point
/sales:
create -t tcp -b gso -T travel-app -h sales_svr /sales

Junction the application resource payroll-app on host adm_svr to junction point
/admin and make the junction secure with SSL:
create -t ssl -b gso -T payroll-app -h adm_svr /admin

Note: In this example, the –t ssl option dictates a default port of 443.

Configuration of the GSO cache

The global signon (GSO) cache functionality allows you to improve the
performance of GSO junctions in a high load environment. By default, the GSO
cache is disabled. Without the enhancement of the cache, a call to the user registry
server is required for each retrieval of GSO target information (GSO user name and
GSO password).

Stanza entries for configuring the GSO cache are located in the [gso-cache] stanza
of the WebSEAL configuration file. You must first enable the cache. The remaining
stanza entries configure the cache size and the timeout values for cache entries.
Larger lifetime and inactivity timeout values improve performance, but increase
the risk of information being exposed in the WebSEAL memory. Do not enable the
GSO cache if GSO junctions are not used in your network solution.

Chapter 31. Single signon solutions across junctions 525

Stanza Entries Description

gso-cache-enabled Enable and disable the GSO cache functionality.
Values are yes or no. Default is no.

gso-cache-size Sets the maximum number of entries allowed in
the cache hash table. Set this value to
approximate the peak number of concurrent user
sessions that access an application across a GSO
junction. A high value uses more memory but
results in faster information access. Each cache
entry consumes approximately 50 bytes.

gso-cache-entry-lifetime Maximum time (in seconds) any cache entry can
remain in the cache, regardless of activity. After a
cache entry expires, the next request by that
same user requires a new call to the user registry
server. Default value is 900 seconds.

gso-cache-entry-idle-timeout Maximum time (in seconds) an inactive cache
entry that can remain in the cache. Default value
is 120 seconds.

Single signon to IBM WebSphere (LTPA)

This section contains the following topics:
v “LTPA overview”
v “Configuration of an LTPA junction” on page 527
v “Configuration of the LTPA cache” on page 528
v “Technical notes for LTPA single sign-on” on page 528

LTPA overview

WebSEAL can provide authentication and authorization services and protection to
an IBM WebSphere environment. WebSphere provides support for the cookie-based
lightweight third-party authentication mechanism (LTPA).

When WebSEAL is positioned as a protective front-end to WebSphere, users are
faced with two potential login points. To achieve a single signon solution to one or
more IBM WebSphere servers across WebSEAL junctions, you can configure
WebSEAL junctions to support LTPA.

When a user makes a request for a WebSphere resource, the user must first
authenticate to WebSEAL. After successful authentication, WebSEAL generates an
LTPA cookie on behalf of the user. The LTPA cookie, which serves as an
authentication token for WebSphere, contains the user identity, key and token data,
buffer length, and expiration information. This information is encrypted using a
password-protected secret key shared between WebSEAL and the WebSphere
server.

WebSEAL inserts the cookie in the HTTP header of the request that is sent across
the junction to WebSphere. The back-end WebSphere server receives the request,
decrypts the cookie, and authenticates the user based on the identity information
supplied in the cookie.

526 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

To improve performance, WebSEAL can store the LTPA cookie in a cache and use
the cached LTPA cookie for subsequent requests during the same user session. You
can configure lifetime timeout and idle (inactivity) timeout values for the cached
cookie.

WebSEAL supports both LTPA version 1 (LtpaToken) and LTPA version 2
(LtpaToken2) cookies. LTPA version 2 cookies are recommended for cases where
the WebSphere server supports LtpaToken2.
v LtpaToken

The LtpaToken is used for interoperating with previous releases of WebSphere
Application Server. This token contains the authentication identity attribute only.
LtpaToken is generated for releases prior to WebSphere Application Server
Version 5.1.0.2 (for z/OS) or version 5.1.1 (for distributed).

v LtpaToken2
LtpaToken2 contains stronger encryption and enables you to add multiple
attributes to the token. This token contains the authentication identity and
additional information such as the attributes that are used for contacting the
original login server and the unique cache key for looking up the Subject when
considering more than just the identity in determining uniqueness.
LtpaToken2 is generated for WebSphere Application Server Version 5.1.0.2 (for
z/OS) and for version 5.1.1 (for distributed) and beyond.

For more information about using LTPA single signon in peer server environments,
see Chapter 33, “LTPA single signon,” on page 549.

Configuration of an LTPA junction

Single signon to WebSphere using an LTPA cookie requires the following
configuration tasks:
1. Enable the LTPA mechanism.
2. Provide the name of the key file used to encrypt the identity information.
3. Provide the password to this key file.
4. Ensure the LTPA cookie name for the WebSEAL junction matches the

WebSphere LTPA cookie name.
The name of the WebSEAL cookie containing the LTPA token must match the
configured name of the LTPA cookie in the WebSphere application. You can
configure the jct-ltpa-cookie-name configuration item on a global or per
junction basis. If you do not configure this cookie name, WebSEAL uses the
same default values as WebSphere. See “Specifying the cookie name for
junctions” on page 156.

The first three configuration requirements are specified in the following options to
the standard junction and virtual host junction create commands.
v The –A option enables LTPA cookies.

LTPA version 1 cookies (LtpaToken) and LTPA version 2 cookies (LtpaToken2)
are both supported. LTPA version 1 cookies are specified by default. LTPA
version 2 cookies must be specified with the additional -2 option.
Also requires –F, and –Z options.

v The –2 option specifies that LTPA version 2 cookies (LtpaToken2) are used.
The -A option without the -2 option specifies that LTPA version 1 cookies
(LtpaToken) are used.

Chapter 31. Single signon solutions across junctions 527

v The –F "keyfile" option and argument specifies the name of the key file used to
encrypt the identity information contained in the cookie. The shared key is
originally created on the WebSphere server and copied securely to the WebSEAL
server. See the appropriate WebSphere documentation for specific details
regarding this task.

v The –Z " keyfile-password" specifies the password required to open the key file.
The password appears as encrypted text in the junction XML file.

Use these options in addition to other required junction options when you create
the junction between WebSEAL and the back-end WebSphere server. For example
(entered as one line):
pdadmin> server task default-webseald-webseal.ibm.com create ...
-A -F "/abc/xyz/key.file" -Z "abcdefg" ...

Configuration of the LTPA cache

The creation, encryption, and decryption of LTPA cookies introduces processing
overhead. The LTPA cache functionality allows you to improve the performance of
LTPA junctions in a high load environment. Without the enhancement of the cache,
a new LTPA cookie is created and encrypted for each subsequent user request. By
default, the LTPA cache is enabled.

Stanza entries for configuring the LTPA cache are located in the [ltpa-cache] stanza
of the WebSEAL configuration file. Stanza entries specify the cache size and the
timeout values for cache entries. Larger lifetime and inactivity timeout values
improve performance, but increase the risk of information being exposed in the
WebSEAL memory.

Stanza Entries Description

ltpa-cache-enabled Enable and disable the LTPA cache functionality.
Values include "yes" and "no". Default value is
"yes".

ltpa-cache-size Sets the maximum number of entries allowed in
the cache hash table. Set this value to
approximate the peak number of concurrent user
sessions that access an application across an
LTPA junction. A high value uses more memory
but results in faster information access. Each
cache entry consumes approximately 50 bytes.
Default value is 4096 entries.

ltpa-cache-entry-lifetime Maximum time (in seconds) any cache entry can
remain in the cache, regardless of activity. After a
cache entry expires, the next request by that
same user requires the creation of a new LTPA
cookie. Default value is 3600 seconds

ltpa-cache-entry-idle-timeout Maximum time (in seconds) an inactive cache
entry can remain in the cache. Default value is
600 seconds.

Technical notes for LTPA single sign-on

The following technical notes apply to LTPA single signon:

528 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v The key file contains information about a specific WebSphere server. An LTPA
junction is specific to one WebSphere server. If you add more than one server to
the same junction point, all servers will share the same key file.

v For single signon to succeed, WebSEAL and the WebSphere server must share
the same registry information.

v The WebSphere server is responsible for setting up LTPA and the creation of the
shared secret key. The WebSEAL participation involves the junction and cache
configurations.

v WebSphere versions 5.1.1 and later support the new LTPA version 2 cookie
(LtpaToken2). In these environments, use the -2 option to specify LtpaToken2
support.

v WebSEAL does not use WebSphere LTPA Security Attribute Propagation to pass
additional attributes to the WebSphere server in the LTPA cookie.

Forms single signon authentication

Forms single signon authentication allows WebSEAL to transparently log an
authenticated Security Access Manager user in to a back-end junctioned application
server that requires authentication using an HTML form.

This section contains the following topics:
v “Forms single signon concepts”
v “Forms single signon process flow” on page 530
v “Requirements for application support” on page 531
v “Creation of the configuration file for forms single signon” on page 531
v “How to enable forms single signon” on page 535
v “Forms single sign-on example” on page 535

Forms single signon concepts

Forms single signon authentication supports existing applications that use HTML
forms for authentication and cannot be modified to directly trust the authentication
performed by WebSEAL. Enabling forms single signon authentication produces the
following results:
v WebSEAL interrupts the authentication process initiated by the back-end

application
v WebSEAL supplies data required by the login form and submits the login form

on behalf of the user.
v WebSEAL saves and restores all cookies and headers
v The user is unaware that a second login is taking place.
v The back-end application is unaware that the login form is not coming directly

from the user.

WebSEAL must be configured to:
v Recognize and intercept the login form
v Fill in the appropriate authentication data

The administrator enables forms single signon by:
v Creating a configuration file to specify how the login form is to be recognized,

completed, and processed

Chapter 31. Single signon solutions across junctions 529

v Enable forms single signon by configuring the appropriate junction with the –S
option (which specifies the location of the configuration file)

Forms single signon process flow

The following scenario assumes that WebSEAL has already authenticated the user.

1. Client browser requests the page:
https://webseal/formsso/content.html

2. WebSEAL passes the request to the junction.
3. Because the back-end application requires the user to authenticate, a redirect

to the application's login page (login.html) is sent back across the junction.
4. WebSEAL passes the redirect to the browser.
5. The browser follows the redirect and requests:

https://webseal/formsso/login.html

Note: Everything to this point in the process flow is standard WebSEAL
functionality.

6. WebSEAL has been configured for forms single signon (–S option on the
junction). WebSEAL recognizes the request as a request for a login page, based
on information contained in the forms SSO configuration file. The request is
passed to the junction. WebSEAL saves all cookies sent by the browser for use
in step 8.

7. The application returns the login page and perhaps application-specific
cookies.

junction -S

request1 2

4

5 6

7

8

3

910

11 12

login required

redirect to
login page

browser follows
redirect

fsso begins;
cookies saved

application
returns login form

WebSEAL
completes form

login succeeds;
redirect to request

saved cookies
restored;
fsso ends

browser follows
redirect

application
processes request

Client WebSEAL

Web
Application

Server

Figure 50. Forms single signon process flow

530 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

WebSEAL parses the HTML returned to identify the login form. When
WebSEAL finds an HTML form in the document, it compares the action URI
in the form to the value of the login-form-action stanza entry in the custom
configuration file. If there is a match, WebSEAL uses the form found.
Otherwise, WebSEAL keeps searching for other forms. If no form in the page
matches the action URI pattern from the configuration file, then WebSEAL
terminates forms single signon processing and returns an error to the browser.
WebSEAL parses the HTML page to identify the request method, the action
URI, and any other input fields in the form, and saves them for use in step 8.

8. WebSEAL generates the authentication request (completes the login form) and
sends it to the back-end application.

9. The application authenticates the user using the authentication data supplied
by WebSEAL in the form. The application returns a redirect to content.html.

10. WebSEAL combines any cookies saved from the responses at step 7 and step
9, and returns these cookies with the redirect to the browser.

Note: This completes the forms SSO-specific functionality.
11. The browser follows the redirect and requests:

https://webseal/formsso/content.html

12. WebSEAL passes the request to the back-end application across the junction.

During this process, the browser makes three requests to WebSEAL. From the
user's perspective, only a single request for https://webseal/formsso/
content.html is made. The other requests occur automatically through HTTP
redirects.

Requirements for application support

Single signon for forms authentication is supported on applications that meet the
following requirements:
v The login page or pages for the application must be uniquely identifiable using

a single regular expression or several regular expressions.
v The login page can include more than one HTML form. However, the login form

must be identified by applying a regular expression to the action URIs of each of
the login forms, or the login form must be the first form in the login page. Note
that when using the "action" attribute to identify the login form, the "action"
attribute has not passed through WebSEAL's HTML filtering. The regular
expression should match the action URI prior to being filtered.

v Client-side scripting can be used to validate input data, but it must not modify
the input data, such as using Javascript to set cookies in the user browser.

v Login data is submitted at only one point in the authentication process.
v The junction where the authentication request is directed must be the same

junction where the login page is returned.

Creation of the configuration file for forms single signon
The forms single signon configuration file is custom-created by the administrator
and saved in any location.

The –S option on the junction enables the forms single signon functionality and
specifies the name of the configuration file. See “How to enable forms single
signon” on page 535. A sample configuration file (containing commented

Chapter 31. Single signon solutions across junctions 531

instructions) is available through the LMI. Go to Secure Reverse Proxy Settings >
Global Settings > Forms Based Single Sign-On to create an FSSO configuration
file.

The configuration file must begin with the [forms-sso-login-pages] stanza and
has the following format
[forms-sso-login-pages]
login-page-stanza = xxxxx
#login-page-stanza = aaaaa
#login-page-stanza = bbbbb

[xxxxx]
login-page = regular-expression-page-match
login-form-action = regular-expression-form-match
gso-resource = gso-target
argument-stanza = yyyyy

[yyyyy]
name = method:value

The [forms-sso-login-pages] stanza

The forms single signon configuration file must always begin with the
[forms-sso-login-pages] stanza. The stanza contains one or more login-page-stanza
entries that point to other custom-named stanzas that contain configuration
information for the login pages found on the back-end application server.

The ability to support multiple login pages on a single junction is important
because a single back-end server might host several applications that each use a
different authentication method.

For example:
[forms-sso-login-pages]
login-page-stanza = loginpage1
login-page-stanza = loginpage2

The custom login page stanza

Each custom login page stanza is used to intercept a particular URL pattern. The
stanza can contain the following stanza entries:

Stanza Entries Description

login-page
This stanza entry specifies a pattern, using a regular expression,
that uniquely identifies requests for an application's login page.
WebSEAL intercepts these pages and begins the forms single
signon process. The regular expression is compared against the
request URI and is relative to (and not including) the junction
point where the server is mounted.

login-form-action
This stanza entry specifies a pattern, using a regular expression,
that identifies which form contained in the intercepted page is the
application's login form. If there is only a single form in the page,
or if the login form is the first form in the document, then the
expression can be "*". Otherwise, the regular expression should
match the "action" attribute of the login form.

532 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Stanza Entries Description

gso-resource
This stanza entry specifies the GSO resource to use when retrieving
the GSO user name and password from a GSO database. Leave this
stanza entry blank if GSO is not used to store a GSO user name
and password.

argument-stanza
This stanza entry points to another custom stanza that lists the
fields and data required for completing the login form.

For example:
[loginpage1]
login-page = /cgi-bin/getloginpage*
login-form-action = *
gso-resource =
argument-stanza = form1-data

About the login-page stanza entry:

The value of the login-page stanza entry is a regular expression that WebSEAL
uses to determine if an incoming request is actually a request for a login page. If
this is the case, WebSEAL intercepts this request and begins the forms single
signon processing.

Only one login-page stanza entry is allowed in each custom login page stanza. You
must create an additional custom login page stanza for each additional login-page
stanza entry.

The login-page regular expression is compared against the request URI, relative to
the junction. In the following example, the URI of a request to a WebSEAL server
called "websealA" for a resource on a junction called "junctionX" might appear as
follows:
https://websealA.ibm.com/junctionX/auth/login.html

The part of this URL that is compared to the login-page regular expression is:
/auth/login.html

About the login-form-action stanza entry:

The login-form-action stanza entry is used to identify the login form on the
intercepted page. Only one login-form-action stanza entry is allowed in each
stanza.

The value of the login-form-action stanza entry is a regular expression that is
compared against the contents of the "action" attribute of the HTML "form" tag.
The "action" attribute is a URI expressed as a relative, server-relative, or absolute
path. The login-form-action stanza entry must match this path as it comes from
the back-end server - even if it would normally be modified by WebSEAL before
being forwarded to the client.

If multiple "action" attributes on the page match the regular expression, only the
first match is accepted as the login form.

If the regular expression does not match any form on the page, an error is returned
to the browser reporting that the form could not be found.

Chapter 31. Single signon solutions across junctions 533

You can set login-form-action = * as a simple way to match the login form when
the page includes only one login form.

Use of regular expressions

The following table lists the special characters allowed in regular expressions used
in the forms single signon configuration file.

* Matches zero or more characters

? Matches any one character

\ Escape character (for example, \? matches ?)

[acd] Matches character a, c, or d (case-sensitive)

[^acd] Matches any character except a, c, or d (case-sensitive)

[a-z] Matches any character between a and z (lowercase letter)

[^0-9] Matches any character not between 0 and 9 (not a number)

[a-zA-Z] Matches any character between a and z (lowercase) or A and Z
(uppercase)

In most cases, special characters are not required because the login page request is
a single identifiable URI. In some cases, you can use the "*" at the end of the
expression so that any query data at the end of the URI does not prevent the login
page from being matched.

The argument stanza

The custom argument stanza contains one or more entries in the following form:
name = method:value

name

The value of the name variable is set to equal the value of the "name" attribute of
the HTML "input" tag. For example:
<input name=uid type=text>Username</input>

This variable can also use the value of the "name" attribute of the HTML "select" or
"textarea" tags.

method:value

This combination retrieves the authentication data required by the form. The
authentication data can include:
v Literal string data

string:text

The input used is the text string.
v GSO user name and password

gso:username
gso:password

The input is the current user's GSO username and password (from the target
specified in the custom login page stanza).

v Value of an attribute in the user's credential
cred:cred-ext-attr-name

534 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

By default, the credential includes information such as the user's Security Access
Manager user name and DN. To use the user's Security Access Manager user
name as the input value, specify the value as:
cred:azn_cred_principal_name

The user's DN can be accessed as:
cred:azn_cred_authzn_id

Custom credential attributes (added via the tag-value mechanism) can also be
used.

It is not necessary to specify hidden input fields in this stanza. These fields are
automatically retrieved from the HTML form and submitted with the
authentication request.

For example:
[form1-data]
uid = string:brian

How to enable forms single signon

After completing the custom forms single signon configuration file, you must
configure the appropriate junction to support forms single signon. Use the –S
junction option with the pdadmin create command:
-S config-file

The config-file argument specifies the location of the custom forms single signon
configuration file.

The –S junction option enables the forms single signon functionality on the
junction. For example (entered as one line):

UNIX:
pdadmin> server task web1-webseald-cruz create -t tcp -h websvrA
-S fsso.conf /jctX

The configuration file is read when the junction is created and each time WebSEAL
is started. Errors in the configuration file can cause WebSEAL to fail at start-up.

Forms single sign-on example
The following help site sample invokes its own forms-based login. The example
shows how a forms single sign-on solution can provide seamless access to the site
for its enrolled users.

This section contains:
v A form section, similar to the form sent on the HTML login page returned by

the help application
v The custom forms single signon configuration file used to process this form

The form found in the intercepted HTML page:
<form name="confirm" method="post" action="../files/wcls_hnb_welcomePage2.cgi">
<p>
Employee Serial Number:
<input name="data" size="10" maxlength="6">
<p>
Country Name:

Chapter 31. Single signon solutions across junctions 535

<select name="Cntselect" size="1">
<OPTION value="notselected" selected>Select Country</OPTION>
<OPTION value=675>United Arab Emirates - IBM</OPTION>
<OPTION value=866>United Kingdom</OPTION>
<OPTION value=897>United States</OPTION>
<OPTION value=869>Uruguay</OPTION>
<OPTION value=871>Venezuela</OPTION>
<OPTION value=852>Vietnam</OPTION>
<OPTION value=707>Yugoslavia</OPTION>
<OPTION value=825>Zimbabwe</OPTION>
</select>
<p>
<input type=submit value=Submit>
</form>

The custom configuration file used to process this form:
helpnow FSSO configuration:

[forms-sso-login-pages]
login-page-stanza = helpnow

[helpnow]
The HelpNow site redirects you to this page
you are required to log in.
login-page = /bluebase/bin/files/wcls_hnb_welcomePage1.cgi

The login form is the first in the page, so we can just call it
’*’.
login-form-action = *

The GSO resource, helpnow, contains the employee serial number.
gso-resource = helpnow

Authentication arguments follow.
argument-stanza = auth-data

[auth-data]
The ’data’ field contains the employee serial number.
data = gso:username

The Cntselect field contains a number corresponding to the employee’s
country of origin. The string "897" corresponds to the USA.
Cntselect = string:897

536 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 32. Cross-domain single sign-on

Cross-domain single signon (sometimes referred to as CDSSO) allows web users to
perform a single signon and move seamlessly between two separate secure
domains when requesting a resource.

This chapter discusses the concepts and configuration steps required to implement
a cross-domain single signon solution.

Topic Index:
v “Cross-domain single signon concepts”
v “Configuration of cross-domain single signon” on page 540
v “Extended attributes for CDSSO” on page 546
v “UTF-8 encoding of tokens for cross domain single signon” on page 548

Cross-domain single signon concepts

This section contains the following topics:
v “Cross-domain single signon overview”
v “Default and custom authentication tokens” on page 538
v “Extended user attributes and identity mapping” on page 538
v “CDSSO process flow with attribute transfer and user mapping” on page 538

Cross-domain single signon overview

Cross-domain single signon (sometimes referred to as CDSSO) provides a default
mechanism for transferring user credentials between unique servers and domains.
CDSSO allows Web users to perform a single signon and move seamlessly between
two separate secure domains when requesting a resource. The CDSSO
authentication mechanism does not rely on a master authentication server
(sometimes referred to as the MAS) (see Chapter 34, “E-community single signon,”
on page 551).

CDSSO supports the goals of scalable network architecture by allowing the
integration of multiple secure domains. For example, a large corporate extranet can
be set up with two or more unique domains—each with its own users and object
space. CDSSO allows movement of users between the domains with a single
signon.

When a user makes a request to a resource located in another domain, the CDSSO
mechanism transfers an encrypted user identity token from the first domain to the
second domain. The identity information in this token indicates to the receiving
domain that the user is successfully authenticated in the first domain. The identity
does not contain password information. The receiving server uses this token to
build credentials in its own cache for that user. The user is not forced to perform
an additional login.

© Copyright IBM Corp. 2002, 2013 537

Default and custom authentication tokens

Cross-domain single signon solutions employ authentication tokens that convey an
encoded version of the user identity to the destination server. The construction of
these tokens by the initial server is called "token creation". The decoding and use
of the token by the destination server is called "token consumption". WebSEAL
uses built-in token create and token consume modules to allow default CDSSO
operation.

Alternatively, you can build custom token create and consume modules to meet
the specific requirements of your network and Security Access Manager
implementation. Complete information and API reference material for
cross-domain external authentication can be found in the IBM Security Access
Manager for Web: Web Security Developer Reference.

Extended user attributes and identity mapping

The CDSSO process is supported by the cross-domain mapping framework
(sometimes referred to as CDMF) to allow the inclusion of extended attributes to
further describe a user identity. CDMF is a programming interface that can handle
extended user attributes during token creation and provide mapping services for
the user identity during token consumption.

Built-in default CDMF operation during CDSSO returns:
v "SUCCESS" and no extended attributes to the CDSSO token creation module
v "SUCCESS" and no identity mapping to the CDSSO token consumption module.

You can use the cross-domain mapping framework C API to customize the
handling of user attributes and the mapping of user identities. Complete
information and API reference material for the cross-domain mapping framework
can be found in the IBM Security Access Manager for Web: Web Security Developer
Reference.

Alternatively, attributes can be specified in the WebSEAL configuration file for
transfer from the source server to the destination server.

CDSSO process flow with attribute transfer and user mapping

The following process flow description is illustrated in Figure 51 on page 540.
1. Any user who wants to participate in multiple domains must have a valid

user account in the initial domain and an identity that can be mapped into a
valid account in each of the participating remote domains.
A user cannot invoke the CDSSO functionality without initially authenticating
to an initial secure domain (A) that contains the user's account.

2. The user makes a request to access a resource in domain B using a custom
link on a Web page located on the server websealA.
The link is constructed using a special CDSSO management page expression:
/pkmscdsso?destination-URL

For example:
http://websealA/pkmscdsso?https://websealB/resource.html

538 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note: The pkmscdsso management page is a management command to the
WebSEAL server. It is not represented in the object space and you cannot
attach policies to it.

3. The request is first processed by the websealA server in domain A. The
websealA server calls the ssocreate module to build an authentication token
that contains the user's credentials, including the Security Access Manager
identity (short name), the current domain ("A"), additional user information,
and a time stamp.

4. The token create module can obtain extended user attribute information that
can be used by domain B during the user mapping process.
Attribute information can come from two sources. First, the
[cdsso-token-attributes] stanza of the WebSEAL configuration file is checked
for configured stanza entries. Secondly, the CDMF library is called
(cdmf_get_usr_attributes) to obtain additional attributes. Attributes from the
CDMF library override any settings in the [cdcsso-token-attributes] stanza.

5. WebSEAL triple-DES encrypts this token data with the symmetric key
generated by the LMI. This key file is shared and specified in the
[cdsso-peers] stanza of the WebSEAL configuration file on both domain A and
domain B WebSEAL servers.

6. The token contains a configurable time stamp (authtoken-lifetime) that
defines the lifetime of the token. The time stamp, when properly configured,
can prevent replay attacks.

7. The token is placed in a redirected request to the destination server, using the
URL contained in the pkmscdsso link. For example:
http://websealB/resource.html?PD-ID=encoded-authn-token&PD-REFERER=websealA

The PD-ID argument name in the query string is obtained from the
cdsso-argument stanza entry of the WebSEAL configuration file.
The ssocreate module provides the PD-REFERER argument with the name of
the origin server (websealA) so that the destination server (websealB)
accurately knows where the redirected request is from, without relying on the
browser's Referer header information.

8. The websealA server sends a redirect response for the resource on websealB
containing the encrypted token back to the browser.

9. The websealB server recognizes the request as one containing a CDSSO token
(based on the value of the cdsso-argument stanza entry of its WebSEAL
configuration file).

10. The websealB server decodes and validates the token as coming from the
referring domain. This process is performed by the "token consume"
authentication module (ssoconsume).

11. When constructing the attribute list for the new identity, the token consume
module first processes the attributes according to the settings in the
[cdsso-incoming-attributes] stanza of the WebSEAL configuration file. Then
the module calls to the CDMF library, which performs the actual user
mapping (cdmf_map_usr).
The CDMF library passes the user's mapped identity, and any extended
attribute information, back to the token consume module. The token consume
module passes the identity to the WebSEAL server, which builds a credential.

12. The websealB authorization service permits or denies access to protected
objects based on the user's credential and the specific ACL and POP
permissions associated with the requested objects.

Chapter 32. Cross-domain single sign-on 539

Configuration of cross-domain single signon

This section contains the following introductory topics:
v “CDSSO configuration summary”
v “CDSSO conditions and requirements” on page 541

The main configuration tasks are described in the following topics:
1. “Enabling and disabling CDSSO authentication” on page 542
2. “Encrypting the authentication token data” on page 542
3. “Configuring the token time stamp” on page 543
4. “Configuring the token label name” on page 544
5. “Creating the CDSSO HTML link” on page 544

The remaining topics provide supporting information:
v “Handling errors from CDMF during token creation” on page 545
v “Protection of the authentication token” on page 545
v “Use of cross-domain single signon with virtual hosts” on page 545

CDSSO configuration summary

The following configuration steps are explained in detail in the remaining sections
of this CDSSO chapter division.

Configuring CDSSO token create functionality

About this task

The following procedures are appropriate for the initial WebSEAL server:

Procedure
1. Enable WebSEAL to generate CDSSO tokens (cdsso-create).
2. Configure the built-in token creation module (sso-create).

WebSEAL
A

single sign-on

Domain A

/

WebSEAL
B

Domain B

/

SSL

CDMF
Library

ssoconsume
Module

/pkmscdsso

ssocreate
Module

Client

CDMF
Library

Figure 51. Cross-domain single signon process with CDMF

540 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

3. Create the key file used to encode and decode the token. Copy the key file to
all appropriate participating servers ([cdsso-peers] stanza).

4. Configure the token time stamp (authtoken-lifetime)
5. Configure the token label (cdsso-argument).
6. Create the CDSSO HTML link (/pkmscdsso).

Configuring CDSSO token consume functionality

About this task

The following procedures are appropriate for the destination WebSEAL server:

Procedure
1. Enable WebSEAL to consume CDSSO tokens (cdsso-auth) for authentication.
2. Configure the built-in token consumption module (sso-consume).
3. Assign the appropriate key file ([cdsso-peers] stanza).
4. Configure the token time stamp (authtoken-lifetime)
5. Configure the token label (cdsso-argument).

CDSSO conditions and requirements
v All WebSEAL servers participating in CDSSO must have machine times

synchronized. Authentication between servers can fail when machine time
differences are too great.

v For CDSSO to function successfully, each participating WebSEAL server must
reveal its fully qualified host name to the other participating servers in the
cross-domain environment. If any host name does not include a domain, CDSSO
cannot be enabled and an error message is logged in msg_webseald.log. When
setting up a CDSSO environment, ensure that the machine-specific networking
setup for each participating server is configured to identify the server with a
fully qualified host name.

v Because some WebSEAL configuration requires machine host names to be
described as fully qualified host names, you must ensure that your system and
network can resolve machine names into fully qualified host names. For
example, using fully qualified host names allows for many host names (IP
addresses) per machine, as in the case of multiple WebSEAL instances.

v Do not reuse key pairs (used to encrypt and decrypt token data) generated for a
specific CDSSO environment in any other CDSSO environments. Always
generate unique key pairs for each CDSSO environment.

Resolving machine names
CDSSO can be unintentionally disabled upon WebSEAL startup because the
machine itself is not adequately configured to resolve machine names.

About this task

The machine on which WebSEAL is located needs to be able to fully resolve an IP
address. You can use the LMI to configure the DNS.

The following general information is provided only as an example:

Goal: Configure the machine to first look to DNS before checking the local
/etc/hosts file for DNS information.

Chapter 32. Cross-domain single sign-on 541

Procedure
1. Make sure that /etc/resolv.conf has valid DNS server entries.
2. Edit /etc/nsswitch.conf so the hosts line indicates the correct order for

checking DNS information:
hosts dns files

Alternative goal: Configure the machine to first use local DNS information
(/etc/hosts) before checking DNS.

Results
1. Configure the machine to check /etc/hosts before looking to DNS. Edit

/etc/nsswitch.conf so the hosts line indicates the correct order for checking
DNS information:
hosts files dns

2. Enter appropriate DNS information in /etc/hosts:
webseal1.fully.qualified.com 1.11.111.111
webseal2.fully.qualified.com 2.22.222.222

Enabling and disabling CDSSO authentication

About this task

Configuration for the initial WebSEAL server:

To enable the CDSSO token create module, configure the following stanza entry in
the WebSEAL configuration file:
[cdsso]
cdsso-create = {none|http|https|both}

The value both specifies both HTTP and HTTPS protocols. The value none disables
the token create module.

Configuration for the destination WebSEAL server:

To enable the CDSSO token consume module, configure the following stanza entry
in the WebSEAL configuration file:
[cdsso]
cdsso-auth = {none|http|https|both}

The value both specifies both HTTP and HTTPS protocols. The value none disables
the token consume module.

Note: You must stop and restart the WebSEAL server in order to activate changes
to the WebSEAL configuration file. Complete all of the applicable configuration
steps in this section and then restart WebSEAL.

Encrypting the authentication token data

About this task

WebSEAL must encrypt the authentication data placed in the token using a key
generated through the LMI. You must "synchronize" this key by sharing the key
file with each participating WebSEAL server in each participating domain. Each
participating WebSEAL server in each domain needs to use the same key.

542 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note: Do not reuse key pairs (used to encrypt and decrypt token data) generated
for a specific CDSSO environment in any other CDSSO environments. Always
generate unique key pairs for each CDSSO environment.

The generated key is a triple DES 192 bit key. You cannot specify a life span time
on this key.

Note: The distribution of key files is not a part of the Security Access Manager
CDSSO process.

Specify this key file in the [cdsso-peers] stanza of the WebSEAL configuration file
of the participating WebSEAL server in each domain. The format must include the
fully qualified host name of the WebSEAL server and the name of the key file:
[cdsso-peers]
fully-qualified-host-name = keyfile-name

Configuration example for server websealA in domain A:
[cdsso-peers]
websealB.domainB.com = A-B.key

This setting specifies what key websealA uses to encrypt a token destined for
websealB in domain B.

Configuration example for server websealB in domain B:
[cdsso-peers]
websealA.domainA.com = A-B.key

This setting specifies what key websealB (in domain B) uses to decrypt a token
received from websealA in domain A.

In this example, the A-B.key file is generated on one machine (websealA, for
example) and manually (and securely) copied to the other machine (websealB, for
example).

Configuring the token time stamp

About this task

The token contains a configurable time stamp that defines the lifetime of the
identity token. After the time stamp has expired, the token is considered not valid
and is not used. The time stamp is used to help prevent replay attacks by setting a
value short enough to prevent the token from being stolen and replayed within its
lifetime.

The authtoken-lifetime stanza entry, located in the [cdsso] stanza of the WebSEAL
configuration file, sets the token lifetime value. The value is expressed in seconds.
The default value is 180:
[cdsso]
authtoken-lifetime = 180

You must take into account any clock skew among the participating domains.
Clock skew means that the system times differ on the relevant servers in each
domain.

Chapter 32. Cross-domain single sign-on 543

When this difference approaches the value of authtoken-lifetime, the effective
lifetime of the token is greatly reduced. When this difference exceeds the value of
authtoken-lifetime, tokens from one domain cannot be valid for the other
domain.

You should adjust authtoken-lifetime accordingly. However, when clock skew
requires that authtoken-lifetime be set to a large value, the risk of replay attacks
increases. In this case, you should consider synchronizing the system time on the
relevant servers in each domain.

For more information, see the IBM Security Web Gateway Appliance: Web Reverse
Proxy Stanza Reference.

Configuring the token label name

About this task

The authentication information used for a single signon transaction is placed in the
redirected request as an encrypted token query string argument to the request.
This token string requires a name, or label, to identify it. The label name uniquely
identifies the request to the receiving WebSEAL server as a single signon request to
be handled by the CDSSO token consume mechanism (module).

You must configure this token label identically on both WebSEAL servers
participating in the single signon functionality. To configure the token label, use the
cdsso-argument stanza entry located in the [cdsso] stanza of the WebSEAL
configuration file. For example (default):
[cdsso]
cdsso-argument = PD-ID

For more information, see the IBM Security Web Gateway Appliance: Web Reverse
Proxy Stanza Reference.

Creating the CDSSO HTML link

About this task

The HTML link (located on the original WebSEAL server) that connects the user to
a resource on the destination WebSEAL server must use a special CDSSO
expression that directs the request to a CDSSO management page pkmscdsso:
/pkmscdsso?destination-URL

For example:
http://websealA/pkmscdsso?https://websealB/resource.html

Note: The pkmscdsso management page is a management command to the
WebSEAL server. It is not represented in the object space and you cannot attach
policies to it.

The token create module creates and encodes an authentication token (containing
the user's identity information) and includes this token in a redirect response to the
resource using the destination URL information from the CDSSO link. For example:
http://websealB/resource.html?PD-ID=encoded-authn-token&PD-REFERER=websealA

544 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Handling errors from CDMF during token creation

About this task

During the creation of a CDSSO token, the ssocreate module calls the CDMF
library to acquire any extended attributes to be included in the token. Extended
attributes (that further describe the user) can be required for successful identity
mapping of the user on the destination server. The CDMF API uses the
cdmf_get_usr_attributes call to acquire extended attributes.

It is possible for the cdmf_get_usr_attributes call to fail in obtaining the required
information and return an error. In such a case, the subsequent behavior of the
token creation process can be controlled through use of the propagate-cdmf-errors
stanza entry located in the [cdsso] stanza. Values for this stanza entry include "yes"
and "no".

A "no" value (default) allows the token creation process to proceed even when
CDMF fails to obtain attributes and returns an error.

A "yes" value forces the token creation process to end when CDMF fails to obtain
attributes and returns an error.

Example:
[cdsso]
propagate-cdmf-errors = no

Protection of the authentication token
While the authentication token does not contain authentication information (such
as user name and password), it does contain a user identity that is trusted within
the receiving domain. The token itself must therefore be protected against theft and
replay.

The token is protected through the use of SSL to secure communications between
the WebSEAL servers and the users. The token could conceivably be stolen from
the user's browser history. The time stamp on the token should be short enough to
make it unlikely that the token could be stolen and replayed during the lifetime of
the token.

However, a token that has expired with respect to its time stamp is still vulnerable
to cryptographic attacks. If the key used to encrypt the token is discovered or
otherwise compromised, malicious users could build their own tokens.

Then, the tokens can be inserted into a pseudo-CDSSO flow. They would be
indistinguishable from real authentication tokens to the WebSEAL servers
participating in the CDSSO domain. For this reason, the keys used to protect the
tokens must also be carefully managed and changed on a regular basis.

Use of cross-domain single signon with virtual hosts

See “Cross-domain single signon with virtual hosts” on page 494.

Chapter 32. Cross-domain single sign-on 545

Extended attributes for CDSSO
CDSSO can handle extended attributes in two ways.

Two ways to handle extended attributes:
v The [cdsso-token-attributes] stanza of the WebSEAL configuration file is

checked for configured stanza entries.
v The CDMF library is called (cdmf_get_usr_attributes) to obtain additional

attributes.

Attributes from the CDMF library override any settings in the
[cdcsso-token-attributes] stanza.

See the IBM Security Access Manager for Web: Web Security Developer Reference for
information on writing a CDMF library.

This section describes the use of the [cdsso-token-attributes] stanza and contains
the following topics:
v “Extended attributes to add to token”
v “Extended attributes to extract from a token” on page 547

Extended attributes to add to token

In the WebSEAL configuration file, you can specify extended attributes from a user
credential to add to the cross-domain single signon token. Extended attributes
consist of information about a user identity that is added to an extended attribute
list when a user credential is created. Extended attributes can be added by a
number of authentication mechanisms, including custom authentication modules.
The custom authentication modules can be used, for example, to obtain user
information from a registry that is external to Security Access Manager.

You can use this setting to customize the contents of the cross-domain single
signon token. This feature enables you to tailor the token contents to match the
needs of the destination domain. When you use this feature to add an attribute to
a token, you must also configure the WebSEAL configuration file for the server in
the destination domain. For the destination server, the [cdsso-incoming-attributes]
stanza is used to specify the handling (extract or ignore) of each attribute.

You can specify extended attributes by name, or you can declare a pattern that
matches multiple attribute names. You can use standard Security Access Manager
wildcard-matching characters. For a list of supported wildcard pattern matching
characters, see “Supported wildcard pattern matching characters” on page 67.

Each entry is assigned the name of the domain for which the token is intended.
You can include multiple entries specifying names or patterns for each domain.

The syntax is:
[cdsso-token-attributes]
domain_name = pattern1
domain_name = pattern2
...
domain_name = patternN
<default> = pattern1
<default> = pattern2
...
<default> = patternN

546 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The <default> entry is optional. When WebSEAL does not find an entry that
matches the domain name, WebSEAL looks for a <default> entry. If the
configuration file contains a <default> entry, WebSEAL uses the assigned attribute
patterns for the current domain. The string <default> is a keyword, and must be
specified exactly as shown above, including the "<" and ">" characters.

Example: You are creating a cross-domain single signon solution between two
domains: example1.com and example2.com. Users log in to example1.com but can
get redirected to example2.com during the user session. Your deployment includes
a customized external authentication C API module that inserts information into
each user credential. The information includes a fixed name attribute
"job_category" and a variable number of attributes, each prefixed with the
characters "my_ext_attr_". This information needs to be added to the cross-domain
token. The configuration file entries would be:
example2.com = job_category
example2.com = my_ext_attr_*

Extended attributes to extract from a token
In the WebSEAL configuration file, you can specify how the token consume
module handles extended attributes that have been added to a cross-domain single
sign-on token.

The attributes can be either extracted or ignored. In some cases, you must extract
the attributes because there is no way for a server in the destination domain to
generate them. In other cases, you do not want to extract the tokens, because the
server in the destination domain can use an independent process to gather the
same extended attributes. For example, the attribute can reflect a timestamp that
needs to reflect the system time on the destination server.

In the token consume module, attributes that are extracted from the token are
passed through to the cross-domain mapping framework module. The default
cross-domain mapping framework module passes attributes directly through to the
user credential. Customized cross-domain mapping framework modules can
manipulate attributes as needed before passing them to the user credential.

The syntax for the entries is as follows:
[cdsso-incoming-attributes]
attribute_pattern = {preserve|refresh}

Typically, the names of the extended attributes (attribute_pattern) match the names
of the attributes specified in the [cdsso-token-attributes] stanza of the
configuration file for a WebSEAL server that generates the tokens. The value must
be one of the following keywords:
v preserve

Extract all attributes that match attribute_pattern.
v refresh

Do not extract attributes that match attribute_pattern.

Extended attributes in the token that do not match an entry in
[cdsso-incoming-attributes] are preserved (extracted).

The order of the entries in the stanza is important. The first entry that matches an
attribute name is used. Other entries are ignored. For example, if you want to

Chapter 32. Cross-domain single sign-on 547

extract the attribute named my_special_attr1 but want to ignore all other entries
with the prefix my_special_attr_, the stanza entries should be:
[cdsso-incoming-attributes]
my_special_attr1 = preserve
my_special_attr_* = refresh

Using the examples shown above in “Extended attributes to add to token” on page
546, the entries in the WebSEAL configuration file for a server that operates in the
example2.com domain could be:
[cdsso-incoming-attributes]
job_category = preserve
my_cdas_attr_1 = preserve
my_cdas_attr_* = refresh

In this example, the attributes job_category and my_cdas_attr_1 are extracted from
the token. The remainder of the attributes with the prefix my_cdas_attr_ are
ignored.

UTF-8 encoding of tokens for cross domain single signon

The use of UTF-8 encoding for strings within tokens used for cross domain single
signon is specified in the WebSEAL configuration file.
[cdsso]
use-utf8 = {true|false}

The default value is true.

When use-utf8 is set to "false", strings are encoded using the local code page. Use
this value when implementing cross domain single signon with pre-version 5.1
WebSEAL servers. WebSEAL servers from versions prior to version 5.1 do not use
UTF-8 encoding for tokens. When deploying WebSEAL in an environment that
includes these older servers, configure WebSEAL to not use UTF-8 encoding. This
setting is necessary for backward compatibility.

For more information on WebSEAL support for UTF-8 encoding, see “Multi-locale
support with UTF-8” on page 57.

548 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 33. LTPA single signon

This chapter discusses single sign-on access to peer security servers using an LTPA
cookie for authentication.

This section contains the following topics:
v “LTPA single sign-on overview”
v “Configuring LTPA single signon”
v “Technical notes for LTPA single sign-on” on page 550

LTPA single sign-on overview
Single sign-on solutions across junctions describes how WebSphere provides single
sign-on to junctioned servers using lightweight third-party authentication
mechanism (LTPA). LTPA version 2 can also be used to provide single signon to
peer servers.

See Chapter 31, “Single signon solutions across junctions,” on page 511 for details.

When WebSEAL is positioned within an environment with other authentication
enabled servers (e.g. DataPower) there are many potential login point. To achieve a
single signon solution to one or more WebSphere or DataPower servers you can
configure WebSEAL to accept and generate LTPA cookies.

When a user makes a request for a WebSEAL protected resource, the user must
first authenticate to WebSEAL. After successful authentication, WebSEAL generates
an LTPA cookie on behalf of the user. The LTPA cookie, which serves as an
authentication token, contains the user identity, key and token data, buffer length,
and expiration information. This information is encrypted using a secret key
shared between WebSEAL and the other LTPA-enabled servers.

WebSEAL inserts the cookie in the HTTP response which is sent back to the client.
The LTPA enabled server receives this cookie upon the next request, decrypts the
cookie, and authenticates the user based on the identity information supplied in
the cookie.

WebSEAL only supports LTPA version 2 (LtpaToken2) cookies.

Configuring LTPA single signon

About this task

LTPA cookies are generated when LTPA authentication is enabled within
WebSEAL. These cookies can then be used to achieve single signon to other
LTPA-enabled authentication servers. For further details, see “LTPA authentication”
on page 155.

Procedure

Single signon to other LTPA-enabled servers using an LTPA cookie requires the
following configuration tasks:

© Copyright IBM Corp. 2002, 2013 549

1. Enable the LTPA mechanism.
2. Provide the name of the key file used to encrypt the identity information.
3. Provide the password to this key file.
4. Ensure the LTPA cookie name for the WebSEAL junction matches the

WebSphere LTPA cookie name.
The name of the WebSEAL cookie containing the LTPA token must match the
configured name of the LTPA cookie in theWebSphere application. You can
configure the jct-ltpa-cookie-name configuration item on a global or per
junction basis. If you do not configure this cookie name, WebSEAL uses the
same default values as WebSphere. See “Specifying the cookie name for
junctions” on page 156.

The first three configuration requirements are specified in the options to the
standard junction and virtual host junction create commands. Use these options in
addition to other required junction options when you create the junction between
WebSEAL and the back-end WebSphere server. For example (entered as one line):
pdadmin> server task default-webseald-webseal.ibm.com create ...
-A -F "key.file" -Z "abcdefg" ...

These options are further described in “LTPA authentication” on page 155.

Technical notes for LTPA single sign-on
The following technical notes apply to LTPA single signon.
v The key file contains information about a specific LTPA enabled authentication

server. A single key file is used by WebSEAL when generating/authenticating
LTPA cookies and as such all of the LTPA enabled server must share the same
key file. If you add more than one server to the same junction point, all servers
share the same key file.

v For single signon to succeed, WebSEAL and the LTPA enabled authentication
server must share the same registry information.

v The WebSphere server is responsible for setting up LTPA and the creation of the
shared secret key.

v WebSphere only supports LTPA version 2 cookies.
v WebSEAL does not use WebSphere LTPA Security Attribute Propagation to

include additional attributes within the LTPA token.

550 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 34. E-community single signon

E-community single signon (sometimes referred to as ECSSO) allows authenticated
users to access protected resources across multiple servers in multiple domains
without requiring additional logins.

This chapter discusses the concepts and configuration steps required to implement
an e-community single signon solution.

Topic Index:
v “E-community single signon concepts”
v “Configuration of e-community single sign-on” on page 559
v “Extended attributes for ECSSO” on page 568
v “UTF-8 encoding of tokens for e-community single signon” on page 570

E-community single signon concepts

This section contains the following topics:
v “E-community overview”
v “E-community features and requirements” on page 553
v “E-community process flow” on page 553
v “The e-community cookie” on page 557
v “The vouch-for request and reply” on page 558
v “The vouch-for token” on page 559

E-community overview

E-community single signon (sometimes referred to as ECSSO) is another
implementation of cross-domain authentication in a Security Access Manager
environment. The goal of cross-domain authentication is to allow users to access
resources across multiple servers in multiple domains without having to perform
multiple logins.

An "e-community" is a group of distinct domains (Security Access Manager or
DNS) that participate in a business relationship. These participating domains can
be configured as part of one business (and perhaps using different DNS names for
geographic reasons) or as disparate businesses with a shared relationship (for
example, company headquarters, a life insurance company, and a financial
management company).

In either scenario, there is always one domain that is designated the "home" or
"owner" domain. In the case of participating businesses, the home domain owns
the business agreements that govern the e-community.

In both scenarios, authentication information about the users who participate in the
e-community (including the user names and passwords used for authentication) is
maintained in the home domain. This arrangement allows a single point of
reference for administration issues, such as help desk calls within the e-community
that all refer to the home domain.

© Copyright IBM Corp. 2002, 2013 551

Alternatively, you can use the Security Access Manager Web Portal Manager to
delegate the management of this information that participating domains have
responsibility for the administration of their own users.

The diagram below illustrates a sample e-community with two participating
domains: domain A (dA.com) and domain B (dB.com). In this example, domain A
represents the home or owner domain. Domain B is a participating, or "remote",
domain.

The home domain "owns" the users—that is, it controls the user's authentication
information. Regardless of where a user makes a request for resources, the home
domain is always where the user must authenticate.

Authentication occurs against a master authentication server (sometimes referred to
as the MAS)—a server (or set of replica servers) that is located in the home domain
and configured to authenticate all users. The diagram represents the MAS as
mas.dA.com. The duty of the MAS should be restricted to providing authentication
services. The MAS should not contain resources that are available to users.

After a user has successfully authenticated to the MAS, the MAS generates a
"vouch-for" token. This token is passed back to the server where the user is
making the request. The server treats this vouch-for token as proof that the user
has successfully authenticated to the MAS and can participate in the e-community.

The transfer of information between e-community domains is described in detail in
the section “E-community process flow” on page 553.

Domain A Domain B

mas.dA.com

WebSEAL 1

WebSEAL 2

WebSEAL MAS WebSEAL 3

WebSEAL 4

ws2.dA.com

ws1.dA.com

ws3.dB.com

ws4.dB.com

Client

Figure 52. The e-community model

552 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

E-community features and requirements
v The ECSSO model supports access using direct URLs (bookmarks) to resources.

This feature contrasts with the cross-domain single signon (CDSSO) model,
which relies on a specially configured pkmscdsso link (see “Cross-domain single
signon concepts” on page 537).

v All users who participate in the e-community authenticate against a single
master authentication server (MAS) located in the "home" domain.

v The e-community implementation allows for "local" authentication if the user
does not have a valid account with the MAS (for example, users who belong to
domain B but do not participate in the domain A-domain B e-community, where
domain A is the "home" domain).

v Unless WebSEAL is configured to handle authentication failure at the MAS, a
user who fails authentication with the MAS when requesting a resource in a
non-MAS (but participating) domain is given the option to authenticate to the
local server where the request is being made.

v The MAS (and eventually other selected servers in the remote domains)
"vouches for" the user's authenticated identity.

v Domain-specific cookies are used to identify the server that can provide
vouch-for services. Domain cookies allow servers in a remote domain to request
vouch-for information locally. The encrypted contents of e-community cookies
do not contain user identity or security information.

v Special tokens are used to pass encrypted "vouched for" user identity. The
vouch-for token does not contain actual user authentication information.
Integrity is provided by shared secret key (triple-DES). The token contains a
timeout (lifetime) value to limit the duration of the token validity.

v WebSEAL provides a configuration option that, when enabled, permits only the
MAS to generate "vouch-for" tokens.

E-community process flow

An e-community consists of a master authentication WebSEAL server (MAS) and
additional WebSEAL servers located in the home domain and remote domains. The
MAS can exist as a single instance of a WebSEAL server, or a set of WebSEAL
replicas located behind a load balancer (where the load balancer is identified as the
MAS).

All participating local and remote WebSEAL servers need to be configured to use
the home domain MAS for initial client authentication. This configuration is a hard
requirement for servers in the home domain, and a soft requirement for servers in
remote domains. For example, some servers in remote domains can be configured
to handle their own authentication. These servers, and the resources they protect,
can operate independently of the e-community, even if they are located in a
participating e-community domain.

The e-community implementation is based on a vouch-for system. Typically, when
a user requests a resource from a WebSEAL server where the user has not
established a valid session, WebSEAL prompts the user for authentication
information. In an e-community configuration, the WebSEAL server identifies a
vouch-for server and requests verification from this vouch-for server that the user
has authenticated.

The vouch-for server has valid credential information for that user. For the user's
first request, the vouch-for server is always the MAS. The MAS continues to serve

Chapter 34. E-community single signon 553

as the vouch-for server for resources located in the home domain. As the user
continues with resource requests across the e-community, an individual server in
each remote domain can build its own credential for the user (based on user
identity information from the MAS) and assume the role of vouch-for server for
resources in its domain.

The verification requested of the vouch-for server takes the form of a vouch-for
token. The vouch-for server creates the token and returns it to the requesting
WebSEAL server. The user identity information in the token is encrypted. The
token contains a lifetime limit.

Upon receipt of the vouch-for token, the requesting server builds credentials and a
local session for that user. The user can now access the requested resource based
on normal authorization controls. The user benefits from not having to log in
again—a goal of the e-community model.

Refer to the following diagram as you follow the e-community process flow in the
remainder of this section. The process flow describes two possible FIRST access
scenarios (1 and 2). These are followed by two possible NEXT access scenarios (3
and 4) which follow immediately after 2 or 3. Scenario 5 occurs any time after the
initial access.

"Vouch-for" Servers

v The MAS is always used to authenticate a user accessing any part of the
e-community for the first time.
The MAS should perform only as an authentication server and not as a resource
provider. The MAS should not be configured to act as a master authentication
server and, simultaneously, to protect resources. This recommendation addresses
performance concerns and is not a security requirement.

v The MAS is always the vouch-for server for the home domain (domain A in this
example).

v A domain-specific e-community cookie is used to identify the vouch-for server
for all other servers within a given domain. The vouch-for server is the first
server in a domain that requests a vouch-for token from the MAS. The vouch-for

Domain A Domain B

mas.dA.com

ws1.dA.com

ws2.dA.com

WebSEAL MAS

ws3.dB.com

ws4.dB.com

WebSEAL 3

WebSEAL 4

WebSEAL 2

WebSEAL 1

Client

Figure 53. Example configuration for e-community process flow

554 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

server provides vouch-for information for the user within the domain.
Subsequent requests for vouch-for services in a given remote domain can be
made locally by this server, rather than accessing the out-of-domain MAS. In the
home domain, the e-community cookie identifies the MAS as the vouch-for
server.

(1) FIRST e-Community Local (Domain A) Access: WebSEAL 1

1. User requests a resource protected by WebSEAL 1 (within the same domain as
MAS). The browser contains no e-community cookie for this domain.
WebSEAL 1 has no cached credentials for the user.

2. WebSEAL 1 configuration has e-community authentication enabled and
specifies the location of the MAS. WebSEAL 1 redirects the browser to a
special vouch-for URL on the MAS.

3. The MAS receives the vouch-for request and, failing to find credentials for
that user, prompts the user to login.

4. After successful login, the MAS builds a credential for the user, stores it in the
cache, and redirects the browser back to the originally requested URL on
WebSEAL 1 with an encrypted vouch-for token. In addition, a domain
A-specific e-community cookie is placed on the browser to identify the
vouch-for server for this domain (in this case, the MAS).

5. The token create module can obtain extended user attribute information that
can be used by the destination server during the user mapping process.
Attribute information can come from two sources. First, the
[ecsso-token-attributes] stanza of the WebSEAL configuration file is checked
for configured stanza entries. Secondly, the CDMF library is called
(cdmf_get_usr_attributes) to obtain additional attributes. Attributes from the
CDMF library override any settings in the [ecsso-token-attributes] stanza.

6. If the login attempt is unsuccessful, the MAS returns a vouch-for token that
indicates a failure status. This token is constructed to be indistinguishable
from a success status vouch-for token. The requesting server reacts to a failure
status token as if the user had failed local authentication.

7. WebSEAL 1 decrypts the token.

Note: Identity mapping should not be required within the same domain. If
identity mapping is required, WebSEAL 1 can use the cross-domain mapping
framework (CDMF).

8. If an attribute list for the new identity is constructed, the token consume
module first processes the attributes according to the settings in the
[ecsso-incoming-attributes] stanza of the WebSEAL configuration file. Then
the module calls to the CDMF library, which performs the actual user
mapping (cdmf_map_usr).

9. The CDMF library passes the user's mapped identity, and any extended
attribute information, back to the token consume module. The token consume
module passes the identity to the WebSEAL server, which builds a credential.

10. The authorization service permits or denies the request based on the user's
credential and the specific ACL and POP permissions associated with the
requested resource.

(2) FIRST e-Community Remote (Domain B) Access: WebSEAL 3

1. User requests a resource protected by WebSEAL 3 (remote domain B). The
browser contains no e-community cookie for this domain. WebSEAL 3 has no
cached credentials for the user.

Chapter 34. E-community single signon 555

2. WebSEAL 3 configuration has e-community authentication enabled and
specifies the location of the MAS. WebSEAL 3 redirects the browser to a
special vouch-for URL on the MAS.

3. The MAS receives the vouch-for request and, failing to find credentials for
that user, prompts the user to login.

4. After successful login, the MAS builds a credential for the user, stores it in the
cache, and redirects the browser back to the originally requested URL on
WebSEAL 3 with an encrypted vouch-for token. In addition, a domain
A-specific e-community cookie is placed on the browser to identify the
vouch-for server for this domain (in this case, the MAS).

5. The token create module can obtain extended user attribute information that
can be used by the destination server during the user mapping process.
Attribute information can come from two sources. First, the
[ecsso-token-attributes] stanza of the WebSEAL configuration file is checked
for configured stanza entries. Secondly, the CDMF library is called
(cdmf_get_usr_attributes) to obtain additional attributes. Attributes from the
CDMF library override any settings in the [ecsso-token-attributes] stanza.

6. If the login attempt is unsuccessful, the MAS returns a vouch-for token that
indicates a failure status. This token is constructed to be indistinguishable
from a success status vouch-for token. If the user fails authentication at the
MAS, then the user is prompted for a local authentication at WebSEAL 3. If
the user's account exists on this server, authentication then succeeds.

7. WebSEAL 3 decrypts the token.
8. If an attribute list for the new identity is constructed, the token consume

module first processes the attributes according to the settings in the
[ecsso-incoming-attributes] stanza of the WebSEAL configuration file. Then
the module calls to the CDMF library, which performs the actual user
mapping (cdmf_map_usr).

9. The CDMF library passes the user's mapped identity, and any extended
attribute information, back to the token consume module. The token consume
module passes the identity to the WebSEAL server, which builds a credential
for the user.

10. WebSEAL 3 creates and sets a second e-community cookie (valid for domain
B) on the browser, identifying WebSEAL 3 as the vouch-for server for domain
B.

11. The authorization service permits or denies the request.

(3) NEXT e-Community Local (Domain A) Access: WebSEAL 2

1. User requests a resource protected by WebSEAL 2 (within the same domain as
MAS). The browser contains a domain A e-community cookie identifying the
MAS as the vouch-for server. WebSEAL 2 receives this cookie. WebSEAL 2 has
no cached credentials for the user.

2. WebSEAL 2 configuration has e-community authentication enabled and
specifies the location of the MAS. The presence of the domain A e-community
cookie overrides the WebSEAL 2 configuration for the MAS location. The
cookie provides WebSEAL 2 with the identity of the vouch-for server. (If
scenario 2 occurred first, there would also be a domain B cookie maintained on
the browser that would not be sent to a domain A server.)

3. WebSEAL 2 redirects the browser to a special vouch-for URL on the domain A
vouch-for server identified in the cookie (in this case the MAS, because
WebSEAL 2 is in domain A).

556 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

4. The MAS receives the vouch-for request and finds credentials for that user in
the cache (this occurred in scenario 1 and 2).

5. The MAS redirects the browser back to the originally requested URL on
WebSEAL 2 with an encrypted vouch-for token. (See scenario 1 and 2 for a
description of extended attribute handling.)

6. WebSEAL 2 decrypts the token and builds its own credential for the user.
7. The authorization service permits or denies the request.

(4) NEXT e-Community Remote (Domain B) Access: WebSEAL 4

1. User requests a resource protected by WebSEAL 4 (remote domain B). If
scenario 2 occurred first, the browser contains a domain B e-community cookie
identifying WebSEAL 3 as the vouch-for server. WebSEAL 4 has no cached
credentials for the user.

2. WebSEAL 4 configuration has e-community authentication enabled and
specifies the location of the MAS. The presence of a domain B e-community
cookie overrides the WebSEAL 4 configuration for the MAS location. The
cookie provides WebSEAL 4 with the identity of the vouch-for server. (If
scenario 1 occurred first, there would only be a domain A cookie maintained on
the browser that would not be sent to a domain B server. The configured MAS
location would be used instead. WebSEAL 4 would then become the vouch-for
server for domain B.)

3. If scenario 2 occurred first, WebSEAL 4 redirects the browser to a special
vouch-for URL on the domain B vouch-for server identified in the domain B
cookie (in this case WebSEAL 3).

4. WebSEAL 3 receives the vouch-for request and finds credentials for that user in
the cache (this occurred in scenario 2).

5. WebSEAL 3 redirects the browser back to the originally requested URL on
WebSEAL 4 with an encrypted vouch-for token. (See scenario 1 and 2 for a
description of extended attribute handling.)

6. WebSEAL 4 decrypts the token and builds its own credential for the user.
7. The authorization service permits or denies the request.

(5) ANOTHER e-Community Local (Domain A) Access: WebSEAL 2

1. User connects to WebSEAL 2 (domain A) with a request. If scenario 3 occurred,
WebSEAL 2 has cached credentials for the user.

2. The authorization service permits or denies the request.

Logout from the e-Community

v If the user logs out by closing the browser, all SSL sessions and all e-community
cookies are cleared.

v If the user logs out using the /pkmslogout page, the SSL session and
e-community cookie for that domain are cleared.

The e-community cookie
v The e-community cookie is a domain-specific cookie set by one WebSEAL server,

is stored in the memory of the user's browser, and is transmitted to other
WebSEAL servers (in the same domain) in subsequent requests.

v The domain-specific cookie contains the name of the vouch-for server, the
e-community identity, a location (URL) of the vouch-for server and functionality,
and a lifetime (timeout) value. The cookie contains no user or security
information.

Chapter 34. E-community single signon 557

v The e-community cookie allows servers in participating domains to request
vouch-for information locally. The e-community cookie for the domain where the
MAS is located plays a less significant role.

v The cookie has a lifetime value that is set in the WebSEAL configuration file.
This lifetime value specifies how long a remote server is able to provide
vouch-for information for the user. When the cookie lifetime has expired, the
user must be redirected to the MAS for authentication.

v If the value of the disable-ec-cookie option in the [e-community-sso] stanza is
yes, then the MAS is the only server permitted to generate vouch-for tokens.

v The cookie is cleared from memory when the browser is closed. If the user logs
out of a specific domain, the e-community cookie is overwritten as empty. This
action effectively removes it from the browser.

The vouch-for request and reply

The e-community vouch-for operation requires dedicated functionality accessed
through two specially constructed URLs: the vouch-for request and the vouch-for
reply.

The vouch-for request
The vouch-for request is triggered when a user requests a resource from a target
server (configured for e-community) that contains no credential information for
that user.

The server sends a redirect to the vouch-for server, either the MAS or a delegated
vouch-for server identified in an e-community cookie.

The vouch-for request contains the following information:
https://vouch-for-server/pkmsvouchfor?ecommunity-name&target-URL

The receiving server checks the ecommunity-name to validate the e-community
identity. The receiving server uses the target-URL in the vouch-for reply to redirect
the browser back to the originally requested page.

The pkmsvouchfor vouch-for URL is configurable.

For example:
https://mas.dA.com/pkmsvouchfor?companyABC&https://ws5.dB.com/index.html

Note: The pkmsvouchfor management page is a management command to the
WebSEAL server. It is not represented in the object space and you cannot attach
policies to it.

The vouch-for reply
The vouch-for reply is the response from the vouch-for server to the target server.

The vouch-for server is either the MAS or a delegated vouch-for server in a
domain remote that is from the MAS domain.

The vouch-for reply contains the following information:
https://target-URL?PD-VFHOST=vouch-for-server&PD-VF=encrypted-token

558 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The PD-VFHOST label identifies the server that performed the vouch-for operation.
The receiving (target) server uses this information to select the correct key required
to decrypt the vouch-for token. The PD-VF label identifies the encrypted token in
the vouch-for reply URL.

For example:
https://w5.dB.com/index.html?PD-VFHOST=mas.dA.com&PD-VF=3qhe9fjkp...ge56wgb

The vouch-for token

In order to achieve cross-domain single signon, some user identity information
must be transmitted between servers. This sensitive information is handled using a
redirect that includes the identity information encrypted as part of the URL. This
encrypted data is called a vouch-for token.
v The token contains the vouch-for success or failure status, the user's identity (if

successful), the fully qualified name of the server that created the token, the
e-community identity, and a creation time value.

v The holder of a valid vouch-for token can use this token to establish a session
(and set of credentials) with a server without explicitly authenticating to that
server.

v The token is encrypted using a shared triple-DES secret key so that its
authenticity can be verified.

v Encrypted token information is not stored on the browser.
v The token is passed only once. The receiving server uses this information to

build user credentials in its own cache. The server uses these credentials for
future requests by that user during the same session.

v The token has a lifetime (timeout) value that is set in the WebSEAL
configuration file. This value can be very short (seconds) to reduce the risk of a
replay attack.

Configuration of e-community single sign-on

This section contains the following introductory topics:
v “E-community configuration summary” on page 560
v “E-community conditions and requirements” on page 561

The main configuration tasks are described in the following topics:
1. “Enabling and disabling e-community authentication” on page 562
2. “Specifying an e-community name” on page 562
3. “Encrypting the vouch-for token” on page 562
4. “Configuring the vouch-for token label name” on page 563
5. “Specifying the master authentication server (MAS)” on page 564
6. “Specifying the vouch-for URL” on page 565
7. “Configure token and ec-cookie lifetime values” on page 565

The remaining topics provide supporting information:
v “Handling errors from CDMF during token creation” on page 566
v “Enabling unauthenticated access” on page 566
v “Use of e-community with virtual hosts” on page 568

Chapter 34. E-community single signon 559

E-community configuration summary

An e-community is configured under the following conditions and guidelines:
v The vouch-for server (the MAS or a delegated vouch-for server) always has the

token create responsibility.
v The receiving server (where the requested resource is located) always has the

token consume responsibility.
v A delegated vouch-for server (for all domains remote from the MAS domain)

must have both token create and token consume capabilities.

The following configuration steps are explained in detail in the remaining sections
of this e-community chapter division:

Configuring token create functionality on the vouch-for server

About this task

The following configuration steps are explained in detail in the remaining sections
of this e-community chapter division.

Procedure
1. Enable e-community authentication to process single signon requests by

communication type (e-community-sso-auth).
2. Specify the unifying name of the e-community for all participating servers

(e-community-name).
3. Configure the built-in single signon token create module (sso-create).
4. Create the key file used to encode and decode the vouch-for token. Copy the

key file to all appropriate participating servers ([e-community-domain-keys]
stanza).

5. Configure the token label used in the vouch-for reply (vf-argument).
6. Specify if this server is the MAS or not the MAS (is-master-authn-server).
7. Specify the vouch-for URL used in the vouch-for request (vf-url).
8. Configure token and e-community cookie lifetime values (vf-token-lifetime and

ec-cookie-lifetime).

Configuring token consume functionality on the receiving server

About this task

The following configuration steps are explained in detail in the remaining sections
of this e-community chapter division.

Procedure
1. Enable e-community authentication to process single signon requests by

communication type (e-community-sso-auth).
2. Specify the unifying name of the e-community for all participating servers

(e-community-name).
3. Configure the built-in single signon token consume module (sso-consume).
4. Assign the appropriate key file ([e-community-domain-keys] stanza).
5. Configure the token label used in the vouch-for reply (vf-argument).
6. Specify that this server is not the MAS (is-master-authn-server).
7. Specify the vouch-for URL used in the vouch-for request (vf-url).

560 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

8. Configure token and e-community cookie lifetime values (vf-token-lifetime and
ec-cookie-lifetime).

E-community conditions and requirements
v The e-community implementation requires a consistent configuration across all

WebSEAL servers in all domains participating in the e-community.
v For e-community to function successfully, each participating WebSEAL server

must reveal its fully qualified host name to the other participating servers in the
cross-domain environment. If any host name does not include a domain,
e-community cannot be enabled and an error message is logged in
msg_webseald.log. When setting up an e-community environment, ensure that
the machine-specific networking setup for each participating server is configured
to identify the server with a fully qualified host name.

v All WebSEAL servers participating in e-community must have machine times
synchronized. Authentication between servers can fail when machine time
differences are too great.

v The e-community implementation is supported on both HTTP and HTTPS.
v Individual e-community domains manage their own user identities and

associated privileges. You can use the Cross-domain Mapping Function (CDMF)
API to map a user from a remote domain to a valid user in the local domain.
If the e-community domains share global user identities, those users could be
distinguished by different passwords in the different domains. For example, a
user "abc" can exist in both domain A and domain B, using different passwords
for each domain.

v Configuration for e-community is set in the WebSEAL configuration file of each
participating WebSEAL server.

v If the originally requested URL is not redirected back to the browser from the
MAS (or vouch-for server), there could be a problem with page caching if the
browser is Microsoft Internet Explorer. If this is the case, configure the browser
to always check for newer versions of stored pages:
Tools > Internet Options > General > Temporary Internet Files > Settings

v Do not configure the MAS server on the same interface (IP address) of another
participating WebSEAL instance.

v Because some WebSEAL configuration requires machine host names to be
described as fully qualified host names, you must ensure that your system and
network can resolve machine names into fully qualified host names. For
example, using fully qualified host names allows for many host names (IP
addresses) per machine, as in the case of multiple WebSEAL instances.

Resolving machine names in an e-community environment
E-community can be disabled upon WebSEAL startup because the machine itself is
not adequately configured to resolve machine names.

About this task

The machine on which WebSEAL is located needs to be able to fully resolve an IP
address. Because this functionality is very operating system-specific, it is not the
role of this document to provide instructions. Always consult your system
administrator if you are not sure your system has the proper capabilities.

Chapter 34. E-community single signon 561

Enabling and disabling e-community authentication

About this task

The e-community-sso-auth stanza entry, located in the [e-community-sso] stanza
of the WebSEAL configuration file, enables and disables the e-community
authentication method, and processes single signon requests by communication
type.

Procedure
v To enable the e-community authentication method, enter "http", "https", or

"both".
The values "http", "https", and "both" specify the type of communication used by
e-community participants.

v To disable the e-community authentication method, enter "none".
The value "none" disables e-community for that server. The default setting is
"none".
For example:
[e-community-sso]
e-community-sso-auth = https

Note: You must stop and restart the WebSEAL server in order to activate
changes to the WebSEAL configuration file. Complete all of the applicable
configuration steps in this section and then restart WebSEAL.

Specifying an e-community name

About this task

The e-community-name stanza entry identifies the unifying name of the
e-community for all participating servers in all participating domains. For example:
[e-community-sso]
e-community-name = companyABC

The e-community-name value must be the same for all WebSEAL servers in all
domains that are participating in the e-community.

Encrypting the vouch-for token

About this task

Note: The distribution of key files is not a part of the Security Access Manager
e-community process. You must manually and securely copy keys to each
participating server.

The name of the key files used to secure tokens sent between servers participating
in the e-community is specified in the [e-community-domain-keys] stanza.
[e-community-domain-keys]
domain-name = keyfile-name
domain-name = keyfile-name

562 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

E-community domain keys
The key files required for encrypting and decrypting the tokens exchanged among
the servers participating in the e-community is specified in the
[e-community-domain-keys] stanza.

You must specify fully qualified domain name for each server and the name of the
associated key file.

The following example provides the MAS (domain A) with key files for
communicating with two remote domains (dB and dC) and a key for
communicating with other servers in domain A:
[e-community-domain-keys]
dA.com = key.fileA-A
dB.com = key.fileA-B
dC.com = key.fileA-C

In this example, key.fileA-A identifies the key file used between all of the servers
in domainA.

key.fileA-B identifies the key file used between domain A and domain B.

key.fileA-C identifies the key file used between domain A and domain C.

Each remote server needs to have a copy of the appropriate key file used by the
MAS. To exchange tokens with the MAS (domain A), all servers in domain B
require copies of key.fileA-B:
[e-community-domain-keys]
dA.com = key.fileA-B

To exchange tokens with the MAS (domain A), all servers in domain C require
copies of key.fileA-C:
[e-community-domain-keys]
dA.com = key.fileA-C

Any servers in domain A which use authentication services provided by the MAS
must have a copy of key.fileA-A:
[e-community-domain-keys]
dA.com = key.fileA-A

In this example, key.fileB-B identifies the key file used between all of the servers
in domainB. Also, key.fileC-C identifies the key file used between all of the
servers in domainC
[e-community-domain-keys]
dB.com = key.fileB-B
dC.com = key.fileC-C

Configuring the vouch-for token label name

About this task

The authentication information used for a single signon transaction is placed in the
redirected request as an encrypted token query string argument to the request.
This token string requires a name, or label, to identify it. The label name uniquely
identifies the request to the receiving WebSEAL server as a single signon request to
be handled by the single signon token consume module.

Chapter 34. E-community single signon 563

You must configure this token label on both WebSEAL servers participating in the
single signon functionality.

For more information, see the IBM Security Web Gateway Appliance: Web Reverse
Proxy Stanza Reference.

Procedure

To configure the token label, use the vf-argument stanza entry located in the
[e-community-sso] stanza of the WebSEAL configuration file. For example
(default):
[e-community-sso]
vf-argument = PD-VF

Specifying the master authentication server (MAS)

About this task

You must specify which server machine in the e-community is to function as the
master authentication server (MAS). You must also specify if a server machine is
not the MAS.

is-master-authn-server

Use the is-master-authn-server stanza entry to specify whether a server is the MAS
or not. Values include "yes" or "no".

For example:
[e-community-sso]
is-master-authn-server = yes

Multiple WebSEALs can be configured to act as master authentication servers and
then placed behind a load balancer. In this scenario, the load balancer is
"recognized" as the MAS by all other WebSEAL servers in the e-community.

If the server you are configuring is not the MAS, use the master-authn-server to
specify to this server the location of the MAS.

master-authn-server

If the is-master-authn-server stanza entry is set to "no", this stanza entry must be
uncommented and specified. The stanza entry identifies the fully qualified domain
name of the MAS.

For example:
[e-community-sso]
master-authn-server = mas.dA.com

Additionally, you can specify the HTTP and HTTPS listening ports used by the
MAS if these port values are other than the default (port 80 for HTTP and port 443
for HTTPS).

master-http-port

If e-community-sso-auth enables HTTP e-community authentication and the
master authentication server listens for HTTP requests on a port other than the

564 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

standard HTTP port (port 80), the master-http-port stanza entry identifies the
non-standard port. This stanza entry is ignored if this server is the master
authentication server. By default, this stanza entry is disabled.
[e-community-sso]
master-http-port = port-number

master-https-port

If e-community-sso-auth enables HTTPS e-community authentication and the
master authentication server listens for HTTPS requests on a port other than the
standard HTTPS port (port 443), the master-http-port stanza entry identifies the
non-standard port. This stanza entry is ignored if this server is the master
authentication server. By default, this stanza entry is disabled.
[e-community-sso]
master-https-port = port-number

Specifying the vouch-for URL

About this task

vf-url

The vf-url stanza entry specifies the vouch-for URL. The value must begin with a
forward-slash (/). The default value is /pkmsvouchfor.

For example:
[e-community-sso]
vf-url = /pkmsvouchfor

You can also express an extended URL:
vf-url = /ecommA/pkmsvouchfor

The extended URL is used when the client is communicating with a MAS that is
not a WebSEAL server. This use of vf-url enables the client to specify access to a
MAS with a specialized authentication library, such as a customized token
consumption module.

Note: The pkmsvouchfor management page is a management command to the
WebSEAL server. It is not represented in the object space and you cannot attach
policies to it.

Configure token and ec-cookie lifetime values

About this task

vf-token-lifetime

The vf-token-lifetime stanza entry sets the lifetime timeout value (in seconds) of
the vouch-for token. This value is checked against the creation time stamped on
the cookie. The default value is 180 seconds. You must take into account clock
skew among participating servers.

For example:
[e-community-sso]
vf-token-lifetime = 180

Chapter 34. E-community single signon 565

ec-cookie-lifetime

The ec-cookie-lifetime stanza entry specifies the maximum lifetime (in minutes) of
the e-community domain cookie. The default value is 300 minutes.

For example:
[e-community-sso]
ec-cookie-lifetime = 300

You must take into account any clock skew among the participating domains.
Clock skew means that the system times differ on the relevant servers in each
domain. When this difference approaches the value of vf-token-lifetime, the
effective lifetime of the token is greatly reduced. When this difference exceeds the
value of vf-token-lifetime, tokens from one domain cannot be valid for the other
domain. Administrators should adjust vf-token-lifetime accordingly. However,
when clock skew requires that vf-token-lifetime be set to a large value, the risk of
replay attacks increases. In this case, administrators should consider synchronizing
the system time on the relevant servers in each domain.

For more information, see the IBM Security Web Gateway Appliance: Web Reverse
Proxy Stanza Reference.

Handling errors from CDMF during token creation

About this task

During the creation of a e-community token, the ssocreate module calls the CDMF
library to acquire any extended attributes to be included in the token. Extended
attributes (that further describe the user) can be required for successful identity
mapping of the user on the destination server. The CDMF API uses the
cdmf_get_usr_attributes call to acquire extended attributes.

It is possible for the cdmf_get_usr_attributes call to fail in obtaining the required
information and return an error. In such a case, the subsequent behavior of the
token creation process can be controlled through use of the propagate-cdmf-errors
stanza entry located in the [cdsso] stanza. Values for this stanza entry include "yes"
and "no".

A "no" value (default) allows the token creation process to proceed even when
CDMF fails to obtain attributes and returns an error.

A "yes" value forces the token creation process to end when CDMF fails to obtain
attributes and returns an error.

Example:
[cdsso]
propagate-cdmf-errors = no

Enabling unauthenticated access

About this task

You can control whether unauthenticated users are allowed access to unprotected
resources on e-community SSO participating servers. When authenticated users are
allowed this access, the participating server can serve the resource without

566 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

requiring that the user authenticate through the master authentication server.
When this policy is configured, the participating server redirects to the master
authentication server only when the client requests access to a protected resource.

This policy is set in the WebSEAL configuration file:
[e-community-sso]
ecsso-allow-unauth = {yes|no}

When ecsso-allow-unauth is set to "yes", unauthenticated access is enabled. The
default setting is "yes".

When ecsso-allow-unauth is set to "no", unauthenticated access is disabled. In this
case, clients must authenticate through the master authentication server when
requesting access to a resource (protected or not protected) on an e-community
SSO participating server.

Note: The default behavior changed for WebSEAL Version 5.1. In prior versions,
unauthenticated access was disabled. To retain backwards compatible behavior
with older versions of WebSEAL, set ecsso-allow-unauth = no.

Limiting the ability to generate vouch-for tokens

About this task

The WebSEAL configuration file includes an optional parameter that enables you
to limit the ability to generate vouch-for tokens to the MAS. The disable-ec-cookie
option in the e-community-sso stanza is set to no by default. Changing the value
of this option to yes disables the use of the e-community cookie and permits only
the MAS to generate vouch-for tokens. In this case, the single-signon process
always uses the MAS, allowing the MAS to detect all hosts that sign on across the
e-community. This option is useful for customers who wish to construct a
customized ECSSO signoff process. For more information on a customized single
signoff process, see “Logout using pkmslogout-nomas.”

Configuration of the behavior for authentication failure

When an unauthenticated user has an unsuccessful login at the MAS (for example,
provides an incorrect password), the MAS generates a vouch-for token containing
the error and, in the default configuration, redirects the Web browser back to the
requesting host. When the requesting host encounters the error in the vouch-for
token, it typically requests a local login. The handle-auth-failure-at-mas option in
the e-community-sso stanza of the WebSEAL configuration file allows
administrators to configure the behavior for authentication failure. If
handle-auth-failure-at-mas is set to yes , the MAS handles login failures directly
without redirecting the Web browser back to the requesting host; in this case, the
MAS does not generate a vouch-for token until a successful authentication occurs.

Logout using pkmslogout-nomas

To help customers who wish to construct and implement a single signoff process in
which all hosts are signed off at the MAS, WebSEAL can be configured to use the
pkmslogout-nomas management page. When ECSSO is configured, the
pkmslogout-nomas management page can be used as an alternative to the
pkmslogout command to log out from the session on the current host. For
example:

Chapter 34. E-community single signon 567

https://www.example.com/pkmslogout-nomas

The /pkmslogout management page causes clients that log out of a local system to
be redirected to perform another logout on the MAS. The /pkmslogout-nomas
management page operates exactly like the /pkmslogout management page with
the exception that it does not redirect the Web browser to the MAS host
/pkmslogout management page to log out the user's session. This makes it
possible to chain logouts from the MAS. For example, a custom logout page can be
placed on the MAS system that contains hidden links to the /pkmslogout pages on
all the non-MAS systems, thus logging the user out of every system in the
community.

Use of e-community with virtual hosts

See “E-community single signon with virtual hosts” on page 492.

Extended attributes for ECSSO

This section contains the following topics:
v “Extended attributes to add to token”
v “Extended attributes to extract from token” on page 569

Extended attributes to add to token

In the WebSEAL configuration file, you can specify extended attributes from a user
credential to add to the cross-domain single signon token. Extended attributes
consist of information about a user identity that is added to an extended attribute
list when a user credential is created. Extended attributes can be added by a
number of authentication mechanisms, including external authentication C API
services. The external authentication C API modules can be used, for example, to
obtain user information from a registry that is external to Security Access Manager.

You can use this setting to customize the contents of the e-community single
signon token. This feature enables you to tailor the token contents to match the
needs of the destination domain. When you use this feature to add an attribute to
a token, you must also configure the WebSEAL configuration file for the server in
the destination domain. For the destination server, the stanza [ecsso-incoming-
attributes] is used to specify the handling (extract or ignore) of each attribute.

You can specify extended attributes by name, or you can declare a pattern that
matches multiple attribute names. You can use standard Security Access Manager
wildcard-matching characters. For a list of supported wildcard pattern matching
characters, see “Supported wildcard pattern matching characters” on page 67.

Each entry is assigned the name of the domain for which the token is intended.
You can include multiple entries specifying names or patterns for each domain.

The syntax is:
[ecsso-token-attributes]
domain_name = pattern1
domain_name = pattern2
...
domain_name = patternN

568 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

<default> = pattern1
<default> = pattern2
...
<default> = patternN

The <default> entry is optional. When WebSEAL does not find an entry that
matches the domain name, WebSEAL looks for a <default> entry. If the
configuration file contains a <default> entry, WebSEAL uses the assigned attribute
patterns for the current domain. The string <default> is a keyword, and must be
specified exactly as shown above, including the < and > characters.

Example: You are creating an e-community single signon solution between two
domains: example1.com and example2.com. Users log in to example1.com but can
get redirected to example2.com during the user session. Your deployment includes
a customized external authentication C API module that inserts information into
each user credential. The information includes a fixed name attribute
"job_category" and a variable number of attributes, each prefixed with the
characters "my_ext_attr_". This information needs to be added to the cross-domain
token. The configuration file entries would be:
example2.com = job_category
example2.com = my_ext_attr_*

Extended attributes to extract from token
In the WebSEAL configuration file, you can specify how the token consume
module handles extended attributes that have been added to an e-community
single sign-on token.

The attributes can either be extracted or ignored. In some cases, you must extract
the attributes because there is no way for a server in the destination domain to
generate them. In other cases, you do not want to extract the tokens, because the
server in the destination domain can use an independent process to gather the
same extended attributes. For example, the attribute could reflect a timestamp that
needs to reflect the system time on the destination server.

In the built-in token consume module, attributes that are extracted from the token
are passed through to the cross-domain mapping framework library. The default
cross-domain mapping framework library passes attributes directly through to the
user credential. Customized cross-domain mapping framework libraries can
manipulate attributes as needed before passing them to the user credential.

The syntax for the entries is as follows:
[ecsso-incoming-attributes]
attribute_pattern = {preserve|refresh}

Typically, the names of the extended attributes (attribute_pattern) match the names
of the attributes specified in the [ecsso-token-attributes] stanza of the
configuration file for a WebSEAL server that generates the tokens. The value must
be one of the following keywords:
v preserve

Extract all attributes that match attribute_pattern.
v refresh

Do not extract attributes that match attribute_pattern.

Extended attributes in the token that do not match an entry in
[ecsso-incoming-attributes] are preserved (extracted).

Chapter 34. E-community single signon 569

The order of the entries in the stanza is important. The first entry that matches an
attribute name is used. Other entries are ignored. For example, if you want to
extract the attribute named my_special_attr1 but want to ignore all other entries
with the prefix my_special_attr_, the stanza entries should be:
[ecsso-incoming-attributes]
my_special_attr1 = preserve
my_special_attr_* = refresh

Using the examples shown above in “Extended attributes to add to token” on page
568, the entries in the WebSEAL configuration file for a server that operates in the
example2.com domain could be:
[ecsso-incoming-attributes]
job_category = preserve
my_cdas_attr_1 = preserve
my_cdas_attr_* = refresh

In this example, the attributes job_category and my_cdas_attr_1 are extracted from
the token. The remainder of the attributes with the prefix my_cdas_attr_ are
ignored.

UTF-8 encoding of tokens for e-community single signon

The use of UTF-8 encoding for strings within tokens used for e-community single
signon is specified in the WebSEAL configuration file.
[e-community-sso]
use-utf8 = {yes|no}

The default value is "yes".

When use-utf8 is set to "no", strings are encoded using the local code page. Use
this value when implementing e-community single signon with older (pre-version
5.1) WebSEAL servers. WebSEAL servers from versions prior to 5.1 do not use
UTF-8 encoding for tokens. When deploying an environment that includes these
older servers, configure the WebSEAL server to not use UTF-8 encoding. This
setting is necessary for backwards compatibility.

For more information on WebSEAL support for UTF-8 encoding, see “Multi-locale
support with UTF-8” on page 57.

570 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 35. Single sign-off

You can configure WebSEAL to initiate single sign-off from multiple protected web
resources located on junctioned backend servers.

The single signoff functionality is detailed in the following sections:
v “Overview of the single sign-off functionality”
v “Configuring single signoff”
v “Specifications for single sign-off requests and responses” on page 572

Overview of the single sign-off functionality
You can configure WebSEAL to send HTTP requests to predefined applications
when a session is terminated. The applications that receive these requests can then
terminate any associated sessions that are located on junctioned backend servers.

When a session is ended, WebSEAL deletes the session and the session data that it
manages. WebSEAL cannot control sessions created and managed by backend
applications. This situation results in backend server sessions remaining active after
the corresponding WebSEAL session is terminated. WebSEAL provides a
mechanism to remove sessions on backend servers when a session ends in
WebSEAL.

To achieve single signoff, WebSEAL sends a request to configured single signoff
URIs whenever a WebSEAL session is destroyed. Using the information provided
in the request, applications on the backend servers can terminate the stale sessions.

There are four different mechanisms that can terminate a WebSEAL session:
v User request by accessing pkmslogout.
v Session timeout.
v EAI session termination command.
v Session terminate command from the pdadmin tool.

Note: Using this feature in a Session Management Server (SMS) environment
generates a separate signoff request from each WebSEAL server containing the
terminated session. Therefore, the single signoff application in an SMS
environment must handle multiple signoff requests for a single session - one per
WebSEAL server.

Configuring single signoff

About this task

You can enable single signoff in WebSEAL by specifying the URIs that receive the
single signoff request. Configure a single-signoff-uri entry in the [acnt-mgt]
stanza to reference each single signoff application. This resource cannot be located
on a virtual host junction, and you must provide the server relative URI. For
example:
[acnt-mgt]
single-signoff-uri = /applications/signoff

© Copyright IBM Corp. 2002, 2013 571

Each time a WebSEAL session is terminated, WebSEAL sends a request to each of
the specified URIs. Each request contains the configured headers and cookies for
the junction of the specified resource. The single signoff resources are responsible
for using this information to terminate any sessions on the back-end servers.

WebSEAL expects to receive a response containing an HTTP status code of 200 OK.
If the response contains any other status code, WebSEAL logs an error.

Note: You can perform single signoff on multiple junctioned servers. Configure
more than one single-sign-off-uri entry to send a request to multiple URIs.

Specifications for single sign-off requests and responses
When you configure the single signoff functionality, the single signoff requests and
responses are formatted according to these specifications.

Single sign-off requests

WebSEAL sends the request to the single signoff resource that is specified by the
single-signoff-uri configuration entry. The single sign-off request contains:
v The HTTP GET method.
v Any cookies and headers configured for the junction point where the single

signoff resource resides.

Single sign-off responses

WebSEAL expects a response with an HTTP status code 200 OK. Any other status
code results in a logged error. WebSEAL disregards the body and any other
headers in the response.

572 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Part 10. Deployment

© Copyright IBM Corp. 2002, 2013 573

574 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 36. WebSEAL instance deployment

This chapter discusses techniques for deploying one or more instances of
WebSEAL.
v “WebSEAL instance configuration overview”
v “WebSEAL instance configuration tasks” on page 577
v “Load balancing environments” on page 579

WebSEAL instance configuration overview

This section contains the following topics:
v “WebSEAL instance configuration planning”
v “Example WebSEAL instance configuration values” on page 577
v “Unique configuration file for each WebSEAL instance” on page 577

WebSEAL instance configuration planning

A WebSEAL instance is a unique WebSEAL server process with a unique
configuration file and listening port. WebSEAL deployments support multiple
WebSEAL instances.

To configure a WebSEAL instance, you must collect some information about the
Security Access Manager deployment.

Unless stated otherwise, each of the following settings is required.
v Administrator name and password

The authentication details for the Security Access Manager administrative user.
By default, this is the sec_master user. You must have administrative user
permissions to configure a WebSEAL instance.

v Domain

The Security Access Manager domain.
v Host name

The host name that the Security Access Manager policy server uses to contact
the appliance. The address that corresponds to this host name must match a
management interface address of the appliance. Valid values include any valid
host name or IP address.

v Instance name

A unique name that identifies the WebSEAL instance. Multiple WebSEAL
instances can be installed on one appliance. Each instance must have a unique
name.
Valid characters for instance names include the alphanumeric characters
([A-Z][a-z][0–9]) plus the following characters: underscore (_), hyphen (-), and
period (.). No other characters are valid.
Example names: web1, web2, web_3, web-4, web.5
The instance name also affects how the full server name is listed during a
pdadmin server list command. For this command, the full server name has the
following format:
instance_name-webseald-host_name

© Copyright IBM Corp. 2002, 2013 575

For example, an instance_name of web1 installed on a host named diamond has the
following full server name:
web1-webseald-diamond

v Listening port

This is the port through which the WebSEAL instance communicates with the
Security Access Manager policy server. The default port number is 7234. This
port number must be unique for every WebSEAL instance.
The default port is typically used by the default (first) WebSEAL instance. The
installation automatically increments to the next available port. You can modify
the port number if necessary.
Any port number above 1024 is valid. Select a port that is not used for any other
purpose.

v IP address for the primary interface

The unique IP address for the WebSEAL instance. The WebSEAL server listens
on this IP address for incoming requests. You must also assign each WebSEAL
instance a unique HTTP and HTTPS port.

v HTTP protocol and HTTP port

Specifies whether to accept user requests across the HTTP protocol. If you enable
HTTP, you must assign a port number. The default port number is 80. This port
is used by the default (first) instance. If this port is not available, the installation
automatically increments to the next available port.

v HTTPS protocol and HTTPS port

Specifies whether to accept user requests across the HTTPS protocol. If you
enable HTTPS, you must assign a port number. The default port number is 443.
This port is used by the default (first) instance. If this port is not available, the
installation automatically increments to the next available port.

v User registry - SSL communication

WebSEAL communicates with the LDAP server during authentication
procedures. Use of SSL during communication with the LDAP server is optional.
However, use of SSL is highly recommended for security reasons in all
production deployments. Disabling of SSL usage can be considered for
temporary testing or prototyping environments.
If you want to use secure SSL communication between a WebSEAL instance and
the LDAP registry server, you must use the LDAP SSL key file for this purpose.
This is the key file that was created and distributed during installation of the
LDAP client. If the initial WebSEAL instance is set up to use secure SSL
communication with LDAP, multiple instances can use the same key file.
When enabling SSL communication between WebSEAL and the LDAP server,
you must provide the following information:
– Key file name

The file that contains the LDAP SSL certificate.
– Certificate label

The LDAP client certificate label. This is optional. When the client label is not
specified, the default certificate contained in the keyfile is used. Specify the
client label when the keyfile contains more than one certificate, and the
certificate to be used is not the default certificate.

– Port

The port number through which to communicate with the LDAP server. The
default LDAP server port number is 636.

576 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Example WebSEAL instance configuration values

The following table contains a set of example settings for a WebSEAL instance.
These example settings are used in the sample configuration commands found in
the remainder of the configuration sections of this chapter.

Setting Value

Security Access Manager Administrator
name

sec_master

Security Access Manager Administrator
password

mypassw0rd

Security Access Manager domain domainA

Host name diamond.subnet2.ibm.com

Instance name web1

Listening port 7235

IP address for the Primary Interface 1.2.3.5

Enable HTTP yes

HTTP port 81

Enable HTTPS yes

HTTPS port 444

Enable SSL yes

Key file name client.kdb

Certificate label (none)

Port 636

Unique configuration file for each WebSEAL instance
A unique WebSEAL configuration file is created for each WebSEAL instance. The
name of the configuration file includes the instance name.

The format is:
webseald-instance_name.conf

The newly created instance-specific configuration file is automatically configured
for SSL communication between the new WebSEAL instance and internal Security
Access Manager servers such as the policy server.

The new file is also automatically configured to use the server certificate of the
initial WebSEAL server to authenticate to client browsers.

WebSEAL instance configuration tasks

Tasks:
v “Adding a WebSEAL instance” on page 578
v “Removing a WebSEAL instance” on page 578

Chapter 36. WebSEAL instance deployment 577

Adding a WebSEAL instance

About this task

To add a WebSEAL instance, complete each of the following steps:

Procedure
1. Plan the configuration. Complete the following worksheet. For information on

determining appropriate values for each setting, see “WebSEAL instance
configuration planning” on page 575.

Table 43. Worksheet for adding a WebSEAL instance

Setting Value

Administrator name

Administrator password

Host name

Instance name

Listening port

Enable HTTP yes or no

HTTP port

Enable HTTPS yes or no

HTTPS port

Enable SSL yes or no

Certificate label

Key file name

Port

2. Ensure that all configured WebSEAL instances are running. This prevents any
possible conflicts between servers over port usage.

3. Click New on the Reverse Proxy management page in the LMI to create a new
WebSEAL instance.

4. Provide settings for the fields displayed on the Instance, IBM Security Access
Manager, Transport and User Registry tabs.

5. Click Finish. A message is displayed indicated that the new instance is
successfully configured.

6. Verify that the new instance is running in the LMI. The Reverse Proxy
management page indicates that the state of the instance is Started.

Removing a WebSEAL instance

About this task

To remove the configuration for a WebSEAL instance, complete the following steps:

Procedure
1. Assemble the following information:

v Instance name
v Administrator ID
v Administrator ID password

578 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

2. On the Reverse Proxy management page in the LMI, select the instance that
you want to delete.

3. Click Delete. The Delete Reverse Proxy Instance window displays.
4. Enter the Administrator authentication details for the selected instance.
5. To delete the instance, click Delete in the Delete Reverse Proxy Instance

window. A system notification displays to indicate that the instance was
successfully deleted.

Load balancing environments

This section contains the following topics:
v “Replicating front-end WebSEAL servers”
v “Controlling the login_success response” on page 580

Replicating front-end WebSEAL servers

About this task

Note: The following information replaces the former pdadmin server modify
baseurl command, used in previous versions of Security Access Manager.

In a heavy load environment, it is advantageous to replicate front-end WebSEAL
servers to provide better load-balancing and fail-over capability. When you
replicate front-end WebSEAL servers, each server must contain an exact copy of the
Web space, the junction database, and the dynurl database.

This version of Security Access Manager supports a manual configuration
procedure to replicate front-end WebSEAL servers. The pdadmin command is no
longer used for this task.

In the following example, "WS1" is the host name of the primary WebSEAL server
machine. "WS2" is the host name for the replica WebSEAL server machine.
1. Install and configure WebSEAL on both WS1 and WS2 server machines.
2. Using the pdadmin command, create a new object to be the root of the

authorization space for both WebSEAL servers. For example:
pdadmin> object create /WebSEAL/newroot "Description" 5 ispolicyattachable yes

3. Stop WebSEAL on WS1.
4. On WS1, change the value of the server-name stanza entry in the WebSEAL

configuration file from "WS1" to "newroot":
[server]
server-name = newroot

5. Restart WebSEAL on WS1.
6. Repeat Steps 3-5 for WS2.

The WS1 and WS2 servers now use the object /WebSEAL/newroot as the base for
authorization evaluations. Either the WS1 or the WS2 server can respond to object
list and object show commands for objects located below /WebSEAL/newroot.

Use the following procedure when unconfiguring either WS1 or WS2:

Procedure
1. Stop the WebSEAL server.

Chapter 36. WebSEAL instance deployment 579

2. Change the value of the server-name stanza entry back to its original value. For
example, for WS1:
[server]
server-name = WS1

3. Proceed with normal unconfiguration procedures.

Results

Conditions:
v Unified object space management: Although a single object hierarchy is visible to

the administrator, all replicated WebSEAL servers are affected by administration
commands applied to that object hierarchy and all servers are able to respond to
these commands.

v Unified authorization evaluation: Both WS1 and WS2 use /WebSEAL/newroot as
the base for authorization evaluations.

v Unified configuration: For front-end WebSEAL replication to function correctly,
the Web space, junction database, and dynurl database configuration must be
identical on each server.

Controlling the login_success response

About this task

In a network topology involving multiple WebSEAL instances controlled by a load
balancing system, the request URL can be "lost" during the communication
exchange that occurs for the authentication process. For example, it is possible for
one WebSEAL instance to receive the request URL (for a protected resource) and
present the user with a login form. When the user submits the completed login
form, a non-sticky load balancer might send the POST data to a second WebSEAL
instance. (Sticky load balancing is the distribution of user requests across a set of
servers in such a way that requests from a given user are consistently sent to the
same server.)

This second WebSEAL instance can successfully process the login POST data, but is
not able to redirect to the original URL request. In this case, the second WebSEAL
instance sends the login_success.html page that reports the message "Your login
was successful."

Note: WebSeal does not make use of the Referer header, because if the initial
unauthenticated request was a POST, a redirect to the original URI would result in
a GET to a resource which should receive a POST.

There are several possible solutions:
v Use a sticky load balancing system and configure an adequate sticky time (for

example, 20-30 seconds) that allows only one WebSEAL instance to process the
overall login exchange.

v Modify the WebSEAL configuration file to enable automatic redirection after
authentication. WebSEAL can then redirect the user to a specified response page
that can better handle the post-login process. With automatic redirection
WebSEAL no longer uses the login_success.html response page. Automatic
redirection involves the following stanzas and stanza entries:

580 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

[enable-redirects]
redirect =

[acnt-mgt]
login-redirect-page =

See “Automatic redirection after authentication” on page 201 for complete
information.

v Modify the login_success.html response page so that it redirects the user's
browser back in the request history. This technique allows the second WebSEAL
instance to receive and process the original request URL. For example:
<HTML>
<HEAD>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<TITLE>Success</TITLE>
</HEAD>
<BODY onLoad="history.back()">
...
</BODY>
</HTML>

Chapter 36. WebSEAL instance deployment 581

582 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 37. Application integration

This chapter contains a variety of information pertaining to the integration of
third-party application servers in a WebSEAL environment.

Topic Index:
v “Support for back-end server-side applications”
v “Best practices for standard junction usage”
v “Custom personalization service” on page 585
v “User session management for back-end servers” on page 586

Support for back-end server-side applications

WebSEAL supports server-side applications that run on back-end junctioned
servers and require client identity information as input. Examples of server-side
applications include:
v Java servlets
v Cartridges for Oracle Web Listener
v Server-side plug-ins

When you create a junction to a back-end server using the -c option, WebSEAL
inserts Security Access Manager-specific client identity information into the HTTP
headers of requests destined for that server. Security Access Manager-specific
headers include:
v iv-user

v iv-user-l

v iv-groups

v iv-creds

v iv-remote-address

v iv-remote-address-ipv6

The Security Access Manager-specific HTTP header information enables
applications on junctioned third-party servers to perform user-specific actions
based on the client's Security Access Manager identity.

For complete information on this topic, see:
v “Client identity in HTTP headers (–c)” on page 519.
v “Client IP addresses in HTTP headers (–r)” on page 521.

Best practices for standard junction usage

This section includes best practices recommendations when using standard
WebSEAL junctions in application integration.
v “Complete Host header information with -v” on page 584
v “Standard absolute URL filtering” on page 584

© Copyright IBM Corp. 2002, 2013 583

Complete Host header information with -v

Virtual host configurations and portal applications require correct IP address
information for proper socket connections, and complete server name information
for accurate routing.

These special back-end application services require complete server name and port
designation information in any requests from browsers. The Host header of a
request contains this information and makes it available to the application. When
using WebSEAL junctions, this information is supplied to the Host header through
the use of the –v junction option.

Insufficient or missing server name and port information degrades the
performance of virtual hosting and portal applications. In addition, domain cookies
set by these applications might not contain sufficient information.

To provide the most complete information to the Host header, the “best practices”
recommendation is to always use both the fully qualified domain name of the
junctioned server and the connection port number in the –v option when creating
or adding the junction.

The –v option uses the following syntax:
-v fully-qualified-host-name[:port]

For example:
-v xyz.ibm.com:7001

Note: The port designation should be supplied only if you are using a
non-standard port number.

Standard absolute URL filtering

WebSEAL, as a front-end reverse proxy, provides security services to back-end
junctioned application servers. Pages returned to the client from back-end
applications most often contain URL links to resources located on the back-end
junctioned server.

It is important that these links include the junction name to successfully direct the
requests back to the correct locations of the resources. WebSEAL uses a set of
standard rules to filter static URLs and supply this junction information.
Additional configuration is required to filter URLs in scripts and dynamically
generated URLs. For detailed information on URL filtering, see Chapter 25,
“Modification of URLs to junctioned resources,” on page 415.

WebSEAL's ability to properly filter absolute URLs from static HTML pages
requires information about the server name provided in the –h junction option.
This option provides WebSEAL with the name of the back-end junctioned server.
Arguments to this option can include:
v Fully qualified domain name of the server
v Short name of the server
v IP address of the server

584 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

WebSEAL identifies absolute URLs to filter based on its knowledge of the back-end
junctioned server name. Depending on your network environment, the –h
short-name configuration might not provide WebSEAL with sufficient information.

In the following example, a junction is created using the following option and
argument for a back-end server, located in the ibm.com® network, with a short
name of “xyz”:
-h xyz

A link on an HTML page from this server appears as follows:
http://xyz.ibm.com/doc/release-notes.html

When this page passes to the client during a request, WebSEAL might fail to filter
this URL because, based on the information provided by –h, it could not recognize
“xyz.ibm.com” as the server name. Without the junction name in the path, a
request for the release notes document fails.

To support proper filtering of static absolute URLs, the “best practices”
recommendation is to always use the fully qualified domain name of the
junctioned server in the –h option when creating or adding the junction.

Custom personalization service

This section contains the following topics:
v “Personalization service concepts”
v “Configuring WebSEAL for a personalization service” on page 586
v “Personalization service example” on page 586

Personalization service concepts

A Web portal, or launch page, is an integrated Web site service that dynamically
produces a customized list of Web resources available to a specific user. Resources
can include corporate content, support services, and learning tools. The portal
output represents a personalized list of resources based on the access permissions
for the particular user. The launch page displays only those resources that have the
correct access permissions for that user.

You can use WebSEAL configuration options and the authorization API
entitlements service to build a custom portal solution in a Security Access Manager
environment.

The process flow for building a custom WebSEAL portal service includes the
following tasks:
1. Secure policies are formulated and attached at the appropriate points in the

protected object resource.
2. Appropriate explicit ACLs are attached to each of these resource objects.
3. The WebSEAL configuration file is edited to include the URL to the portal

service, the path of the object space containing the portal resources, and the
permission bit required by the user for access to these resources.

4. For each user request to the portal URL, WebSEAL uses the Authorization
Entitlement Service to search this object space and produce a list of resources
that meet the authorization conditions for that user.

Chapter 37. Application integration 585

5. WebSEAL places this information in a PD_PORTAL HTTP header that is sent to
the back-end (junctioned) portal server.

6. The custom portal service (such as a CGI or servlet) located on the back-end
server reads the PD_PORTAL header contents and, for example, maps the
contents to descriptions and URL links that are displayed to the user on a Web
page. This information represents the personalized list of resources available to
the user based on access control permissions.

Configuring WebSEAL for a personalization service

Procedure
1. Create a new WebSEAL junction to the personalization service. For example

(entered as one line):
pdadmin> server task server_name create -t tcp -h portalhost.abc.com /portal-jct

2. Edit the WebSEAL configuration file to add a new [portal-map] stanza:
[portal-map]

3. The entry in this stanza identifies the server-relative URL of the portal service
program and the region of the object space that is searched for available
protected portal resources, followed by the permission required for access. This
is the list that is placed in the PD_PORTAL header.
[portal-map]
URL = object_space_region:permission

4. After adding the stanza and the appropriate mapping entries, WebSEAL
(webseald) must be re-started.

Personalization service example
v Create a junction to the portal server:

pdadmin> server task web1-webseald-cruz -t ssl -h PORTAL1 /portal

v Define the region of the WebSEAL protected object space that contains resources
available to the personalization service:
pdadmin> objectspace create /Resources “Portal Object Hierarchy” 10
pdadmin> object create /Resources/Content ““ 10 ispolicyattachable yes
pdadmin> object create /Resources/Support ““ 10 ispolicyattachable yes
pdadmin> object create /Resources/Content/CGI ““ 11 ispolicyattachable yes
pdadmin> object create /Resources/Support/Servlet ““ 11 ispolicyattachable yes

Note: The “ispolicyattachable” argument must be set to “yes” for each resource.
The search mechanism selects only qualified resource objects with explicitly set
ACLs.

v WebSEAL configuration file:
[portal-map]
/portal/servlet/PortalServlet = /Resources:r

v Portal URL used by the user:
https://WS1/portal/servlet/PortalServlet

User session management for back-end servers

WebSEAL can maintain session state with clients. You can configure WebSEAL to
extend this session information to back-end junctioned application servers.
Back-end applications can use session information to maintain session state with
clients and terminate sessions.

586 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

This section contains the following topics:
v “User session management concepts”
v “Enabling user session ID management” on page 588
v “Inserting user session data into HTTP headers” on page 588
v “Terminating user sessions” on page 590
v “User event correlation for back-end servers” on page 593

User session management concepts

A client/server session is a series of related communications between a single
client and a server that take place over a period of time. With an established
session, the server can identify the client associated with each request, and has the
ability to remember—over numerous requests—a specific client.

Without an established session, the communication between a client and a server
might be renegotiated for each subsequent request. Session state information
improves performance by eliminating repeated closing and re-opening of
client/server sessions. The client can log in once and make numerous requests
without performing a separate login for each request.

The WebSEAL server has the ability to maintain session state with clients and to
additionally extend this session information to junctioned back-end application
servers.

WebSEAL uses a session identification key, called the WebSEAL session ID, to
maintain session state between the client and WebSEAL. The WebSEAL session ID
serves as an index to the client's session data stored in the WebSEAL session cache.
See “WebSEAL session cache structure” on page 252 and “Session cache
configuration overview” on page 259.

A separate session identification key, called the user session ID, can be used to
maintain session state between the client and a junctioned back-end application
server. The user session ID uniquely identifies a specific session for an
authenticated user and is stored as part of the user's credential information.

Back-end applications can use user session IDs to track user sessions and terminate
sessions. See “Enabling user session ID management” on page 588.

A single user that logs in multiple times (for example, from different machines) has
multiple WebSEAL session IDs and a credential for each session. The user session

WebSEAL session ID

WebSEAL
Application

Server

junction
User Session ID

Session Management

Client

Figure 54. Session management

Chapter 37. Application integration 587

ID is based on the WebSEAL session ID (there exists a one-to-one mapping
between the two keys). Therefore, a user session ID exists for each WebSEAL
session ID.

There are two configuration steps required to enable session management with the
user session ID:
v Configure WebSEAL to store a unique user session ID for each authenticated

client as an extended attribute in the credential of each client.
v Configure an extended attribute on a junction that can provide the value of this

credential extended attribute (the user session ID) to a back-end application
server in an HTTP header.

Enabling user session ID management

About this task

The user-session-ids stanza entry in the [session] stanza of the WebSEAL
configuration file allows you to enable and disable the creation of a unique user
session ID as an extended attribute in the credential of each client making a
request. The default value is "no" (disabled):
[session]
user-session-ids = no

Procedure

To enable the creation of unique user session IDs, set:
[session]
user-session-ids = yes

The unique user session ID is stored in a user's credential as an extended attribute
with a name and value:
tagvalue_user_session_id = user-session-id-string

This extended attribute name always appears with a “tagvalue_” prefix to prevent
any conflicts with other existing information in the credential.

Inserting user session data into HTTP headers

To provide a client's user session ID to the back-end application server, configure
the HTTP-Tag-Value extended attribute on the junction.

Setting an extended attribute on a junction

About this task

In general, an attribute enables the junction to perform some type of operation.
You use the pdadmin object modify set attribute command to set an attribute on
a junction object in the WebSEAL protected object space:
pdadmin> object modify object_name set attribute attr_name attr_value

588 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The HTTP-Tag-Value extended attribute for junctions

The HTTP-Tag-Value extended attribute specifically instructs WebSEAL to extract a
value from an extended attribute in a user credential and send that value in an
HTTP header across the junction to the back-end application server with each
request.

The HTTP-Tag-Value attribute:
v Identifies a specific extended attribute in the credential.
v Specifies the custom name of the HTTP header that will contain the value of this

attribute.

The HTTP-Tag-Value attribute uses the following format:
credential_extended_attribute_name=http_header_name

Attribute components:
v credential_extended_attribute_name

The name of the credential extended attribute that contains the user session ID is
user_session_id. (The format used is the extended attribute name without the
"tagvalue_" prefix.)
The credential extended attribute name is not case-sensitive.

v http_header_name

The http_header_name value specifies the custom name of the HTTP header used
to deliver the user session ID across the junction.
The example in this section uses a header called TAM-USER-SESSION-ID.

Setting the HTTP-Tag-Value junction attribute

About this task

An example pdadmin command that sets an HTTP-Tag-Value junction attribute
appears as follows (entered as one line):
pdadmin> object modify /WebSEAL/junctionA set attribute
HTTP-Tag-Value user_session_id=TAM-USER-SESSION-ID

Processing the HTTP-Tag-Value junction attribute

About this task

When WebSEAL processes a client request to a back-end application server, it looks
for any attributes configured on the junction object.

In this example, WebSEAL:

Procedure
1. Detects the HTTP-Tag-Value attribute.
2. Looks at the credential of the user making the request.
3. Extracts the user session ID value from the tagvalue_user_session_id extended

attribute in the credential.
4. Places the value in the TAM-USER-SESSION-ID HTTP header as:

TAM-USER-SESSION-ID:user-session-id-string

Chapter 37. Application integration 589

Results

In summary:
v Name and value of the user session ID as it appears in the user credential:

tagvalue_user_session_id:user-session-id-string

v Example value of HTTP-Tag-Value attribute set on the junction object:
user_session_id=TAM-USER-SESSION-ID

v Resulting example HTTP header name and value:
TAM-USER-SESSION-ID:user-session-id-string

Terminating user sessions

Users can terminate their current session by using the pkmslogout command.
Administrators, or back-end applications, can terminate user sessions using the
information provided by the user session ID string. This section contains the
following topics:
v “User session ID string format”
v “Compatibility with older user session ID format”
v “Termination of single user sessions” on page 591
v “Termination of all user sessions” on page 592

User session ID string format

The format of the user session ID string consists of a MIME64-encoded WebSEAL
server name and the user session ID for the client:
encoded-webseal-server-name_user-session-id

The WebSEAL server name is the value specified by the server-name stanza entry
in the [server] stanza of the WebSEAL configuration file.

The user-session-id value is able to be directly used to provide the value of the user
session ID in a pdadmin server task terminate session command. See
“Termination of single user sessions” on page 591.

Compatibility with older user session ID format

Beginning with WebSEAL verion 6.0, the format of the user session ID value
additionally includes the name of the replica set.

The user-session-ids-include-replica-set stanza entry in the [session] stanza of the
WebSEAL configuration file controls this operation. The default value is "yes". For
example:
[session]
user-session-ids-include-replica-set = yes

A value of "yes" instructs WebSEAL to include the replica set name in the user
session ID value. This setting allows you to use the pdadmin server task terminate
session to terminate user sessions on virtual host junctions.

If you require user session ID compatibility with versions of WebSEAL prior to
version 6.0, you can disable this function. For example:
[session]
user-session-ids-include-replica-set = no

590 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

A value of "no" instructs WebSEAL to not include the replica set name in the user
session ID value.

If user-session-ids-include-replica-set = no, WebSEAL assumes that the
pdadmin server task terminate session command applies to members of the
replica set defined by the [session], standard-junction-replica-set stanza entry.

The pdadmin server task terminate session command does not succeed for
sessions initiated on virtual host junctions.

To assign standard junctions to a replica set, see “Assigning standard junctions to a
replica set” on page 321.

To assign virtual hosts to a replica set, see “Virtual hosts assigned to a replica set”
on page 322.

Termination of single user sessions

Note: The pdadmin server task terminate session command is supported in an
SMS environment.

An administrator or a back-end application can use the Security Access Manager
administration API to terminate a specific user session based on the user session
ID. Refer to “User session ID string format” on page 590 to review the structure of
the user session ID string.

The user_session_id portion of the user session ID string can be passed to the
ivadmin_server_performtask() function. This function takes an input command
string from the standard pdadmin server task terminate session command. For
example:
pdadmin> server task instance-webseald-host terminate session user_session_id

The WebSEAL instance name can be obtained from the HTTP iv_server_name
header passed in every request.

Note: Although you can manually perform this pdadmin operation, the long value
of the user_session_id can make this task cumbersome.

WebSEAL verifies that the back-end server initiating the terminate operation has
appropriate permissions before terminating the user's session. WebSEAL then
removes the corresponding session cache entry so that the session is terminated.

It is important to consider the conditions under which this command might be
used. If the intent is to make sure that a user is removed from the secure domain
entirely, the termination of a single user is only effective when, in addition, the
account for that user is also made not valid (removed).

Certain authentication methods—such as basic authentication, client-side certificate,
LTPA cookies and failover cookies—return cached authentication information
automatically with no user intervention. The pdadmin server task terminate
session action would not prevent return logins for a user using any of those
authentication methods. You must additionally invalidate the appropriate user
account in the registry.

Refer to the IBM Security Access Manager for Web: Administration C API Developer
Reference for further information and for ivadmin_server_performtask() syntax.

Chapter 37. Application integration 591

When a user is logged out unexpectedly because of session termination, the
original session cookie remaining on the user's browser becomes an old, or "stale"
cookie that no longer maps to an existing entry in the WebSEAL session cache.
When the user makes a subsequent request for a protected object, WebSEAL
requires authentication and returns a login form. You can customize the login
response to contain additional information that explains the reason for the new
login requirement. For further information on this feature, see “Customized
responses for old session cookies” on page 293.

Termination of all user sessions

Note: The pdadmin server task terminate all_sessions command is not supported
in an SMS environment. Use the pdadmin server task sms session terminate
command instead.

An administrator or a back-end application can use the Security Access Manager
administration API to call the pdadmin command that terminates all sessions for a
specific user based on the user's login ID. For example:
pdadmin> server task instance-webseald-host terminate all_sessions login_id

The user's login ID (login_id) can be passed to the junctioned back-end server in
the Security Access Manager iv-user header. To accomplish this task, you must
initially create the junction using the -c iv_user option and argument. See “Client
identity in HTTP headers (–c)” on page 519.

The WebSEAL session cache is organized to cross-reference the user's login ID, the
WebSEAL session ID, and other cache entry information. A user always has the
same login ID across multiple sessions. Each WebSEAL session ID, however, is
unique. The pdadmin server task terminate all_sessions command removes all
cache entries belonging to a specific user's login ID.

WebSEAL checks for appropriate permissions on the initiator of the pdadmin
command before terminating user sessions.

Login ID Session ID Cache Data

userA 1234
credential
user_session_id
other...

userB 5678

userA 1369

server task ... terminate all_sessions userA

WebSEAL Session Cache

credential
user_session_id
other...

credential
user_session_id
other...

Figure 55. Terminate all userA sessions

592 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

It is important to consider the conditions under which this command might be
used. If the intent is to make sure a certain group of users are removed from the
secure domain entirely, the pdadmin server task terminate all_sessions command
is only effective when, in addition, the accounts for those users are made not valid
(removed).

Certain authentication methods—such as basic authentication, client-side certificate,
LTPA cookies and failover cookies—return cached authentication information
automatically with no user intervention. The pdadmin server task terminate
all_sessions command would not prevent return logins for users using any of
those authentication methods. You must additionally invalidate the appropriate
user accounts in the registry.

When a user is logged out unexpectedly because of session termination, the
original session cookie remaining on the user's browser becomes an old, or "stale"
cookie that no longer maps to an existing entry in the WebSEAL session cache.
When the user makes a subsequent request for a protected object, WebSEAL
requires authentication and returns a login form. You can customize the login
response to contain additional information that explains the reason for the new
login requirement. For further information on this feature, see “Customized
responses for old session cookies” on page 293.

User event correlation for back-end servers

Sometimes you must correlate individual events between WebSEAL and junctioned
Web servers. A WebSEAL event can be uniquely identified by a combination of the
session identifier and the transaction identifier.

Inserting event correlation data into HTTP headers

About this task

For information on how to insert the session identifier into the HTTP stream, see
“User session management for back-end servers” on page 586.

You can insert the transaction identifier into the HTTP stream using the WebSEAL
HTTP-Tag-Value functionality. Use this function to insert elements from the user
session into the HTTP stream. An extended attribute on a junction object in the
WebSEAL protected object space defines the session elements that are included in
the forwarded request. The pdadmin object modify set attribute command sets an
attribute on an object:
<pdadmin> object modify <object_name> set attribute <attr-name> <attr-value>

The <attr-name> value should always be set to "HTTP-Tag-Value". The format of
the <attr-value> should be:
<session_data_name>=<http_header_name>

To include the transaction identifier in the HTTP stream, set the
<session_data_name> value to session:tid. The <http_header_name> value specifies
the custom name of the HTTP header that delivers the transaction identifier across
the junction.

The following example shows the pdadmin command that sets an HTTP-Tag-Value
junction attribute. Enter the command on one line.
<pdadmin> object modify /WebSEAL/junctionA
set attribute HTTP-Tag-Value session:tid=TAM-TRANSACTION-ID

Chapter 37. Application integration 593

Inserting event correlation data into the WebSEAL request log
You can use the request-log-format configuration entry to customize the contents
of the WebSEAL request log to include event correlation data.

About this task

Format specifiers define the contents of the log text. The following format
specifiers add the event correlation data to the request log:

Data Format Specifier

transaction identifier %d

session identifier %{tagvalue_user_session_id}C

For more information, see the request-log-format configuration entry in the IBM
Security Web Gateway Appliance: Web Reverse Proxy Stanza Reference.

594 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 38. Dynamic URLs

This chapter discusses providing protection for dynamic URLs.

Topic Index:
v “Access control for dynamic URLs”
v “Dynamic URL example: The Travel Kingdom” on page 601

Access control for dynamic URLs

The current Web environment gives users immediate access to rapidly changing
information. Many Web applications dynamically generate Uniform Resource
Locators (URLs) in response to each user request. These dynamic URLs usually
exist only for a short time. Despite their temporary nature, dynamic URLs still
need strong protection from unwanted use or access.

Dynamic URL components

Some Web application tools use dynamic URLs and hidden form elements to
communicate requested operations (and values) to application servers. A dynamic
URL augments the standard URL address with information about the specific
operation and its values.

The dynamic data (operations, parameters, and values) provided to the Web
application interface are located in the query string portion of the request URL.

Access control for dynamic URLs: dynurl.conf

WebSEAL uses the protected object space model, access control lists (ACL), and
protected object policies (POP) to secure dynamically generated URLs, such as
those generated by database requests. Each request to WebSEAL is resolved to a
specific object as the first step in the authorization process. An ACL or POP
applied to the object dictates the required protection on any dynamic URL mapped
to that object.

Because dynamic URLs exist only temporarily, it is not possible to have entries for
them in a pre-configured authorization policy database. Security Access Manager
solves this problem by providing a mechanism where many dynamic URLs can be
mapped to a single static protected object.

http://www.ibm.com/sales/web/fortecgi.cgi?name=catalog&product=shirt&color=red

Protocol Web
Server

Directory Path
to CGI Program

Operation, Parameters
,and Values for Web

Application Interface

CGI
Program

File

Base URL Query String

Figure 56. Passing data in the query string of a request URL

© Copyright IBM Corp. 2002, 2013 595

Mappings from objects to patterns are kept in a plain text configuration file called
dynurl.conf.

You can use the LMI to manage the dynamic URL configuration file. Go to Secure
Reverse Proxy Settings > Global Settings > URL mapping.

The name of this file is defined by the dynurl-map stanza entry in the [server]
stanza of the WebSEAL configuration file:
[server]
dynurl-map = dynurl.conf

You must create this file; the file does not exist by default.

The existence of this file (with entries) during WebSEAL startup enables the
dynamic URL capability.

Note: If you use Web Portal Manager to view the file and the file does not exist,
the following error message displays:
The dynurl configuration file dynurl.conf cannot be opened for reading.

You can eliminate this error message by creating the file.

Conversion of POST body dynamic data to query string
format

When you map a URL regular expression to an object space entry, the query string
format as produced from the GET request method must be used—regardless of the
request method (POST or GET).

In a GET request, the dynamic data (operations, parameters, and values) provided
to the Web application interface are located in the query string portion of the
request URL.

In a POST request, the dynamic data (operations, parameters, and values) provided
to the Web application interface are located in the request body.

To maintain the required query string structure required for access control
evaluation, WebSEAL converts any POST request body information into the query
string format. For example, a POST request has the following request URL:
http://server/login.form

Dynamic data (login information provided by the user) is located in the body of
this POST request:
name=ibm&password=secure

To achieve the query string structure required for dynamic URL evaluation,
WebSEAL appends the POST body information to the request URL:
http://server/login.form?name=ibm&password=secure

596 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Mapping ACL and POP objects to dynamic URLs

About this task

To specify access control of dynamic URLs, create the dynurl.conf configuration
file and edit the file to map resource objects to patterns. Entries in the file are of
the format:
object template

You can use the Security Access Manager Web Portal Manager to edit this file
remotely. In Web Portal Manager, select the Dynamic URL Files link from the
WebSEAL menu. The Dynamic URL page allows you to select a WebSEAL server
and then view, edit, and save the dynurl.conf configuration file located on that
server.

Security Access Manager uses a subset of UNIX shell pattern matching (including
wildcards) to define the set of parameters that constitute one object in the object
space. Any dynamic URL that matches those parameters is mapped to that object.
For a list of supported wildcard pattern matching characters, see “Supported
wildcard pattern matching characters” on page 67.

The following example illustrates the form of a dynamic URL (from a GET request)
that performs credit balance lookup:
http://server-name/home-bank/owa/acct.bal?acc=account-number

The object that represents this dynamic URL would appear as follows:
http://server-name/home-bank/owa/acct.bal?acc=*

Careful examination of the dynamic URL in this example shows that it describes a
specific account number. The object for account balances at home-bank shows that
the ACL and POP permissions apply to any account, because the last portion of the
entry (acc=*) uses the asterisk wildcard which matches all characters.

The following figure illustrates a complete scenario of a specific dynamic URL
mapped to a specific protected object:

http://www.ibm.com/sales/web/db.cgi?service=SoftWear&catalog=clothing&product=shirt&color=red

www.ibm.com/

db.cgi

web/

sales/

redshirt

Dynamic URL entries:

Protected Object Namespace

"*product=shirt*color=red*"

Match query string with the Web
namespace entry "redshirt"

...
group admin -abc---T-m----lrx
group ABC_company -abc---T-m----lrx
any_authenticated --------------
unauthenticated --------------
...

ACL associated with object:
"www.ibm.com/sales/web/fortecgi.cgi/redshirt"

Figure 57. Authorization on a dynamic URL

Chapter 38. Dynamic URLs 597

Character encoding and query string validation

When dynamic URL is enabled, WebSEAL maps the dynamic data in the query
strings of requests to objects requiring protection (access control). If WebSEAL
receives dynamic data (in a POST body or query string) using characters that are
neither UTF-8 nor from the character set in which WebSEAL runs, WebSEAL rejects
the request and returns an error.

To securely map query strings to objects, the strings need to use the same character
set known to WebSEAL and the back-end application server. Otherwise, dynamic
URL access control could be circumvented by a request that uses a character
accepted by the back-end application, but not accepted by WebSEAL.

The dynamic URL feature is affected by the value of the decode-query stanza entry
in the [server] stanza of the WebSEAL configuration file. If WebSEAL is configured
to not validate query strings in requests (decode-query=no), then dynamic URL
mapping for authorization checking, if enabled, must be disabled. WebSEAL will
not start if this condition is not met.

If WebSEAL (with dynamic URL enabled and decode-query=yes) is running in a
non-UTF-8 environment, and request POST bodies (or query strings) contain UTF-8
characters, you can use the utf8-form-support-enabled stanza entry in the [server]
stanza of the WebSEAL configuration file to allow WebSEAL to decode the UTF-8
coding in these requests.

Updating WebSEAL for dynamic URLs

Procedure

Use the dynurl update command to update the WebSEAL protected object space
with entries made in the dynurl.conf configuration file.
1. Create, edit, or delete a dynamic URL entry in the dynurl.conf configuration

file.
2. After making your changes, use the dynurl update command to update the

server:
pdadmin> server task instance_name-webseald-host_name dynurl update

The server-name argument represents the unqualified host name of the
WebSEAL machine.

Resolve dynamic URLs in the object space

Resolving a dynamic URL to an object is dependent on the ordering of the entries
in the dynurl.conf configuration file.

When attempting to map a dynamic URL to an object entry, the list of mappings in
the dynurl.conf file is scanned from top to bottom until the first matching pattern
is found. When the first match is found, the corresponding object entry is used for
the subsequent authorization check.

If no matches are found, WebSEAL uses the URL itself, minus the http://server
portion of the path.

Keep the mappings that correspond to the most restrictive ACLs higher up in the
list. For example, if the book.sales procedure of a sales order application is to be

598 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

restricted to just a book club group, but the rest of the sales order application can
be accessed by all users, then the mappings should be in the order shown in the
following table:

Object Space Entry URL Template

/ows/sales/bksale /ows/db-apps/owa/book.sales*

/ows/sales/general /ows/db-apps/owa/*

Note that if the mapping entries were in the reverse order, all stored procedures in
the /ows/db-apps/owa directory would map to the /ows/sales/general object. This
could lead to possible breaches of security, due to this incorrect object space
resolution.

ACL and POP Evaluation

As soon as the dynamic URL has been resolved to an object space entry, the
standard ACL or POP inheritance model is used to determine if the request should
be processed or forbidden (due to insufficient privilege).

Configuration of limitations on POST requests

The content of a POST request is contained in the body of the request. In addition,
a POST request contains the browser-determined length of this content and lists
the value in bytes.

request-body-max-read

The request-body-max-read stanza entry in the [server] stanza of the WebSEAL
configuration file limits the impact of large POST requests on WebSEAL by
specifying the maximum number of bytes to read in as content from the body of
POST requests. The content read in by WebSEAL is subject to authorization checks,
as described earlier in this section.

The request-body-max-read stanza entry value is considered when the POST
request is used for dynamic URL processing or Forms authentication. The default
value is 4096 bytes:
[server]
request-body-max-read = 4096

Note that this stanza entry does not limit the maximum POST content size (which
is unlimited). The stanza entry protects WebSEAL from processing a POST request
of unreasonable size. For more information on modifying request-body-max-read,
see “Modification of request-body-max-read” on page 207.

dynurl-allow-large-posts

Although the request-body-max-read stanza entry limits the amount of POST
content read and processed by WebSEAL, it does not prevent the request, in its
entirety, from being passed through to the application server. In this scenario,
content that has not been validated is passed through to the application server. If
the application server does not have its own authorization capabilities, the
situation might result in a security risk.

The dynurl-allow-large-posts stanza entry allows you to control the way
WebSEAL handles POST requests that have a content length larger than that

Chapter 38. Dynamic URLs 599

specified by request-body-max-read. If the stanza entry value is set to “no”
(default), WebSEAL rejects, in total, any POST request with a content length larger
than that specified by request-body-max-read.
[server]
dynurl-allow-large-posts = no

If the stanza entry value is set to “yes”, WebSEAL accepts the entire POST request,
but only validates the amount of content equal to the request-body-max-read
value.
[server]
dynurl-allow-large-posts = yes

Example 1:

v A large POST request is received (greater than the request-body-max-read
value).

v dynurl-allow-large-posts = no

v Dynamic URLs are enabled.
v Result: 500 “Server Error”

Example 2:

v A large POST request is received (greater than the post-request-body-max-read).
v dynurl-allow-large-posts = yes

v Dynamic URLs are enabled.
v Result: WebSEAL compares the amount of content up to request-body-max-read

with each of the regular expressions in the dynurl.conf configuration file, and
performs an authorization check on the corresponding object if a match is found.
Otherwise, the authorization check is performed on the object corresponding to
the URL received, as usual. The portion of the request body past
request-body-max-read is not validated.

v The following template contains the type of pattern matching arrangement that
invites misuse by a large POST request:
/rtpi153/webapp/examples/HitCount\?*action=reset*

Dynamic URLs summary and technical notes

Summary
v To configure WebSEAL to securely handle dynamic URLs, create a dynamic URL

configuration file (such as dynurl.conf). In the LMI, go to Secure Reverse Proxy
Settings > Global Settings > URL mapping to create this file.

v The file must contain one or more lines of the format:
object template

v If the file does not exist at WebSEAL startup, or is empty, dynamic URL
capability is not enabled.

v After the file has been processed, the object name appears as a child resource in
the WebSEAL object space.

v The template can contain a subset of the standard pattern matching characters.
The template can also be an exact string with no pattern matching characters.

The following sample dynurl.conf file defines four objects representing some of
the sample Web applications that are part of the IBM WebSphere product:

600 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Object Entry URL Template

/app_showconfig /rtpi153/webapp/examples/ShowConfig*

/app_snoop /rtpi153/servlet/snoop

/app_snoop /rtpi025/servlet/snoop

/app_hitcount/ejb /rtpi153/webapp/examples/HitCount\?source=EJB

/app_hitcount /rtpi153/webapp/examples/HitCount*

Technical notes
v Multiple URL templates can be mapped to the same object (for example,

app_snoop maps to URLs on two different servers).
v Objects can be nested (for example, app_hitcount and app_hitcount/ejb).
v An incoming URL request is compared against templates in order, from top to

bottom. When a match is found, processing stops. Therefore, place the more
restrictive templates at the top of the file.

v To activate the definitions in the dynurl.conf file, issue the dynurl update
command (use pdadmin server task).
The update occurs immediately and the objects appear in the Web Portal
Manager when you refresh the protected object space view.

v Avoid uppercase characters in the object name. Use lowercase characters only.
v Do not use an object name that already exists in the protected object space.
v Before deleting an object in the dynurl.conf file, remove any ACLs attached to

the object.
v If WebSEAL receives a POST body that contains characters that are not UTF-8 or

not from the character set (code page) used by WebSEAL, WebSEAL will reject
the request.

v Because dynamic URL evaluation operates on all requests and uses character
pattern matching, any requests containing binary data in the query string (GET)
or request body (POST) is rejected with a 500 Server Error.

Dynamic URL example: The Travel Kingdom

The following fictitious example illustrates how a corporate intranet can secure
URLs generated by an Oracle Web Listener.

The dynamic URL Web server used in this example is the Oracle Web Listener.
This technology can be applied equally to other dynamic URL Web servers.

The application

Travel Kingdom is an organization that offers clients a travel booking service over
the Internet. The business intends to operate two Oracle database applications on
its Web server — accessible across the Internet and from within the corporate
firewall.
1. Travel Booking System

Authorized customers can make bookings remotely and query their own
current bookings. Travel Kingdom staff can also make bookings for telephone

Chapter 38. Dynamic URLs 601

customers, process changes, and perform many other transactions. Because
external customers pay for services with credit cards, the transmission of that
information must be strongly secured.

2. Administration Manager

Like most other companies, Travel Kingdom maintains an administration
database containing salary, position, and experience information. This data is
also accompanied by a photograph of each member of the staff.

The interface

An Oracle Web Server is configured to provide access to the following stored
procedures in the database:

/db-apps/owa/tr.browse Gives all users the ability to inquire about travel
destinations, prices, and so on.

/db-apps/owa/tr.book Used to place a booking (travel agent staff or
authenticated customers).

/db-apps/owa/tr.change Used to review or change current bookings.

/db-apps/owa/admin.browse Used by any staff member to view unrestricted staff
information, such as extension number, email
address, and photograph.

/db-apps/owa/admin.resume Gives staff members the ability to view or change
their own resume information in the Administration
database.

/db-apps/owa/admin.update Used by Administration staff to update information
on staff.

Web space structure

A WebSEAL server is used to provide a secure interface to the unified Web space
of Travel Kingdom.
v A junction (/ows) is made to the Oracle Web Server running both the travel

booking application and the administration application.

The security policy

To provide suitable security to Web resources, while retaining an easy-to-use
system, the business has established the following security goals:
v Travel agent staff have complete control over all bookings.
v Authenticated customers can make and change their own bookings, but cannot

interfere with the travel data of other authenticated customers.
v Administration staff have complete access to all of the administration

information.
v Travel Kingdom staff other than the Administration department can change their

own resume information and view partial information of other members of staff.

Dynamic URL to object space mappings

To achieve the security goals described above, the mappings from dynamic URLs
to ACL object entries need to be configured as shown in the following table.

602 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Remember that the ordering of these mappings is an important part of achieving
the security goals discussed earlier.

Object Space Entry URL Pattern

/ows/tr/browse /ows/db-apps/owa/tr.browse\?dest=*&date=??/??/????

/ows/tr/auth /ows/db-apps/owa/tr.book\?dest=*&depart=??/??/????& return=??/??/????

/ows/tr/auth /ows/db-apps/owa/tr.change

/ows/admin/forall /ows/db-apps/owa/admin.resume

/ows/admin/forall /ows/db-apps/owa/admin.browse\?empid=[th]???

/ows/admin/auth /ows/db-apps/owa/admin.update\?empid=????

Secure clients

Clients authenticate to WebSEAL over a secure, encrypted channel.

Customers who want to use the Web interface must additionally register with the
Travel Kingdom Webmaster to receive an account.

Account and group structure

Four groups are created on the system:

Staff Members of the Travel Kingdom organization.

TKStaff
Travel Kingdom travel agents.

AdminStaff
Members of the Travel Kingdom Administration Department. Note that
Administration staff members are also in the Staff group.

Customer
Customers of Travel Kingdom who want to make their travel bookings
across the Internet.

Each user is given an account in the secure domain to be individually identified by
the WebSEAL server. The user’s identity is also passed to the Oracle Web Servers
to provide a single signon solution to all of the Web resources.

Access control

The following table lists the access controls resulting from application of the
preceding information:

/ows/tr/browse
unauthenticated Tr
any_authenticated Tr

/ows/tr/auth
unauthenticated -
any_other -
group TKStaff Tr
group Customer PTr

Chapter 38. Dynamic URLs 603

/ows/admin/forall
unauthenticated -
any_other -
group Staff Tr

/ows/admin/auth
unauthenticated -
any_other -
group AdminStaff Tr

Customers and TKStaff have the same privileges on the booking and travel plan
maintenance objects, except that the customers must encrypt information (privacy
permission) to give them further security when submitting sensitive data (such as
credit card information) across the untrusted Internet.

Conclusion

This example illustrates the concepts of deploying a system capable of:
v Securing sensitive information
v Authenticating users
v Authorizing access to sensitive information

In addition, the identities of the authenticated users of the system are known to
both the WebSEAL and Oracle Web Servers, and are used to provide an auditable,
single sign-on solution.

604 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Chapter 39. Internet Content Adaptation Protocol (ICAP)
Support

The Internet Content Adaptation Protocol (ICAP) is designed to offload the
processing of Internet-based content to dedicated servers. ICAP helps free up
resources and standardize how features are implemented.

A proxy server, such as WebSEAL, can be configured to pass client requests and
responses through ICAP servers. These ICAP servers can focus on specific,
value-added services, and therefore be more efficient. For example, if an ICAP
server handles language translation only, it might be more efficient than a web
server that performs many additional tasks.

ICAP is a "lightweight" HTTP-like protocol. ICAP clients can pass HTTP-based
(HTML) messages or content to ICAP servers for adaptation. Adaptation refers to
performing the particular value added service, such as content manipulation, for
the associated client request or response.

For more information, see Request For Comments (RFC) 3507 - Internet Content
Adaptation Protocol (ICAP): http://www.ietf.org/rfc/rfc3507.txt.

Topic Index:
v “ICAP integration with WebSEAL - Workflow” on page 606
v “Scope of functionality” on page 606
v “Configuration of ICAP support within WebSEAL” on page 607

Example

Additional examples of ICAP server functions are: virus scanning, language
translation, and content filtering.

© Copyright IBM Corp. 2002, 2013 605

http://www.ietf.org/rfc/rfc3507.txt

ICAP integration with WebSEAL - Workflow

A client request follows the path depicted in the diagram:

Client

1

8

WebSEAL

2, 6

3, 7

4

5

ICAP Servers

Junctioned
Web Servers

1. A client sends a request to WebSEAL.
2. WebSEAL passes the request to the ICAP server.
3. The ICAP server uses the Internet Content Adaptation Protocol (ICAP) to

generate a response and sends it back to WebSEAL. The response can be one of
the following:
a. A modified version of the request that is forwarded to other ICAP servers

in the chain, or to the backend Web server.
b. An HTTP response for this request that must then be sent back to the client.
c. An error, which is processed by WebSEAL.

4. The modified request is then sent to the backend Web server.
5. A response is generated by the backend Web server.
6. WebSEAL passes the response to the ICAP server
7. A response is generated by the ICAP server and sent back to WebSEAL. The

response can be one of the following:
a. A modified version of the response.
b. An error.

8. The response is sent to the client.

Note: Steps 2-3 and 6-7 can be repeated multiple times if multiple ICAP servers
are configured.

Scope of functionality
The following information captures the scope of integrating ICAP with WebSEAL.

WebSEAL provides support for:
v Request for modification (REQMOD)
v Request for response (RESPMOD)

WebSEAL does not support the following optional aspects of ICAP RFC 3507:

606 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v Message preview
v "204 No Content" Responses outside of previews
v OPTIONS method
v Caching
v Authentication
v Encryption

Note: See the ICAP RFC 3507: http://www.ietf.org/rfc/rfc3507.txt for more
information on each of the aspects.

Configuration of ICAP support within WebSEAL
The configuration of ICAP support within WebSEAL is flexible and allows only
those transactions that require the ICAP intervention to be sent to the ICAP
servers.

An Administrator can configure and control the applications that require ICAP
processing. Configuration of ICAP support within WebSEAL consists of two parts:
v Configuration file: Used to define ICAP servers.
v Protected Object Policy (POP): Used to define the resources that trigger a call to

the ICAP servers.

Configuration file

A stanza entry called [ICAP: <resource>] is added to the configuration file. The
stanza entry is used to define the different ICAP resources. Each resource consists
of:
v A URL for the ICAP server
v A transaction list that defines whether the ICAP server is used in processing the

HTTP request or response
v A timeout value that defines the maximum length of time (in seconds) that

WebSEAL waits for a response from the ICAP server.

For more information, see the [ICAP:<resource>] stanza in the IBM Security Web
Gateway Appliance: Web Reverse Proxy Stanza Reference.

Note: The <resource> in the stanza name corresponds to the name of the resource
in the POP. Multiple resources might be specified in the configuration file.

Example
[ICAP:resource_a]
URL = icap://icap_svr.tivoli.com:1344/
transaction = req
timeout = 120
[ICAP:resource_b]
URL = icap:///icap_svr.tivoli.com:1344/
transaction = rsp
timeout = 120

Chapter 39. Internet Content Adaptation Protocol (ICAP) Support 607

http://www.ietf.org/rfc/rfc3507.txt

Protected Object Policy (POP)

A Protected Object Policy (POP) is used to enable the pre-defined ICAP resource
for appropriate parts of the object space. This mechanism provides full control over
which resources incur the additional impact of the ICAP processing. The POP must
have:
v An extended attribute created with the name 'ICAP', and
v A value that matches the name of one of the configured ICAP resources.

Multiple attributes of the same name can be created if multiple ICAP servers are
required to handle the processing of a particular object or request.

The following example shows what the POP might look like:
pdadmin sec_master> pop show ICAPPop attribute ICAP

ICAP
resource_a
resource_b

Note: resource_a and resource_b correspond to the following configuration
stanzas: [ICAP:resource_a] and [ICAP:resource_b].

608 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Part 11. Appendixes

© Copyright IBM Corp. 2002, 2013 609

610 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Appendix A. Guidelines for changing configuration files

These guidelines are provided to help you make changes to the Security Access
Manager configuration files. The guidelines are divided into the following
categories:
v “General guidelines”
v “Default values”
v “Strings” on page 612
v “Defined strings” on page 612
v “File names” on page 612
v “Integers” on page 612
v “Boolean values” on page 613

General guidelines

Use the following general guidelines when making changes to the configuration
settings:
v There is no order dependency or location dependency for stanzas in any

configuration file.
v Stanza entries are marked as required or optional. When an entry is required,

the entry must contain a valid key and value.
v Do not change the names of the keys in the configuration files. Changing the

name of the key might cause unpredictable results for the servers.
v Stanza entries and key names are case-sensitive. For example, usessl and UseSSL

are treated as different entries.
v Spaces are not allowed for names of keys.
v For the key value pair format of key = value, the spaces surrounding the equal

sign (=) are not required, but they are recommended.
v Non-printable characters (such as tabs, carriage returns, and line feeds) that

occur at the end of a stanza entry are ignored. Non-printable characters are
ASCII characters with a decimal value less than 32.

Default values

Use the following guidelines when changing default configuration settings:
v Many values are created or modified only by using configuration programs. Do

not manually edit these stanzas or values.
v Some values are filled in automatically during configuration. These values are

needed for the initialization of the server after the configuration.
v The default values for a stanza entry might be different, depending on the server

configuration. Some key value pairs are not applicable to certain servers and are
omitted from the default configuration file for this server.

© Copyright IBM Corp. 2002, 2013 611

Strings

Some values accept a string value. When you manually edit the configuration file,
use the following guidelines to change configuration settings that require a string:
v String values are expected to be characters that are part of the local code set.
v Additional or different restrictions on the set of allowable string characters

might be imposed. For example, many strings are restricted to ASCII characters.
Consult each stanza entry description for any restrictions.

v Double quotation marks are sometimes, but not always, required when you use
spaces or more than one word for values. Refer to the descriptions or examples
for each stanza entry when in doubt.

v The minimum and maximum lengths of user registry-related string values, if
there are limits, are imposed by the underlying registry. For example, for Active
Directory the maximum length is 256 alphanumeric characters.

Defined strings

Some values accept a string value, but the value must be one of a set of defined
strings. When you manually edit the configuration file, make sure that the string
value you type matches one of the valid defined strings values.

For example, the [aznapi-configuration] stanza section contains the following
entry:
auditcfg = {azn|authn|mgmt}

The value for auditcfg is expected to be azn, authn, or mgmt. Any other value is
invalid and results in an error.

File names

Some values are file names. For each stanza entry that expects a file name as a
value, specify the file name exactly as it is displayed in the LMI. Do not include
any directory path information.

Integers

Many stanza entries expect the value for the entry to be expressed as an integer.
When defining an entry with an integer, consider the following guidelines:
v Stanza entries that take an integer value expect integer values within a valid

range. The range is described in terms of a minimum value and a maximum
value.
For example, in the [logging] stanza, the logflush stanza entry has a minimum
value of 1 second and a maximum value of 600 seconds.

v For some entries, the integer value must be positive, and the minimum value is
1. For other entries, a minimum integer value of 0 is allowed.
Use caution when setting an integer value to 0. For example, an integer value of
0 might disable the function that is controlled by that stanza entry. For example,
in the [ivacld] stanza, the entry tcp-req-port = 0 disables the port number. Or,
an integer value of 0 might indicate that the number is unlimited. For example,
in the [ldap] stanza, the entry max-search-size = 0 means there is no limit to
the maximum search size.

612 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

v For some entries requiring integer values, Security Access Manager does not
impose an upper limit for the maximum number allowed. For example, there is
typically no maximum for timeout-related values, such as timeout = number in
the [ldap] stanza.
For this type of entry, the maximum number is limited only by the size of
memory allocated for an integer data type. This number can vary, based on the
type of operating system. For systems that allocate 4 bytes for an integer, this
value is 2147483647.
However, as the administrator, use a number that represents the value that is
most logical for the value you are trying to set.

Boolean values

Many stanza entries represent a Boolean value. Security Access Manager recognizes
the Boolean values yes and no.

Some of the entries in the configuration files are read by other servers and utilities.
For example, many entries in the [ldap] stanza are read by the LDAP client. Some
of these other programs recognize additional Boolean characters:
v yes or true

v no or false

Anything other than yes|true, including a blank value, is interpreted as no|false.

The recognized Boolean entries are listed for each stanza entry. Refer to the
individual descriptions to determine when true or false are also recognized.

Appendix A. Guidelines for changing configuration files 613

614 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Appendix B. Command reference

This appendix contains a subset of the pdadmin commands that are specific to
WebSEAL tasks.

See also the IBM Security Access Manager for Web: Command Reference.

Command Description

“help” on page 616 Obtains system help for pdadmin commands and
options.

“server list” on page 618 Lists all registered Security Access Manager
servers.

“server task add” on page 618 Adds an additional back-end application server
to an existing WebSEAL junction.

“server task cache flush all” on page 621 Flushes the HTML document cache.

“server task cluster restart” on page 623 Apply any configuration changes to the entire
WebSEAL cluster and restart as required.

“server task create” on page 624 Creates a WebSEAL junction point.

“server task delete” on page 631 Deletes a WebSEAL junction point.

“server task dynurl update” on page 632 Reloads the dynamic URL configuration file.

“server task help” on page 633 Lists detailed help information about a specific
server task command.

“server task jmt” on page 635 Clears or loads the junction mapping table data.

“server task list” on page 636 Lists all junction points on a WebSEAL server
or instance.

“server task offline” on page 638 Places the server that is located at this junction
in an offline operational state.

“server task online” on page 639 Places the server that is located at this junction
in an online operational state.

“server task refresh all_sessions” on page
641

Refreshes the credential for all sessions for a
specified user.

“server task reload” on page 642 Reloads the junction mapping table from the
database.

“server task remove” on page 644 Removes the specified installed WebSEAL
server or instance from a WebSEAL junction
point.

“server task show” on page 646 Displays detailed information about the
specified WebSEAL junction.

“server task terminate all_sessions” on
page 648

Terminates all user sessions for a specific user.

“server task terminate session” on page
649

Terminates a user session using a session ID.

“server task throttle” on page 651 Places the server that is located at this junction
in a throttled operational state.

“server task virtualhost add” on page 653 Adds an additional installed WebSEAL server
or instance to an existing virtual host junction.

© Copyright IBM Corp. 2002, 2013 615

Command Description

“server task virtualhost create” on page
655

Creates a virtual host junction.

“server task virtualhost delete” on page
662

Deletes a virtual host junction.

“server task virtualhost list” on page 663 Lists all configured virtual host junctions by
label name.

“server task virtualhost offline” on page
664

Places the server that is located at this virtual
host junction in an offline operational state.

“server task virtualhost online” on page
667

Places the server that is located at this virtual
host junction in an online operational state.

“server task virtualhost remove” on page
669

Removes the specified server from a virtual
host junction.

“server task virtualhost show” on page
671

Displays information about the specified virtual
host junction.

“server task virtualhost throttle” on page
673

Places the server that is located at this virtual
host junction in a throttled operational state.

Reading syntax statements

The reference documentation uses the following special characters to define syntax:

[] Identifies optional options. Options not enclosed in brackets are required.

... Indicates that you can specify multiple values for the previous option.

| Indicates mutually exclusive information. You can use the option to the left
of the separator or the option to the right of the separator. You cannot use
both options in a single use of the command.

{ } Delimits a set of mutually exclusive options when one of the options is
required. If the options are optional, they are enclosed in brackets ([]).

\ Indicates that the command line wraps to the next line. It is a continuation
character.

The options for each command are listed alphabetically in the Options section.
When the order of the options must be used in a specific order, this order is shown
in the syntax statement.

help

Obtains system help for pdadmin commands and options.

This command does not require a login or authentication to use.

Syntax

help {topic | command}

Options

topic Specifies the help command topic for which help is needed.

616 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

command
Specifies the miscellaneous command for which help is needed.

Return codes

0 The command completed successfully.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2). Refer to the IBM Security Access Manager
for Web: Error Message Reference. This reference provides a list of the
Security Access Manager error messages by decimal or hexadecimal codes.

Examples
v The following example lists help topics and commands:

pdadmin> help

Output is similar to:
Type ’help <topic>’ or ’help <command> for more information

Topics:
acl
action
admin
authzrule
config
context
domain
errtext
exit
group
help
login
logout
object
objectspace
policy
pop
quit
rsrc
rsrccred
rsrcgroup
server
user

Miscellaneous Commands:
exit
help
quit

v The following example lists the options and descriptions that are available
whether you specify the topic action or action create:
pdadmin> help action

Or:
pdadmin> help action create

Output is similar to:

Appendix B. Command reference 617

action create <action-name> <action-label> <action-type>
Creates a new ACL action definition
action create <action-name> <action-label> <action-type> <action-group-name>
Creates a new ACL action definition in a group
...

server list

Lists all registered Security Access Manager servers.

Requires authentication (administrator ID and password) to use this command.

Syntax

server list

Description

Lists all registered Security Access Manager servers. The name of the server for all
server commands, except for the server list command, must be entered in the
exact format as it is displayed in the output of this command.

Options

None.

Return codes

0 The command completed successfully.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2). Refer to the IBM Security Access Manager
for Web: Error Message Reference. This reference provides a list of the
Security Access Manager error messages by decimal or hexadecimal codes.

Examples

The following example lists all registered servers if the Security Access Manager
component is the authorization server:
pdadmin> server list

Output is similar to:
ivacld-topserver
ivacld-server2
ivacld-server3
ivacld-server4

server task add
The server task add command adds an additional back-end application server to
an existing WebSEAL junction.

Requires authentication (administrator ID and password) to use this command.

618 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Syntax

server task instance_name-webseald-host_name add –h host_name [options]
junction_point

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

junction_point
Specifies the name of the directory in the WebSEAL protected object space
where the document space of the back-end server is mounted.

options Specifies the options that you can use with the server task add command.
These options include:

–D "dn"
Specifies the distinguished name of the back-end server certificate.
This value, matched with the actual certificate DN, enhances
authentication and provides mutual authentication over SSL. For
example, the certificate for www.example.com might have a DN of
"CN=WWW.EXAMPLE.COM,OU=Software,O=example.com\, Inc,L=Austin,
ST=Texas,C=US"

This option is valid only with junctions that were created with the
type of ssl or sslproxy.

–H host_name
Specifies the DNS host name or IP address of the proxy server.
Valid values for host_name include any valid IP host name. For
example:
www.example.com

This option is used for junctions that were created with the type of
tcpproxy or sslproxy.

–i Indicates that the WebSEAL server does not treat URLs as
case-sensitive. This option is used for junctions that were created
with the type of tcp or ssl.

–p port
Specifies the TCP port of the back-end server. The default value is
80 for TCP junctions and 443 for SSL junctions. This option is used
for junctions that were created with the type of tcp or ssl.

Appendix B. Command reference 619

–P port
For proxy junctions that were created with the type of tcpproxy or
sslproxy this option specifies the TCP port number for the HTTP
proxy server. The default value is 7138.

For port, use any valid port number. A valid port number is any
positive number that is allowed by TCP/IP and that is not
currently being used by another application. Use the default port
number value, or use a port number that is greater than 1000 that
is currently not being used.

This option is also valid for mutual junctions to specify the HTTPS
port of the back-end third-party server.

–q url Required option for back-end Windows servers. Specifies the
relative path for the query_contents script. By default, Security
Access Manager looks for this script in the /cgi_bin subdirectory.
If this directory is different or the query_contents file is renamed,
use this option to indicate to WebSEAL the new URL to the file.

This option is used for junctions that were created with the type of
tcp or ssl.

–u uuid
Specifies the UUID of this back-end server when connected to
WebSEAL over a stateful junction that was using the –s option.
This option is used for junctions that were created with the type of
tcp or ssl.

–v virtual_hostname
Specifies the virtual host name represented on the back-end server.
This option supports a virtual host setup on the back-end server.
Use this option when the back-end junction server expects a host
name header, because you are junctioning to one virtual instance of
that server. The default HTTP header request from the browser
does not know that the back-end server has multiple names and
multiple virtual servers. You must configure WebSEAL to supply
that extra header information in requests destined for a back-end
server set up as a virtual host. This option is used for junctions
that were created with the type of tcp or ssl.

–V virtual_hostname

Virtual host name represented on the back-end server. This option
supports a virtual host setup on the back-end server. This option is
only used for mutual junctions and corresponds to the virtual host
which is used for HTTPS requests.

You use –V when the back-end junction server expects a host name
header because you are junctioning to one virtual instance of that
server. The default HTTPS header request from the browser does
not know that the back-end server has multiple names and
multiple virtual servers. You must configure WebSEAL to supply
that extra header information in requests destined for a back-end
server set up as a virtual host.

–w Indicates Microsoft Windows file system support.

This option is used for junctions that were created with the type of
tcp or ssl.

620 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

–h host_name
Required option. Specifies the DNS host name or IP address of the target
back-end application server. Valid values for host_name include any valid IP
host name. For example:
www.example.com

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/junction_point object. For example, the sec_master administrative
user has permission by default.

Note: This command is available only when WebSEAL is installed.

Return codes

0 The command completed successfully. For WebSEAL server task
commands, the return code will be 0 when the command is sent to the
WebSEAL server without errors.

Note: Even if the command was successfully sent, the WebSEAL server
might not be able to successfully complete the command and can return an
error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2). See the IBM Security Access Manager for
Web: Error Message Reference. This reference provides a list of the Security
Access Manager error messages by decimal or hexadecimal codes.

Note: For more information about how to add servers to existing junctions, see the
IBM Security Access Manager for Web: WebSEAL Administration Guide.

Examples

The following example creates a new junction for the WebSEAL server named WS1
to the back-end server named APP1 and adds another back-end server named APP2
to the same junction point:
pdadmin> server task default-webseald-WS1 create -t tcp -h APP1 -s /mnt

pdadmin> server task default-webseald-WS1 add -h APP2 /mnt

See also

“server task create” on page 624
“server task delete” on page 631
“server task remove” on page 644
“server task show” on page 646

server task cache flush all
The server task cache flush all command flushes the HTML document cache.

Requires authentication (administrator ID and password) to use this command.

Appendix B. Command reference 621

Syntax

server task instance_name-webseald-host_name cache flush all

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

Authorization

Users and groups that require access to this command must be given the s (server
administration) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/ object. For example, the sec_master administrative user has
permission by default.

Note: This command is available only when WebSEAL is installed.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code will be 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Notes®

For more information about the WebSEAL content caching, see the IBM Security
Access Manager for Web: WebSEAL Administration Guide.

Examples

The following example flushes all Web document caches:
pdadmin> server task default-webseald-abc.ibm.com cache flush all

622 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

See also

None.

server task cluster restart
The server task cluster restart command applies any configuration changes to
the entire cluster and restarts the updated servers.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task server_name cluster restart [-ripple|-status]

Description

If the -status option is used then the command provides a status update on the
most recent cluster restart.

If the -status option is not used then the command causes each server in the
cluster to examine the master for configuration updates. If required, the server
updates its configuration data to synchronize with the master configuration
information. If updates are applied then the server is restarted. The master server
is restarted after all of the slave servers in the cluster have been updated and
restarted as required.

Note: This command is only available on the configured cluster master server.

Options

server_name
Specifies the name of the master authorization server on which the
configuration data resides.

-ripple Indicates that each WebSEAL server in the cluster must restart in sequence
rather than being restarted in parallel.

-status Monitors the progress of a cluster restart. This option returns one of the
following messages based on the current status of the cluster:
DPWAD0444I The cluster has been restarted.

DPWAD0443I The cluster is in the process of being restarted.

Authorization

Users and groups that require access to this command must be given the s (server
administration) permission in the ACL that governs the master
/WebSEAL/host_name-instance_name/ object. For example, the sec_master
administrative user has permission by default.

Note:

An error is returned if the server is not configured as the master of the cluster.
Before executing this command, you must ensure that the cluster is configured
correctly using appropriate [cluster] stanza entries. For more information, see the
[cluster] stanza in the IBM Security Web Gateway Appliance: Web Reverse Proxy
Stanza Reference.

Appendix B. Command reference 623

You cannot use the two options -ripple and -status at the same time. The -ripple
option is available when initiating a cluster restart, while the -status option
monitors the progress of the most recent cluster restart request.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code will be 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Default value

By default the cluster is restarted in parallel.

Examples

The following example restarts the cluster in sequence. This command must be
executed on the cluster master server, which in this example is
default-webseald-master.ibm.com.
server task default-webseald-master.ibm.com cluster restart -ripple

In this example, the following command can be used at any time after the previous
request to monitor the progress of the cluster restart:
server task default-webseald-master.ibm.com cluster restart -status

server task create
The server task create command creates a WebSEAL junction point.

Requires authentication (administrator ID and password) to use this command.

Syntax

For local junctions:

server task instance_name-webseald-host_name create –t type [options] junction_point

For non-local junctions:

server task instance_name-webseald-host_name create –t type –h host_name [options]
junction_point

624 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

junction_point
Specifies the name of the directory in the WebSEAL protected object space
where the document space of the back-end server is mounted.

options Specifies the options that you can use with the server task create
command. The options include:

–a address
Specifies the local IP address for WebSEAL to use when
communicating with the target back-end server. If this option is not
provided, WebSEAL uses the default address as determined by the
operating system.

If an address is supplied for a particular junction, WebSEAL is
modified to bind to this local address for all communication with
the junctioned server.

–A Enables or disables lightweight third-party authentication
mechanism (LTPA) junctions. This option requires the –F and –Z
options. The –A, –F, and –Z options all must be used together.

This option is valid for all junctions except for the type of local.

-2 You can use this option in conjunction with the -A option to
specify that LTPA version 2 cookies (LtpaToken2) are used. The -A
option without the -2 option specifies that LTPA version 1 cookies
(LtpaToken) are used.

–b BA_value
Defines how the WebSEAL server passes the HTTP BA
authentication information to the back-end server, which is one of
the following values:
v filter (default)
v ignore
v supply
v gso

This option is valid for all junctions except for the type of local.

–B Indicates that WebSEAL uses the BA header information to
authenticate to the back-end server and to provide mutual
authentication over SSL. This option requires the –U and –W
options.

Appendix B. Command reference 625

This option is valid only with junctions that were created with the
type of ssl or sslproxy.

–c header_type
Inserts the Security Access Manager client identity in HTTP
headers across the junction. The header_type argument can include
any combination of the following Security Access Manager HTTP
header types:
v {iv-user|iv-user-l}
v iv-groups
v iv-creds
v all

The header types must be comma separated, and cannot have
spaces between the types. For example: -c iv_user,iv_groups

Specifying –c all is the same as specifying –c iv-user,iv-
groups,iv-creds.

This option is valid for all junctions except for the type of local.

–C Indicates single signon from a front-end WebSEAL server to a
back-end WebSEAL server. The –C option is not mutual
authentication.

This option is valid only with junctions that were created with the
type of ssl or sslproxy.

–D "dn"
Specifies the distinguished name of the back-end server certificate.
This value, matched with the actual certificate DN enhances
authentication and provides mutual authentication over SSL. For
example, the certificate for www.example.com might have a DN of
"CN=WWW.EXAMPLE.COM,OU=Software,O=example.com\, Inc,L=Austin,
ST=Texas,C=US"

This option is valid only with junctions that were created with the
type of ssl or sslproxy.

–e encoding_type
Specifies the encoding to use when generating HTTP headers for
junctions. This encoding applies to headers that are generated with
both the –c junction option and tag-value. The following values for
encoding are supported:

utf8_bin
WebSEAL sends the headers in UTF-8.

utf8_uri
WebSEAL sends the headers in UTF-8 but URI also
encodes them. This behavior is the default behavior.

lcp_bin
WebSEAL sends the headers in the local code page of the
WebSEAL server.

lcp_uri
WebSEAL sends the headers in the local code page of the
WebSEAL server, but URI also encodes them.

This option is valid for all junctions except for the type of local.

–f Forces the replacement of an existing junction.

626 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

This option is used for junctions that were created with any
junction type.

–F keyfile

Specifies the name of the keyfile used to encrypt LTPA cookie data.

The –F option requires –A and –Z options. The –A, –F, and –Z
options all must be used together.

This option is valid for all junctions except for the type of local.

–H host_name
Specifies the DNS host name or IP address of the proxy server. The
–P option also supports proxy server junctions. Valid values for
host_name include any valid IP host name. For example:
proxy.www.example.com

This option is valid only with junctions that were created with the
type of tcpproxy or sslproxy.

–i Indicates that the WebSEAL junction does not treat URLs as
case-sensitive. To correctly authorize requests for junctions that are
not case-sensitive, WebSEAL does the authorization check on a
lowercase version of the URL. For example, a Web server that is
running on a Windows operating system treats requests for
INDEX.HTM and index.htm as requests for the same file.

Junctions to such a Web server should be created with the –i or –w
option. ACLs or POPs that are attached to objects beneath the
junction point should use the lowercase object name. An ACL
attached to /junction/index.htm will apply to all of the following
requests if the –i or –w option is used:

/junction/INDEX.HTM
/junction/index.htm
/junction/InDeX.HtM

This option is valid for all junctions except for the type of local.
Local junctions are not case-sensitive only on Win32 platforms; all
other platforms are case-sensitive.

–I Ensures a unique Set-Cookie header name attribute when using the
–j option to modify server-relative URLs in requests.

This option is valid for all junctions except for the type of local.

–j Supplies junction identification in a cookie to handle
script-generated server-relative URLs.

This option is valid for all junctions except for the type of local.

-J trailer,inhead,onfocus,xhtml10

Controls the junction cookie JavaScript block.

Use –J trailer to append (rather than prepend) the junction cookie
JavaScript to HTML page returned from back-end server.

Use –J inhead to insert the JavaScript block between <head>
</head> tags for HTML 4.01 compliance.

Use –J onfocus to use the onfocus event handler in the JavaScript
to ensure the correct junction cookie is used in a
multiple-junction/multiple-browser-window scenario.

Appendix B. Command reference 627

Use –J xhtml10 to insert a JavaScript block that is HTML 4.01 and
XHTML 1.0 compliant.

For complete details on this option, see “Control on the junction
cookie JavaScript block” on page 432.

–k Sends WebSEAL session cookies to the junction server. By default,
cookies are removed from requests that are sent to the server.

This option is valid for all junctions except for the type of local.

–K "key_label"
Specifies the key label of the client personal certificate that
WebSEAL should present to the back-end server. Use of this option
allows the junction server to authenticate the WebSEAL server
using client certificates.

This option is valid only with junctions that were created with the
type of ssl and sslproxy.

–l percent
Defines the soft limit for consumption of worker threads.

This option is valid for all junctions except for the type of local.

–L percent
Defines the hard limit for consumption of worker threads.

This option is valid for all junctions except for the type of local.

–n Indicates that no modification of the names of non-domain cookies
are to be made. Use when client side scripts depend on the names
of cookies.

By default, if a junction is listed in the JMT or if the –j junction
option is used, WebSEAL will modify the names of non-domain
cookies that are returned from the junction to prepend
AMWEBJCT!junction_point.

This option is valid for all junctions except for the type of local.

–p port
Specifies the TCP port of the back-end third-party server. The
default value is 80 for TCP junctions and 443 for SSL junctions.

This option is valid for all junctions except for the type of local.

–P port
For proxy junctions that were created with the type of tcpproxy or
sslproxy this option specifies the TCP port number for the HTTP
proxy server. The -P option is required when the –H option is
used.

This option is also valid for mutual junctions to specify the HTTPS
port of the back-end third-party server.

–q path
Required option for back-end Windows servers. Specifies the
relative path for the query_contents script. By default, Security
Access Manager looks for the query_contents script in the
/cgi_bin directory. If this directory is different or the
query_contents file name is renamed, this option will indicates to
WebSEAL the new URL to the file.

This option is valid for all junctions except for the type of local.

628 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

–r Inserts the incoming IP address into the HTTP header across the
junction. This option is valid for all junctions except for the type of
local.

–R Allows the request to proceed but provides the rule failure reason
to the junction in an HTTP header. If the –R option is not used and
a rule failure occurs, WebSEAL will not allow the request to
proceed. This option is valid for all junctions except for the type of
local.

–s Indicates that the junction support stateful applications. By default,
junctions are not stateful. This option is valid for all junctions
except for the type of local.

–S Specifies the name of the forms single signon configuration file.
This option is valid for all junctions except for the type of local.

–T {resource | resource_group}
Specifies the name of the resource or resource group. This option is
required only when the –b gso option is used. This option is valid
for all junctions except for the type of local.

–u uuid
Specifies the Universally Unique Identifier (UUID) of a back-end
server connected to WebSEAL by using a stateful junction (–s
option). This option is valid for all junctions except for the type of
local.

–U "user_name"
Specifies the WebSEAL server user name. This option requires the
–B and –W options. WebSEAL uses the BA header information to
authenticate to the back-end server and to provide mutual
authentication over SSL. This option is valid only with junctions
that were created with the type of ssl or sslproxy.

–v virtual_hostname[:HTTP-port]
Specifies the virtual host name for the back-end server. This option
supports multiple virtual hosts being served from the same Web
server. Use –v when the back-end junction server expects a host
name header different from the DNS name of the server. This
option is valid for all junctions except for the type of local. For
mutual junctions this value corresponds to the virtual host which
is used for HTTP requests.

-V virtual_hostname[:HTTPS-port]
Specifies the virtual host name for the back-end server. This option
supports multiple virtual hosts being served from the same Web
server. Use –V when the back-end junction server expects a host
name header different from the DNS name of the server. This
option is only used for mutual junctions and corresponds to the
virtual host which is used for HTTPS requests.

–w Indicates Microsoft Windows file system support. This option
provides all of the functionality provided by the –i junction option
but disallows requests that contain file names that might be
interpreted as Windows file name aliases. This option is valid for
all junctions except for the type of local. Local junctions prohibit
URLs that contain Windows file name aliases on Windows but
allow such URLs on other platforms.

Appendix B. Command reference 629

–W "password"
Specifies the WebSEAL server password. This option requires the
–B and –U options. WebSEAL uses the BA header information to
authenticate to the back-end server and to provide mutual
authentication over SSL. This option is valid only with junctions
that were created with the type of ssl or sslproxy.

–x Creates a transparent path junction.

This option is valid for all junctions except for the type of local .

–Y Enables Tivoli Federated Identity Manager single-signon (SSO) for
the junction.

Note: Before using this option, you must first configure the
WebSEAL configuration file to support Tivoli Federated Identity
Manager single-signon over junctions.

–Z keyfile_pwd
Specifies the password of the keyfile used to encrypt LTPA cookie
data. This option requires the –A and –F options. The –A, –F, and
–Z options all must be used together. This option is valid for all
junctions except for the type of local.

–h host_name
Required option for non-local junctions. Specifies the DNS host name or IP
address of the target server. This option is valid only for non-local
junctions; local junctions do not need a host name. Valid values for
host_name include any valid IP host name. For example:
www.example.com

–t type Required option. Specifies the type of junction; must be one of the
following types:
v tcp
v tcpproxy
v ssl
v sslproxy
v local

Authorization

Users and groups that require access to this command must be given the s (server
administration) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/junction_point object. For example, the sec_master administrative
user is given this permission by default.

Note:

For more information about gathering statistics, see the IBM Security Access
Manager for Web: Troubleshooting Guide.

Return codes

0 The command completed successfully. For WebSEAL server task
commands, the return code will be 0 when the command is sent to the
WebSEAL server without errors. However, even after the command was
successfully sent, the WebSEAL server might not be able to successfully
complete the command and returns an error message.

1 The command failed. Refer to the IBM Security Access Manager for Web:

630 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Error Message Reference. This reference provides a list of the Security Access
Manager error messages by decimal or hexadecimal codes.

Examples
v The following example (entered as one line) creates a basic WebSEAL junction

/pubs on the default-webseald-cruz WebSEAL server. The junction type is TCP,
and the host name is doc.tivoli.com:
pdadmin> server task default-webseald-cruz create -t tcp
-h doc.tivoli.com /pubs

Output is similar to:
Created junction at /pubs

v The following example (entered as one line) limits worker thread consumption
on a per junction basis with a soft thread limit of 60 and a hard thread limit of
80 on the /myjunction junction:
pdadmin> server task default-webseald-cruz create -t tcp
-h cruz.dallas.ibm.com -l 60 -L 80 /myjunction

See also

“server task add” on page 618
“server task delete”
“server task remove” on page 644
“server task show” on page 646

server task delete
The server task delete command deletes a WebSEAL junction point.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name delete junction_point

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

junction_point
Specifies the name of the directory in the WebSEAL protected object space
where the document space of the back-end server is mounted.

Appendix B. Command reference 631

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/junction_point object. For example, the sec_master administrative
user has permission by default.

Return codes

0 The command completed successfully. For WebSEAL server task
commands, the return code becomes 0 when the command is sent to the
WebSEAL server without errors.

Note: Even if the command was successfully sent, the WebSEAL server
might not be able to successfully complete the command and can return an
error message.

1 The command failed. See the IBM Security Access Manager for Web: Error
Message Reference. This reference provides a list of the Security Access
Manager error messages by decimal or hexadecimal codes.

Examples

The following example deletes the junction point /pubs from the WebSEAL server
default-webseald-abc.ibm.com:
pdadmin> server task default-webseald-abc.ibm.com delete /pubs

See also

“server task add” on page 618
“server task create” on page 624
“server task remove” on page 644
“server task show” on page 646

server task dynurl update
The server task dynurl update command reloads the dynamic URL configuration
file.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name dynurl update

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

632 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

Authorization

Users and groups that require access to this command must be given the s (server
administration) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/ object. For example, the sec_master administrative user is given
this permission by default.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code becomes 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

The following example reloads the dynamic URL configuration file:
pdadmin> server task default-webseald-abc.ibm.com dynurl update

See also

None.

server task help

Lists detailed help information about a specific server task command.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name help task

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

Appendix B. Command reference 633

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

task Lists detailed help for the specified task, such as the command syntax, the
description, and the valid options.

Authorization

No special authorization required.

Return codes

0 The command completed successfully.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

Refer to the IBM Security Access Manager for Web: Error Message Reference.
This reference provides a list of the Security Access Manager error
messages by decimal or hexadecimal codes.

Examples
v The following example displays output after requesting help for the server task

add command at the abc.ibm.com WebSEAL server:
pdadmin> server task default-webseald-abc.ibm.com help add

Output is similar to:
Command:
add <options> <junction point>
Description:
Adds an additional server to a junction
Usage:
TCP and SSL Junction Flags
-iServer treats URLs as case insensitive.
-h <hostname>Target host (required flag).
-p <port>TCP port of server.
Default is 80 for TCP junctions
443 for SSL junctions.
-H <hostname>Proxy hostname.
-P <port>Port of proxy server.
-D <"DN">The Distinguished Name of the server
-q <relative url> URL for query_contents script.
-u <UUID>(stateful junctions only).
-v <hostname>Virtual hostname for server.
-wWin32 file system support.
-jScripting support for junction.
Common Flags
<junction point>Where to create the junction

v The following example displays the output after requesting help for the server
task create command at the abc.ibm.com WebSEAL server:

634 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

pdadmin> server task default-webseald-abc.ibm.com help create

Output is similar to:
Command:
create -t <type> <options> <junction point>
Description:
Creates a new junction
Usage:
create -t <type> <options> <junction point>

TCP and SSL Junction Flags
...
Common Flags
-t <type>Type of junction.
One of: tcp, tcpproxy, ssl, sslproxy, local.
-fForce the creation: overwrite existing junction.
-RWebSEAL will send the Boolean Rule Header to these
junctions when a rule failure reason is provided.
<junction point>Where to create the junction

See also

“help” on page 616

server task jmt
The server task jmt command clears or loads the junction mapping table data.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name jmt load

server task instance_name-webseald-host_name jmt clear

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

jmt clear
Clears the junction mapping table data.

Appendix B. Command reference 635

jmt load
Loads the junction mapping table data, which is located in the jmt.conf
file. This file does not exist by default, so you must create the file and add
data.

Authorization

Users and groups that require access to this command must be given the s (server
administration) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/ object. For example, the sec_master administrative user is given
this permission by default.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code will be 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

Refer to the IBM Security Access Manager for Web: Error Message Reference.
This reference provides a list of the Security Access Manager error
messages by decimal or hexadecimal codes.

Examples

The following example loads the junction mapping table data from the jmt.conf
file so that WebSEAL has knowledge of the new information:
pdadmin> server task default-webseald-abc.ibm.com jmt load

Output is similar to:
JMT table successfully loaded.

See also

“server task reload” on page 642

server task list
The server task list command lists all junction points on a WebSEAL server or
instance.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name list

636 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

Authorization

Users and groups that require access to this command must be given the l (list)
permission in the ACL that governs the /WebSEAL/host_name-instance_name/
per_junction_point object. For example, the sec_master administrative user has
permission by default.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code will be 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

The following example lists all junction points on the default-webseald-cruz
WebSEAL server:
pdadmin> server task default-webseald-cruz list

Output is similar to:
/
/ssljct
/tcpjct

See also

“server task add” on page 618
“server task create” on page 624

Appendix B. Command reference 637

“server task delete” on page 631
“server task remove” on page 644
“server task show” on page 646

server task offline
The server task offline command places the server that is located at this
junction in an offline operational state.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name offline [–i server_uuid]
junction_point

Description

The server task offline command places the server that is located at this
junction in an offline operational state. No additional requests are sent to the
specified server. If a server is not specified, all servers that are at this junction are
placed in an offline operational state.

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

–i server_uuid
Specifies the UUID of the server to place in an offline operational state. If a
server is not specified, all servers that are located at this junction are
placed in an offline operational state. Use the server task show command
to determine the ID of a specific back-end server.

junction_point
Specifies the name of the directory in the WebSEAL protected object space
where the document space of the back-end server is mounted.

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/junction_point object. For example, the sec_master administrative
user has permission by default.

638 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code will be 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

Refer to the IBM Security Access Manager for Web: Error Message Reference.
This reference provides a list of the Security Access Manager error
messages by decimal or hexadecimal codes.

Examples

The following example places the backappl server located at the /pubs junction
point in an offline operational state. To determine the UUID of this junctioned
server, run the server task show command:
pdadmin> server task default-webseald-cruz show /pubs

Output is similar to:
Junction point: /pubs
...
Server 1:
ID: 6fc3187a-ea1c-11d7-8f4e-09267e38aa77
Server State: running
Operational State: Throttled
Throttled at: 2005-03-01-17:07:24
Hostname: backapp1.diamond.example.com
...
Current requests: 0
...

Place this server in an offline operational state (entered as one line):
pdadmin> server task default-webseald-cruz offline
-i 6fc3187a-ea1c-11d7-8f4e-09267e38aa77 /pubs

See also

“server task online”
“server task throttle” on page 651
“server task virtualhost offline” on page 664
“server task virtualhost online” on page 667
“server task virtualhost throttle” on page 673

server task online
The server task online command places the server that is located at this junction
in an online operational state.

Requires authentication (administrator ID and password) to use this command.

Appendix B. Command reference 639

Syntax

server task instance_name-webseald-host_name online [–i server_uuid]
junction_point

Description

The server task online command places the server that is located at this junction
in an online operational state. The server now resumes normal operation. If a
server is not specified, all servers that are located at this junction are placed in an
online operational state.

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

–i server_uuid
Specifies the UUID of the server to place in an online operational state. If a
server is not specified, all servers that are located at this junction are
placed in an online operational state. Use the server task show command
to determine the ID of a specific back-end server.

junction_point
Specifies the name of the directory in the WebSEAL protected object space
where the document space of the back-end server is mounted.

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/junction_point object. For example, the sec_master administrative
user has permission by default.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code will be 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

640 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

The following example places the backappl server located at the /pubs junction
point in an online operational state. To determine the UUID of this junctioned
server, run the server task show command:
pdadmin> server task default-webseald-cruz show /pubs

Output is similar to:
Junction point: /pubs
...
Server 1:
ID: 6fc3187a-ea1c-11d7-8f4e-09267e38aa77
Server State: running
Operational State: Offline
Hostname: backapp1.diamond.example.com
...
Current requests: 0
...

Place this server in an online operational state (entered as one line):
pdadmin> server task default-webseald-cruz online
-i 6fc3187a-ea1c-11d7-8f4e-09267e38aa77 /pubs

See also

“server task offline” on page 638
“server task throttle” on page 651
“server task virtualhost offline” on page 664
“server task virtualhost online” on page 667
“server task virtualhost throttle” on page 673

server task refresh all_sessions
The server task refresh all_sessions command refreshes the credential for all
sessions for a specified user.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name refresh all_sessions user_id

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

Appendix B. Command reference 641

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

user_id Refreshes the credential for all sessions that are associated with the
specified user. Examples of user names are dlucas, sec_master, and "Mary
Jones".

Authorization

Users and groups that require access to this command must be given the s (server
administration) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/ object. For example, the sec_master administrative user has
permission by default.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code will be 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

The following example refreshes all sessions for the test_user user:
pdadmin> server task default-webseald-cruz refresh all_sessions test_user

See also

“server task terminate session” on page 649
“server task terminate all_sessions” on page 648

server task reload
The server task reload command reloads the junction mapping table from the
database.

Requires authentication (administrator ID and password) to use this command.

642 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Syntax

server task instance_name-webseald-host_name reload

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

Authorization

Users and groups that require access to this command must be given the s (server
administration) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/ object. For example, the sec_master administrative user has
permission by default.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code becomes 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

The following example reloads the junction mapping table from the database:
pdadmin> server task default-webseald-abc.ibm.com reload

See also

“server task jmt” on page 635

Appendix B. Command reference 643

server task remove
The server task remove command removes the specified installed WebSEAL
server or instance from a WebSEAL junction point.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name remove –i server_uuid junction_point

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

–i server_uuid
Specifies the UUID of the server to be removed from the junction point.
See the server task show command for details about obtaining the UUID.

junction_point
Specifies the name of the directory in the WebSEAL protected object space
where the document space of the back-end server is mounted.

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/junction_point object. For example, the sec_master administrative
user has permission by default.

Return codes

0 The command completed successfully. For WebSEAL server task
commands, the return code becomes 0 when the command is sent to the
WebSEAL server without errors.

Note: Even if the command was successfully sent, the WebSEAL server
might not be able to successfully complete the command and can return an
error message.

1 The command failed. See the IBM Security Access Manager for Web: Error
Message Reference. This reference provides a list of the Security Access
Manager error messages by decimal or hexadecimal codes.

644 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Examples

The following example removes the backappl junctioned server from the /pubs
junction point. To determine the UUID of the server to be removed, run the server
task show command:
pdadmin> server task default-webseald-cruz show /pubs

Output is similar to:
Junction point: /pubs
...
Server 1:
ID: 6fc3187a-ea1c-11d7-8f4e-09267e38aa77
Server State: running
...
Hostname: backapp1.cruz.ibm.com
...

Remove the server from the junction (entered as one line):
pdadmin> server task default-webseald-cruz remove
-i 6fc3187a-ea1c-11d7-8f4e-09267e38aa77 /pubs

See also

“server task add” on page 618
“server task create” on page 624
“server task delete” on page 631
“server task show” on page 646

server task server restart
The server task server restart command restarts a WebSEAL server by using
the Security Access Manager server task framework.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task server_name server restart

Options

server_name
Specifies the name of the WebSEAL server to be restarted.

Authorization

Users and groups that require access to this command must be given the s
(administration) permission in the ACL that governs the /WebSEAL/host_name-
instance_name object. For example, the sec_master administrative user has
permission by default.

Return codes

0 The command that completed successfully. For WebSEAL server task
commands, the return code is 0 when the command is sent to the
WebSEAL server without errors.

Appendix B. Command reference 645

Note: Even if the command is successfully sent, the WebSEAL server
might not be able to successfully complete the command and can return an
error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2). See the IBM Security Access Manager for
Web: Error Message Reference. This reference provides a list of the Security
Access Manager error messages by decimal or hexadecimal codes.

Examples

The following example restarts server03:
pdadmin> server task server03 server restart

server task show
The server task show command displays detailed information about the specified
WebSEAL junction.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name show junction_point

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

junction_point
Specifies the name of the directory in the WebSEAL protected object space
where the document space of the back-end server is mounted.

Authorization

Users and groups that require access to this command must be given the l (list)
permission in the ACL that governs the /WebSEAL/host_name-instance_name/
junction_point object. For example, the sec_master administrative user has
permission by default.

646 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Return codes

0 The command completed successfully. For WebSEAL server task
commands, the return code becomes 0 when the command is sent to the
WebSEAL server without errors.

Note: Even if the command was successfully sent, the WebSEAL server
might not be able to successfully complete the command and can return an
error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2). See the IBM Security Access Manager for
Web: Error Message Reference. This reference provides a list of the Security
Access Manager error messages by decimal or hexadecimal codes.

Examples

The following example shows information for the local root junction point / on the
WebSEAL server abc.ibm.com:
pdadmin> server task default-webseald-abc.ibm.com show

Output is similar to:
Junction point: /
Type: Local
Junction hard limit: 0 - using global value
Junction soft limit: 0 - using global value
Active worker threads: 0
Root Directory: /opt/pdweb/www-default/docs
...
Server 1:
ID: 78a1eb8c-074a-11d9-abda-00096bda9439
...

See also

“server task add” on page 618
“server task create” on page 624
“server task delete” on page 631
“server task remove” on page 644

server task server sync
The server task server sync command synchronizes configuration data between
two WebSEAL servers by using the Security Access Manager server task
framework.

Requires authentication (administrator ID and password) to use this command.

Note: The two WebSEAL servers must be of the same type. The WebSEAL server
type is either a:
v WebSEAL running on a Web Gateway appliance.
v WebSEAL running on a standard operating system.

Syntax

server task webseal_server server sync server_name

Appendix B. Command reference 647

Options

webseal_server
Specifies the fully qualified server name of the installed WebSEAL instance.
The webseal_server is the target.

server_name
Specifies the name of the WebSEAL server from which data is extracted.
Configuration data on the host system is backed up and then synchronized
with this data. The server_name is the source.

Authorization

Users and groups that require access to this command must be given the s
(administration) permission in the ACL that governs the /WebSEAL/host_name-
instance_name object. The sec_master administrative user has permission by
default.

Return codes

0 The command that completed successfully. For WebSEAL server task
commands, the return code is 0 when the command is sent to the
WebSEAL server without errors.

Note: Even if the command is successfully sent, the WebSEAL server
might not be able to successfully complete the command and can return an
error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2). See the IBM Security Access Manager for
Web: Error Message Reference. This reference provides a list of the Security
Access Manager error messages by decimal or hexadecimal codes.

Examples

The following example synchronizes configuration data with server
master-webseald-abc.ibm.com:
pdadmin> server task default-webseald-abc.ibm.com server sync
master-webseald-abc.ibm.com

server task terminate all_sessions
The server task terminate all_sessions command terminates all user sessions
for a specific user.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name terminate all_sessions user_id

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

648 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

user_id Specifies the name of the user. Examples of user names are dlucas,
sec_master, and "Mary Jones".

Authorization

Users and groups that require access to this command must be given the s (server
administration) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/ object. For example, the sec_master administrative user has
permission by default.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code becomes 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

The following example terminates all sessions for the dlucas user on the
default-webseald-cruz WebSEAL server:
pdadmin> server task default-webseald-cruz terminate all_sessions dlucas

See also

“server task terminate session”
“server task refresh all_sessions” on page 641

server task terminate session
The server task terminate session command terminates a user session using a
session ID.

Requires authentication (administrator ID and password) to use this command.

Appendix B. Command reference 649

Syntax

server task instance_name-webseald-host_name terminate session session_id

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

session_id
Specifies the ID of a user session.

Authorization

Users and groups that require access to this command must be given the s (server
administration) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/ object. For example, the sec_master administrative user has
permission by default.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code becomes 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

The following example (entered as one line) terminates a specific session on the
default-webseald-cruz WebSEAL server:
pdadmin> server task default-webseald-cruz terminate
session 6fc3187a-ea1c-11d7-8f4e-09267e38aa77

650 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

See also

“server task refresh all_sessions” on page 641
“server task terminate all_sessions” on page 648

server task throttle
The server task throttle command places the server that is located at this
junction in a throttled operational state.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name throttle [–i server_uuid]
junction_point

Description

The server task throttle command places the server that is located at this
junction in a throttled operational state. Only requests from users who have
created a session with WebSEAL prior to the invocation of this command continue
to have their requests processed by the specified server. If a server is not specified,
all servers that are located at this junction are placed in a throttled operational
state.

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

–i server_uuid
Specifies the UUID of the server to throttle. If a server is not specified, all
servers that are located at this junction are placed in a throttled operational
state. Use the server task show command to determine the ID of a specific
back-end server.

junction_point
Specifies the name of the directory in the WebSEAL protected object space
where the document space of the back-end server is mounted.

Appendix B. Command reference 651

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/junction_point object. For example, the sec_master administrative
user has permission by default.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code becomes 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

The following example places the backappl server located at the /pubs junction
point in a throttled operational state. To determine the UUID of this junctioned
server, run the server task show command:
pdadmin> server task default-webseald-cruz show /pubs

Output is similar to:
Junction point: /pubs
...
Server 1:
ID: 6fc3187a-ea1c-11d7-8f4e-09267e38aa77
Server State: running
Operational State: Online
Hostname: backapp1.diamond.example.com
...
Current requests: 0
...

Place this server in a throttled operational state (entered as one line):
pdadmin> server task default-webseald-cruz throttle
-i 6fc3187a-ea1c-11d7-8f4e-09267e38aa77 /pubs

See also

“server task offline” on page 638
“server task online” on page 639
“server task virtualhost offline” on page 664
“server task virtualhost online” on page 667
“server task virtualhost throttle” on page 673

652 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

server task virtualhost add
The server task virtualhost add command adds an additional installed
WebSEAL server or instance to an existing virtual host junction.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name virtualhost add –h host_name
[options] vhost_label

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

options Specifies the options that you can use with the server task virtualhost
add command. These options include:

–D "dn"
Specifies the distinguished name of the back-end server certificate.
This value, matched with the actual certificate DN enhances
authentication and provides mutual authentication over SSL. For
example, the certificate for www.example.com might have a DN of
"CN=WWW.EXAMPLE.COM,OU=Software,O=example.com\, Inc,L=Austin,
ST=Texas,C=US"

This option is valid only with junctions that were created with the
type of ssl or sslproxy.

–H host_name
Specifies the DNS host name or IP address of the proxy server.

Valid values for host_name include any valid IP host name. For
example:
proxy.www.example.com

This option is used for junctions that were created with the type of
tcpproxy or sslproxy.

–i Indicates that the WebSEAL server does not treat URLs as
case-sensitive.

This option is used for junctions that were created with the type of
tcp or ssl.

Appendix B. Command reference 653

–p port
Specifies the TCP port of the back-end server. The default value is
80 for TCP junctions and 443 for SSL junctions. This option is used
for junctions that were created with the type of tcp or ssl.

–P port
Specifies the TCP port of the proxy server. The default value is
7138.

For port, use any valid port number. A valid port number is any
positive number that is allowed by TCP/IP and that is not
currently being used by another application. Use the default port
number value, or use a port number that is greater then 1000 that
is currently not being used.

This option is used for junctions that were created with the type of
tcpproxy or sslproxy.

–q path
Required option for back-end Windows virtual hosts. Specifies the
relative path for the query_contents script. By default, Security
Access Manager looks for this script in the /cgi_bin subdirectory.
If this directory is different or the query_contents file is renamed,
use this option to indicate to WebSEAL the new URL to the file.

This option is valid for all junction types except localtcp and
localssl.

–u uuid
Specifies the UUID of this back-end server when connected to
WebSEAL over a stateful junction that was using the –s option.
This option is used for junctions that were created with the type of
tcp or ssl.

–w Indicates Microsoft Windows file system support.

This option is used for junctions that were created with the type of
tcp or ssl.

vhost_label
Specifies the label name of the virtual host junction.

–h host_name
Required option. Specifies the DNS host name or IP address of the target
server. Valid values for host_name include any valid IP host name. For
example:
www.example.com

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/@vhost_label object. For example, the sec_master administrative
user has permission by default.

Return codes

0 The command completed successfully. For WebSEAL server task
commands, the return code will be 0 when the command is sent to the
WebSEAL server without errors.

654 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Note: Even if the command was successfully sent, the WebSEAL server
might not be able to successfully complete the command and can return an
error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).See the IBM Security Access Manager for
Web: Error Message Reference. This reference provides a list of the Security
Access Manager error messages by decimal or hexadecimal codes.

Examples

The following example (entered as one line) adds an additional server with host
name xyz.ibm.com to an existing virtual host junction with the label
support-vhost-http, located on the WebSEAL server abc.ibm.com:
pdadmin> server task default-webseald-abc.ibm.com virtualhost add
-h xyz.ibm.com support-vhost-http

See also

“server task virtualhost create”
“server task virtualhost delete” on page 662
“server task virtualhost list” on page 663
“server task virtualhost remove” on page 669
“server task virtualhost show” on page 671

server task virtualhost create
The server task virtualhost create command creates a virtual host junction.

Requires authentication (administrator ID and password) to use this command.

Syntax

For local junctions:
server task instance_name-webseald-host_name virtualhost create –t type –v
virtual_host_name [options] vhost_label

For non-local junctions:
server task instance_name-webseald-host_name virtualhost create –t type –h
host_name [options] vhost_label

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify the full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

Appendix B. Command reference 655

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

options Specifies the options that you can use with the server task virtualhost
create command. These options include:

–A Enables a virtual host junction to support the lightweight
third-party authentication mechanism (LTPA). This option requires
the –F and –Z options. The –A, –F, and –Z options all must be
used together.

This option is valid for all junction types except localtcp and
localssl.

-2 You can use this option in conjunction with the -A option to
specify that LTPA version 2 cookies (LtpaToken2) are used. The -A
option without the -2 option specifies that LTPA version 1 cookies
(LtpaToken) are used.

–b BA_value
Defines how the WebSEAL server passes client identity information
in HTTP basic authentication (BA) headers to the back-end virtual
host, which is one of the following values:
v filter
v ignore
v supply
v gso

This option is valid for all junction types except localtcp and
localssl.

The default value is filter.

–B Indicates that WebSEAL uses the BA header information to
authenticate to the back-end virtual host and to provide mutual
authentication over SSL. This option requires the –U and –W
options.

This option is valid only with junctions that were created with the
type of ssl or sslproxy.

–c header_type
Inserts the Security Access Manager client identity in HTTP
headers across the virtual host junction. The header_type argument
can include any combination of the following Security Access
Manager HTTP header types:
v {iv-user|iv-user-l}
v iv-groups
v iv-creds
v all

The header types must be comma separated, and cannot have a
spaces between the types. For example: -c iv_user,iv_groups

Specifying –c all is the same as specifying –c iv-user,iv-
groups,iv-creds.

This option is valid for all junction types except localtcp and
localssl.

–C Supports mutual authentication by enabling the front-end
WebSEAL server to pass its identity information to the back-end

656 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

WebSEAL server in a Basic Authentication (BA) header.
Additionally, the –C option enables single signon functionality
provided by the –c option.

This option is valid only with junctions that were created with the
type of ssl or sslproxy.

–D "dn"
Specifies the distinguished name of the back-end server certificate.
This value, matched with the actual certificate DN enhances
authentication and provides mutual authentication over SSL. For
example, the certificate for www.example.com might have a DN of
"CN=WWW.EXAMPLE.COM,OU=Software,O=example.com\, Inc,L=Austin,
ST=Texas,C=US"

This option is valid only with junctions that were created with the
type of ssl or sslproxy.

–e encoding_type
Specifies the encoding to use when generating HTTP headers for
virtual host junctions. This encoding applies to headers that are
generated with both the –c junction option and tag-value. Possible
values for encoding are as follows:

utf8_bin
WebSEAL sends the headers in UTF-8.

utf8_uri
WebSEAL sends the headers in UTF-8 but URI also
encodes them. This behavior is the default behavior.

lcp_bin
WebSEAL sends the headers in the local code page of the
WebSEAL server.

lcp_uri
WebSEAL sends the headers in the local code page of the
WebSEAL server, but URI also encodes them.

This option is valid for all junction types except localtcp and
localssl.

–f Forces the replacement (overwrite) of an existing virtual host
junction.

This option is used for junctions that were created with the any
junction type.

–F "keyfile"

Specifies the name of the keyfile used to encrypt LTPA cookie data.

The –F option requires –A and –Z options. The –A, –F, and –Z
options all must be used together.

This option is valid for all junction types except localtcp and
localssl.

–g vhost_label
The –g option causes a second additional virtual host junction to
share the same protected object space as the initial virtual host
junction.

Appendix B. Command reference 657

This option is appropriate for junction pairs only (two junctions
using complementary protocols). The option does not support the
association of more than two junctions.

–H host_name
Specifies the DNS host name or IP address of the proxy server. The
–P option also supports proxy server junctions. Valid values for
host_name include any valid IP host name. For example:
proxy.www.example.com

This option is valid only with junctions that were created with the
type of tcpproxy or sslproxy.

–i Indicates that the WebSEAL junction does not treat URLs as
case-sensitive. To correctly authorize requests for junctions that are
not case-sensitive, WebSEAL does the authorization check on a
lowercase version of the URL. For example, a Web server that is
running on a Windows operating system treats requests for
INDEX.HTM and index.htm as requests for the same file.

Junctions to such a Web server should be created with the –i or –w
option. ACLs or POPs that are attached to objects beneath the
junction point should use the lower case object name. An ACL
attached to /junction/index.htm will apply to all of the following
requests if the –i or –w option is used:

/junction/INDEX.HTM
/junction/index.htm
/junction/InDeX.HtM

This option is valid for all junction except for the type of localtcp
and localssl. Local junctions are not case-sensitive only on Win32
platforms; all other platforms are case-sensitive.

–k Sends WebSEAL session cookies to the back-end virtual host. By
default, cookies are removed from requests that are sent to the
server.

This option is valid for all junction types except localtcp and
localssl.

–K "key_label"
Specifies the key label of the client-side certificate that WebSEAL
should present to the back-end server. Use of this option allows the
virtual host to authenticate the WebSEAL server using client
certificates.

This option is valid only with junctions that were created with the
type of ssl and sslproxy.

–l percent
Defines the soft limit for consumption of worker threads.

This option is valid for all junction types except localtcp and
localssl.

–L percent
Defines the hard limit for consumption of worker threads.

This option is valid for all junction types except localtcp and
localssl.

658 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

–p port
Specifies the TCP port of the back-end third-party server. The
default value is 80 for TCP junctions and 443 for SSL junctions.

This option is valid for all junction types except localtcp and
localssl.

–P port
Specifies the TCP port number for the HTTP proxy server. The –P
option is required when the –H option is used.

This option is valid only with junctions that were created with the
type of tcpproxy or sslproxy.

–q path
Required option for back-end Windows virtual hosts. Specifies the
relative path for the query_contents script. By default, Security
Access Manager looks for the query_contents script in the
/cgi_bin directory. If this directory is different or the
query_contents file name is renamed, this option will indicate to
WebSEAL the new URL to the file.

This option is valid for all junction types except localtcp and
localssl.

–r Inserts the incoming IP address into the HTTP header across the
junction.

This option is valid for all junction types except localtcp and
localssl.

–R Allows the request to proceed but provides the rule failure reason
to the junction in an HTTP header. If the –R option is not used and
a rule failure occurs, WebSEAL will not allow the request to
proceed.

This option is valid for all junction types except localtcp and
localssl.

–s Indicates that the virtual host junction support stateful
applications. By default, virtual host junctions are not stateful.

This option is valid for all junction types except localtcp and
localssl.

–S Indicates the name of the forms single signon configuration file.

This option is valid for all junction types except localtcp and
localssl.

–T {resource | resource_group}
Specifies the name of the GSO resource or resource group. This
option is required only when the –b gso option is used.

This option is valid for all junction types except localtcp and
localssl.

–u uuid
Specifies the Universally Unique Identifier (UUID) of a back-end
server connected to WebSEAL by using a stateful virtual host
junction (–s option).

This option is valid for all junction types except localtcp and
localssl.

Appendix B. Command reference 659

–U "user_name"
Specifies the WebSEAL server user name. This option requires the
–B and –W options. WebSEAL uses the BA header information to
authenticate to the back-end virtual host and to provide mutual
authentication over SSL.

This option is valid only with junctions that were created with the
type of ssl or sslproxy.

–v vhost_name[:port]

WebSEAL selects a virtual host junction to process a request if the
request's HTTP Host header matches the virtual host name and
port number specified by the -v option.

The -v option is also used to specify the value of the Host header
of the request sent to the back-end server.

The port number is required if the virtual host uses a non-standard
port for the protocol. Standard port for TCP is 80; standard port for
SSL is 443.

If –v is not specified for tcp, ssl, tcpproxy, and sslproxy type
junctions, the junction is selected from the information contained in
the –h host and –p port options.

The –v option is required for localtcp and localssl type
junctions.

–w Indicates Microsoft Windows file system support. This option
provides all of the functionality provided by the –i junction option
but disallows requests that contain file names that might be
interpreted as Windows file name aliases.

This option is valid for all junction types except localtcp and
localssl. Local junctions prohibit URLs that contain Windows file
name aliases on Win64 but allow such URLs on other platforms.

–W "password"
Specifies the WebSEAL server password. This option requires the
–B and –U options. WebSEAL uses the BA header information to
authenticate to the back-end virtual host and to provide mutual
authentication over SSL.

This option is valid only with junctions that were created with the
type of ssl or sslproxy.

–Y Enables Tivoli Federated Identity Manager single-signon (SSO) for
the junction.

NOTE: Before using this option, you must first configure the
WebSEAL configuration file to support Tivoli Federated Identity
Manager single-signon over junctions.

–z replica_set
Specifies the replica set, as follows:

For SMS environments:
The replica set that sessions on the virtual host junction are
managed under and provides the ability to group or
separate login sessions among multiple virtual hosts.

For non-SMS environments:
The replica set that sessions on the virtual host junction are

660 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

managed under and controls the partitioning of the
WebSEAL session cache so the virtual host can be part of
the same replica set as any standard junction that is
assigned to that same replica set through the
standard-junction-replica-set entry of the [session]
stanza.

–Z keyfile_pwd
Specifies the password of the keyfile used to encrypt LTPA cookie
data. This option requires the –A and –F options. The –A, –F, and
–Z options all must be used together.

This option is valid for all junction types except localtcp and
localssl.

vhost_label
Specifies the label name of the virtual host junction.

–h host_name
Required option for non-local junctions. Specifies the DNS host name or IP
address of the target server. This option is valid only for non-local
junctions; local junctions do not need a host name. Valid values for
host_name include any valid IP host name. For example:
www.example.com

–t type Required option. Specifies the type of virtual host junction. This option is
required and must be one of the following types:
v tcp
v tcpproxy
v ssl
v sslproxy
v localtcp
v localssl

Authorization

Users and groups that require access to this command must be given the s (server
administration) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/@vhost_label object. For example, the sec_master administrative
user has permission by default.

Note: For more information about gathering statistics, see the IBM Security Access
Manager for Web: Troubleshooting Guide.

Return codes

0 The command completed successfully. For WebSEAL server task
commands, the return code becomes 0 when the command is sent to the
WebSEAL server without errors.

Note: Even if the command was successfully sent, the WebSEAL server
might not be able to successfully complete the command and can return an
error message.

1 The command failed. See the IBM Security Access Manager for Web: Error
Message Reference. This reference provides a list of the Security Access
Manager error messages by decimal or hexadecimal codes.

Appendix B. Command reference 661

Examples

The following example (entered as one line) creates an SSL type virtual host
junction with the vhost-xy-https label. This junction serves the virtual host
x.y.com located on the junctioned server cruz1.ibm.com. WebSEAL responds to the
Host: x.y.com header in SSL (HTTPS) requests by forwarding the requests across
this virtual host junction:
pdadmin> server task default-webseald-abc.ibm.com virtualhost create
-t ssl -h cruz1.ibm.com -v x.y.com vhost-xy-https

See also

“server task virtualhost add” on page 653
“server task virtualhost delete”
“server task virtualhost list” on page 663
“server task virtualhost remove” on page 669
“server task virtualhost show” on page 671

server task virtualhost delete
The server task virtualhost delete command deletes a virtual host junction.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name virtualhost delete vhost_label

Description

The server list virtualhost delete command deletes a virtual host junction. A
virtual host junction cannot be deleted if a second virtual host junction refers to it
through the –g option. An error message is returned at such an attempt.

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

vhost_label
Specifies the label name of the virtual host junction.

662 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/@vhost_label object. For example, the sec_master administrative
user has permission by default.

Return codes

0 The command completed successfully. For WebSEAL server task
commands, the return code becomes 0 when the command is sent to the
WebSEAL server without errors.

Note: Even if the command was successfully sent, the WebSEAL server
might not be able to successfully complete the command and can return an
error message.

1 The command failed. See the IBM Security Access Manager for Web: Error
Message Reference. This reference provides a list of the Security Access
Manager error messages by decimal or hexadecimal codes.

Examples

The following example (entered as one line) deletes the virtual host junction
support-vhost-https from the WebSEAL server abc.ibm.com:
pdadmin> server task default-webseald-abc.ibm.com virtualhost delete
support-vhost-https

See also

“server task virtualhost add” on page 653
“server task virtualhost create” on page 655
“server task virtualhost list”
“server task virtualhost remove” on page 669
“server task virtualhost show” on page 671

server task virtualhost list
The server task virtualhost list command lists all configured virtual host
junctions by label name.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name virtualhost list

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

Appendix B. Command reference 663

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

Authorization

Users and groups that require access to this command must be given the l (list)
permission in the ACL that governs the /WebSEAL/host_name-instance_name/
@per_vhost_label object. For example, the sec_master administrative user has
permission by default.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code becomes 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

The following example lists the label names of all virtual host junctions configured
on the abc.ibm.com WebSEAL server:
pdadmin> server task default-webseald-abc.ibm.com virtualhost list

Output is similar to:
pubs-vhost-http
sales-vhost-https
support-vhost-http

See also

“server task virtualhost add” on page 653
“server task virtualhost create” on page 655
“server task virtualhost delete” on page 662
“server task virtualhost remove” on page 669
“server task virtualhost show” on page 671

server task virtualhost offline
The server task virtualhost offline command places the server that is located
at this virtual host junction in an offline operational state.

Requires authentication (administrator ID and password) to use this command.

664 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Syntax

server task instance_name-webseald-host_name virtualhost offline [–i server_uuid]
vhost_label

Description

The server task virtualhost offline command places the server that is located
at this virtual host junction in an offline operational state. No additional requests
are sent to the specified server. If a server is not specified, all servers that are
located at this virtual host junction are placed in an offline operational state.

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

–i server_uuid
Specifies the UUID of the server to place in an offline operational state. If a
server is not specified, all servers that are located at this virtual host
junction are placed in an offline operational state. Use the server task
virtualhost show command to determine the ID of a specific back-end
server.

vhost_label
Specifies the label name of the virtual host junction.

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/@vhost_label object. For example, the sec_master administrative
user has permission by default.

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code becomes 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

Appendix B. Command reference 665

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

In the following example, the virtual host junction with the label
support-vhost-https, configured on the WebSEAL server abc.ibm.com, supports
the virtual host support.ibm.com, located on the back-end junctioned server
int3.ibm.com.

There is a requirement to place the int3.ibm.com server in an offline operational
state. To determine the UUID of this junctioned server, run the server task
virtualhost show command (entered as one line):
pdadmin> server task default-webseald-abc.ibm.com
virtualhost show support-vhost-https

Output is similar to:
Virtual Host label: support-vhost-https
Type: SSL
...
Virtual hostname: support.ibm.com
Alias: ibm.com
Alias: support
Virtual Host junction protocol partner: support-vhost-http
Server 1:
ID: bacecc66-13ce-11d8-8f0a-09267ea5aa77
Server State: running
Operational State: Throttled
Throttled at: 2005-03-01-17:07:24
Hostname: int3.ibm.com
Port: 443
Server DN:
Query_contents URL: /cgi-bin/query_contents
Query-contents: unknown
Case insensitive URLs: no
Allow Windows-style URLs: yes
Current requests: 0
Total requests: 1

Place this server in an offline operational state using the following command
(entered as one line):
pdadmin> server task default-webseald-cruz virtualhost offline
-i bacecc66-13ce-11d8-8f0a-09267ea5aa77 support-vhost-https

See also

“server task offline” on page 638
“server task online” on page 639
“server task throttle” on page 651
“server task virtualhost online” on page 667
“server task virtualhost throttle” on page 673

666 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

server task virtualhost online
The server task virtualhost online command places the server that is located at
this virtual host junction in an online operational state.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name virtualhost online [–i server_uuid]
vhost_label

Description

The server task virtualhost online command places the server that is located at
this virtual host junction in an online operational state. The server now resumes
normal operation. If a server is not specified, all servers that are located at this
virtual host junction are placed in an online operational state.

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

–i server_uuid
UUID of the server to place in an online operational state. If a server is not
specified, all servers that are located at this virtual host junction are placed
in an online operational state. Use the server task virtualhost show
command to determine the ID of a specific back-end server.

vhost_label
Specifies the label name of the virtual host junction.

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/@vhost_label object. For example, the sec_master administrative
user has permission by default.

Return codes

0 The command completed successfully.

Appendix B. Command reference 667

Note: For WebSEAL server task commands, the return code will be 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

In the following example, the virtual host junction with the label
support-vhost-https, configured on the WebSEAL server abc.ibm.com, supports
the virtual host support.ibm.com, located on the back-end junctioned server
int3.ibm.com.

There is a requirement to place the int3.ibm.com server in an online operational
state. To determine the UUID of this junctioned server, run the server task
virtualhost show command (entered as one line):
pdadmin> server task default-webseald-abc.ibm.com
virtualhost show support-vhost-https

Output is similar to:
Virtual Host label: support-vhost-https
Type: SSL
...
Virtual hostname: support.ibm.com
Alias: ibm.com
Alias: support
Virtual Host junction protocol partner: support-vhost-http
Server 1:
ID: bacecc66-13ce-11d8-8f0a-09267ea5aa77
Server State: running
Operational State: Offline
Hostname: int3.ibm.com
Port: 443
Server DN:
Query_contents URL: /cgi-bin/query_contents
Query-contents: unknown
Case insensitive URLs: no
Allow Windows-style URLs: yes
Current requests: 0
Total requests: 1

Place this server in an online operational state using the following command
(entered as one line):
pdadmin> server task default-webseald-cruz virtualhost online
-i bacecc66-13ce-11d8-8f0a-09267ea5aa77 support-vhost-https

See also

“server task offline” on page 638
“server task online” on page 639
“server task throttle” on page 651
“server task virtualhost offline” on page 664
“server task virtualhost throttle” on page 673

668 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

server task virtualhost remove
The server task virtualhost remove command removes the specified server from
a virtual host junction.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name virtualhost remove –i server_uuid
vhost_label

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

–i server_uuid
Specifies the UUID of the server to be removed from the virtual host
junction. For this command, the –i option, normally used to treat URLs as
case-sensitive,operates like the –u option. See the server task show
command for details about obtaining the UUID.

vhost_label
Specifies the label name of the virtual host junction.

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/@vhost_label object. For example, the sec_master administrative
user has permission by default.

Return codes

0 The command completed successfully. For WebSEAL server task
commands, the return code becomes 0 when the command is sent to the
WebSEAL server without errors.

Note: Even if the command was successfully sent, the WebSEAL server
might not be able to successfully complete the command and can return an
error message.

1 The command failed. See the IBM Security Access Manager for Web: Error

Appendix B. Command reference 669

Message Reference. This reference provides a list of the Security Access
Manager error messages by decimal or hexadecimal codes.

Examples

The following example removes the junctioned server int4.ibm.com from the
virtual host junction support-vhost-https. To determine the UUID of the server to
be removed, run the server task virtualhost show command (entered as one
line):
pdadmin> server task default-webseald-abc.ibm.com
virtualhost show support-vhost-https

Output is similar to:
Virtual Host label: support-vhost-https
Type: SSL
Junction hard limit: 0 - using global value
Junction soft limit: 0 - using global value
Active worker threads: 0
Basic authentication mode: filter
Forms based SSO: disabled
Authentication HTTP header: do not insert
Remote Address HTTP header: do not insert
Stateful junction: no
Boolean Rule Header: no
Delegation support: no
Mutually authenticated: no
Insert WebSphere LTPA cookies: no
Insert WebSEAL session cookies: no
Request Encoding: UTF-8, URI Encoded
Virtual hostname: support.ibm.com
Alias: ibm.com
Alias: support
Virtual Host junction protocol partner: support-vhost-http
Server 1:
ID: bacecc66-13ce-11d8-8f0a-09267ea5aa77
Server State: running
Hostname: int3.ibm.com
Port: 443
Server DN:
Query_contents URL: /cgi-bin/query_contents
Query-contents: unknown
Case insensitive URLs: no
Allow Windows-style URLs: yes
Total requests: 1
Server 2:
ID: xycecc77-19ve-81y5-4h0a-90267hj5nn57
Server State: running
Hostname: int4.ibm.com
Port: 444
Server DN:
Query_contents URL: /cgi-bin/query_contents
Query-contents: unknown
Case insensitive URLs: no
Allow Windows-style URLs: yes
Total requests: 1

Remove the server from the virtual host junction (entered as one line):
pdadmin> server task default-webseald-abc.ibm.com
virtualhost remove -i xycecc77-19ve-81y5-4h0a-90267hj5nn57 support-vhost-https

670 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

See also

“server task virtualhost add” on page 653
“server task virtualhost create” on page 655
“server task virtualhost delete” on page 662
“server task virtualhost list” on page 663
“server task virtualhost show”

server task virtualhost show
The server task virtualhost show command displays information about the
specified virtual host junction. The virtual host junction must exist, or an error is
displayed.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name virtualhost show vhost_label

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

vhost_label
Specifies the label name of the virtual host junction.

Authorization

Users and groups that require access to this command must be given the l (list)
permission in the ACL that governs the /WebSEAL/host_name-instance_name/
@vhost_label object. For example, the sec_master administrative user has
permission by default.

Return codes

0 The command completed successfully. For WebSEAL server task
commands, the return code becomes 0 when the command is sent to the
WebSEAL server without errors.

Note: Even if the command was successfully sent, the WebSEAL server
might not be able to successfully complete the command and can return an
error message.

Appendix B. Command reference 671

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2). See the IBM Security Access Manager for
Web: Error Message Reference. This reference provides a list of the Security
Access Manager error messages by decimal or hexadecimal codes.

Examples

The following example (entered as one line) shows information for the virtual host
junction with the label support-vhost-https, configured on the WebSEAL server
abc.ibm.com, that supports the virtual host support.ibm.com, located on the
back-end junctioned server int3.ibm.com:
pdadmin> server task default-webseald-abc.ibm.com
virtualhost show support-vhost-https

Output is similar to:
Virtual Host label: support-vhost-https
Type: SSL
Junction hard limit: 0 - using global value
Junction soft limit: 0 - using global value
Active worker threads: 0
Basic authentication mode: filter
Forms based SSO: disabled
Authentication HTTP header: do not insert
Remote Address HTTP header: do not insert
Stateful junction: no
Boolean Rule Header: no
Delegation support: no
Mutually authenticated: no
Insert WebSphere LTPA cookies: no
Insert WebSEAL session cookies: no
Request Encoding: UTF-8, URI Encoded
Virtual hostname: support.ibm.com
Alias: ibm.com
Alias: support
Virtual Host junction protocol partner: support-vhost-http
Server 1:
ID: bacecc66-13ce-11d8-8f0a-09267ea5aa77
Server State: running
Hostname: int3.ibm.com
Port: 443
Server DN:
Query_contents URL: /cgi-bin/query_contents
Query-contents: unknown
Case insensitive URLs: no
Allow Windows-style URLs: yes
Total requests: 1

See also

“server task virtualhost add” on page 653
“server task virtualhost create” on page 655
“server task virtualhost delete” on page 662
“server task virtualhost list” on page 663
“server task virtualhost remove” on page 669

672 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

server task virtualhost throttle
The server task virtualhost throttle command places the server that is located
at this virtual host junction in a throttled operational state.

Requires authentication (administrator ID and password) to use this command.

Syntax

server task instance_name-webseald-host_name virtualhost throttle [–i server_uuid]
vhost_label

Description

The server task virtualhost throttle command places the server that is located
at this virtual host junction in a throttled operational state. Only requests from
users who have created a session with WebSEAL prior to the invocation of this
command continue to have their requests processed by the specified server. If a
server is not specified, all servers that are located at this virtual host junction are
placed in a throttled operational state..

Options

instance_name-webseald-host_name
Specifies the full server name of the installed WebSEAL instance. You must
specify this full server name in the exact format as displayed in the output
of the server list command.

The instance_name specifies the configured name of the WebSEAL instance.
The webseald designation indicates that the WebSEAL service performs the
command task. The host_name is the name of the physical machine where
the WebSEAL server is installed.

For example, if the configured name of a single WebSEAL instance is
default, and host machine name where the WebSEAL server is installed is
abc.ibm.com, the full WebSEAL server name is default-webseald-
abc.ibm.com.

If an additional WebSEAL instance is configured and named web2, the full
WebSEAL server name is web2-webseald-abc.ibm.com.

–i server_uuid
Specifies the UUID of the server to throttle. If a server is not specified, all
servers that are at this virtual host junction are placed in a throttled
operational state. Use the server task virtualhost show command to
determine the ID of a specific back-end server.

vhost_label
Specifies the label name of the virtual host junction.

Authorization

Users and groups that require access to this command must be given the c
(control) permission in the ACL that governs the /WebSEAL/host_name-
instance_name/@vhost_label object. For example, the sec_master administrative
user has permission by default.

Appendix B. Command reference 673

Return codes

0 The command completed successfully.

Note: For WebSEAL server task commands, the return code becomes 0
when the command is sent to the WebSEAL server without errors. Even if
the command was successfully sent, the WebSEAL server might not be able
to successfully complete the command and can return an error message.

1 The command failed. When a command fails, the pdadmin command
provides a description of the error and an error status code in hexadecimal
format (for example, 0x14c012f2).

See the IBM Security Access Manager for Web: Error Message Reference. This
reference provides a list of the Security Access Manager error messages by
decimal or hexadecimal codes.

Examples

In the following example, the virtual host junction with the label
support-vhost-https, configured on the WebSEAL server abc.ibm.com, supports
the virtual host support.ibm.com, located on the back-end junctioned server
int3.ibm.com.

There is a requirement to place the int3.ibm.com server in a throttled operational
state. To determine the UUID of this junctioned server, run the server task
virtualhost show command (entered as one line):
pdadmin> server task default-webseald-abc.ibm.com
virtualhost show support-vhost-https

Output is similar to:
Virtual Host label: support-vhost-https
Type: SSL
...
Virtual hostname: support.ibm.com
Alias: ibm.com
Alias: support
Virtual Host junction protocol partner: support-vhost-http
Server 1:
ID: bacecc66-13ce-11d8-8f0a-09267ea5aa77
Server State: running
Operational State: Online
Hostname: int3.ibm.com
Port: 443
Server DN:
Query_contents URL: /cgi-bin/query_contents
Query-contents: unknown
Case insensitive URLs: no
Allow Windows-style URLs: yes
Current requests: 0
Total requests: 1

Place this server in a throttled operational state using the following command
(entered as one line):
pdadmin> server task default-webseald-cruz virtualhost throttle
-i bacecc66-13ce-11d8-8f0a-09267ea5aa77 support-vhost-https

674 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

See also

“server task throttle” on page 651
“server task offline” on page 638
“server task online” on page 639
“server task virtualhost offline” on page 664
“server task virtualhost online” on page 667

Appendix B. Command reference 675

676 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law :

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2002, 2013 677

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to

678 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information in softcopy form, the photographs and color
illustrations might not be displayed.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office
of Government Commerce, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer
Entertainment, Inc., in the United States, other countries, or both and is used under
license therefrom.

Notices 679

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

680 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

Index

A
absolute path names, definition 416
absolute URL filtering, best

practices 584
Accept-Charset HTTP header 87
accept-client-certs stanza entry 146, 152,

488
Accept-Language HTTP header 86, 87
access control 603
access control list (ACL) 8
accessibility xxii
account expiration 82
account expiration error message

configuration 82
account management page

configuration 82
account-expiry-notification stanza

entry 82
account-inactivated stanza entry 83
account-locked stanza entry 82
acct_locked.html 69
ACL

permissions 343
ACL and POP

attach to lower case object
names 410

ACL policies
concepts 8
explicit 10
inherited 10
introduction 8
valid characters for ACL names 344
WebSEAL-specific 343

acnt-mgt stanza 180, 202
allowed-referers 106
enable-secret-token-validation 105

agent.log 24
agents stanza entry 24
agents-file stanza entry 24
allow-backend-domain-cookies stanza

entry 378
allow-unauthenticated-logout

[acnt-mgmt] stanza option 397
allow-unsolicited-logins

server stanza 107
allowed-referers

acnt-mgt stanza 106
amwcredpolsvc entitlements service 320
appliance 5
application 601
application support

requirement 531
application support, back-end 583
argument stanza 534
argument-stanza stanza entry 532
attributes

add in credential 218
azn_cred_groups 193
azn_cred_principal_name 193
azn_cred_registry_id 193

audit trail files 23

auditcfg stanza entry 24
auditing

event logging 23
WebSEAL server activity 23

auditing and logging 23
auditlog stanza entry 24
authenticated access to resources 131
authenticated users

authentication process flow 132
authentication 129

authenticated access to resources 131
authentication strength policy

(step-up) 176
automatic redirection 201, 580
basic authentication 139
CDSSO 537
certificate 143
client identities 130
credentials 130
direct posting of login data 142
e-community 551
establish strength policy 178
external authentication interface 186,

229
failover 267
forced redirection 201, 580
forms 140
forms single signon 529
handle-auth-failure-at-mas 567
information mapping to

WebSEAL 524
Kerberos 153
limitations 463
login failure policy 209
logout and password utilities 137
LTPA 155
mechanism 137
method 137
methods 137, 160
module 137
multiple levels 179
multiplexing proxy agents

(MPA) 159
operations 137
overview 13, 129
password strength policy 213
process flow 130
reauthentication (security policy) 169
reauthentication (session

inactivity) 169
server-side request caching 205
SMS 327
step-up 176
supported methods 133
supported session ID types 251
switch user 162
three strikes login policy 209
token 545
token protection 545
unauthenticated access to

resources 131

authentication cookies
UTF-8 encoding, LTPA 65

authentication data
included in each request 88, 255

authentication methods
advanced 159

authentication methods, summary 133
authentication strength policy

(step-up) 176
concepts 176
configuration task summary 177

AUTHENTICATION_LEVEL stanza
entry 277

authentication-levels stanza 178, 181
AUTHNLEVEL macro 243
authorization

configuration 343
decision data 350

authorization database
configure authorization database

polling 346
configure update notification

listening 345
updates and polling concepts 345
updates and polling

configuration 345
authorization decision information 348,

350
decision data 350

authorization service 11
authtoken-lifetime stanza entry 543
automatic redirection

in load balancing environments 580
macro content length 204
overview 201
specify macro support 203
to a home page 201
URI encoding for macros 204

azn_cred_groups attribute 193
azn_cred_principal_name attribute 193
azn_cred_registry_id attribute 193
azn_ent_registry_svc entitlements

service 320
azn_entitlement_get_entitlements()

method 192
azn-decision-info stanza

runtime security services external
authorization service (EAS) 122

aznapi-configuration stanza 23, 345
aznapi-external-authzn-services stanza

runtime security services external
authorization service (EAS) 122

B
b filter 518
b ignore 518
b supply 518

limitations 516
options 516

ba-auth stanza entry 140

© Copyright IBM Corp. 2002, 2013 681

back-end application support 583
backicon 35
backward compatibility

HTML server response pages 85
basic authentication

configure 139
basic-auth-realm 140
basicauth-dummy-passwd stanza

entry 515
best practices

absolute URL filtering 584
supplying Host header information

(-v) 584
bind-dn (LDAP configuration) 51
bind-pwd (LDAP configuration) 51

C
c junctions

conditions of use 520
examles 521

CA Certificate
import 314

cache
server side 206

cache-refresh-interval stanza entry 346
caches, flushing HTML document 621
caching, content 36
CDAS

about 187
example rules 187
manage 194

CDMF library 538
cdmf_get_usr_attributes 546

cdmf_get_usr_attributes 546
CDSSO 537

configuration 540
token consume functionality 541

token consume functionality 541
token create functionality 540

CDSSO authentication 537
configuration 540
configuration conditions 541
configuration summary 540
cross-domain single signon with

virtual hosts 494, 545
default and custom tokens 538
extended user attributes 538
identity mapping 538
overview 537
process flow 538
utf-8 548

cdsso-argument stanza entry 544
cdsso-auth stanza entry 542
cdsso-create stanza entry 542
cdsso-incoming-attributes

WebSEAL configuration file 547
cdsso-incoming-attributes stanza 546
cdsso-peers stanza 542
cdsso-token-attributes stanza

WebSEAL configuration file 547
cert-cache-max-entries 150
cert-cache-timeout stanza entry 151
cert-failure stanza entry 82
cert-ssl stanza entry 147
cert-stepup-http stanza entry 82, 151
certfailure.html 69

certificate attributes
valid 195

certificate authentication 143
configuration summary 146
delayed 151
delayed mode 144
optional mode 144
technical notes 153

certificate authentication mode
requirement 144

certificate distribution points 359
certificate example, XML 190
Certificate login error page 149
certificate revocation 358
certificate revocation list (CRL)

configure CRL checking 359
configure the CRL cache 359

certificate revocation lists 358
Certificate SSL ID cache 150

disable 152
Certificate User Mapping Rule language

languages 188
certificate-login stanza entry 82, 150
certificates 355

GSKit 355
LMI 355
manage 354
prompt_as_needed 146
WebSEAL test certificate 361

certlogin.html 69
certstepuphttp.html 69
cgi-timeout stanza entry 45
change password operation 284
change-password-auth stanza entry 284
character encoding, validating data in

requests 66
chunked transfer coding

support 48
ciphers

list of supported 347
client-connect-timeout stanza entry 43
client-notify-tod 84
client-side certificates

overview 143
client-to-server session affinity

load balancer 254
clients

secure 603
cluster

restart 21
restart process 21

cluster restart
server task command 21

cluster support
illustration 21

clusters
deployment considerations for

clustered environments 253
options for handling failover in

clustered environments 254
command reference

pdadmin 615
common log format (request.log) 24
communication protocol

configuration 40
compress-mime-types stanza 54
compress-user-agents stanza 55

compression
based on MIME-type 54
based on user agent type 55
configuring data compression

policy 57
HTTP data 54
POP policy 56

concurrent sessions policy
maximum 316

concurrent-session-threads-hard-limit
stanza entry

server stanza 265
concurrent-session-threads-soft-limit

stanza entry
server stanza 265

config-data-log 25
configuration

runtime security services external
authorization service (EAS) 122,
124

Configuration 447
configuration data log file 25

location 25
configuration file (WebSEAL) 33

for each instance 577
modifying settings 34
name and location 34
organization 33
stanzas 33

configuration files
Boolean values 613
default values 611
defined strings 612
file names 612
general guidelines 611
integer values 612
string values 612

constraints, user mapping rules 192
container names

for UMI containers 189
containers for UMI 189
content cache 36

concepts 36
conditions 39
configuration 36
configuration conditions 37
document-cache-control (POP

extended attribute) 40
flush caches 39
stanza 36

content-index-icons stanza 35
Content-Length header changes during

filtering 427
cookie name

for clients 156
for junctions 156

cookies
append junction cookie JavaScript (-J

trailer) 433
control junction cookie JavaScript

(-J) 432
domain 378, 495
domain (with SMS) 334
ensure unique cookie name attribute

(-I) 440
failover 255

682 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

cookies (continued)
hostname-junction-cookie stanza

entry 391
IV_JCT (junction cookie header) 431
junction cookie reset (-J onfocus) 434
junction cookie, preventing naming

conflicts 391
LTPA 256
management in WebSEAL 405
modify 454
modify cookie name in -j and

mapping table junctions 439
modify cookie path in -j and mapping

table junctions 438
preserve names, all 440
preserve names, specified 440
preserving cookie names across -j

junctions 439
session 291, 406

cred-attribute-entitlement-services stanza
entry 320

credential attribute entitlements
service 217

credential information
cache refresh 223

credential processing 217
credential refresh 227

configuration 225
configuration syntax 224
for specific user 227
header-data stanza entry

(header-names stanza) 226
limitations 225
overview 221, 222
preserve and refresh 224
rules 222
specify attributes to preserve or

refresh 225
credential replacement 237
credential-refresh-attributes stanza 224,

284
credentials

credential refresh 221
definition 130, 253
entitlements service 217
extended attributes (tag/value) 217,

588
inserting credential information in

HTTP headers 219
inserting user session ID in HTTP

headers 588
Kerberos 513
tagvalue_user_session_id credential

attribute 588
CRL 358
CRL cache, configuring 359

gsk-crl-cache-entry-lifetime 360
gsk-crl-cache-size 360

CRL checking, configuring 359
crl-ldap-server stanza entry

junction stanza 359
ssl stanza 359, 361

crl-ldap-server-port stanza entry
junction stanza 359
ssl stanza 359, 361

crl-ldap-user stanza entry
junction stanza 359

crl-ldap-user stanza entry (continued)
ssl stanza 359, 361

crl-ldap-user-password stanza entry
junction stanza 359
ssl stanza 359, 361

cross-domain signon
e-community 551

cross-domainsignon
CDSSO 537

Cross-site request forgery
prevention 107

Cross-site request forgery (CSRF) 105
cross-site scripting

illegal-url-substrings stanza 104
prevent vulnerability 104

CSRF attacks
prevent vulnerability 105

CSRF prevention
allow-unsolicited-logins 107
referrer validation 106
secret token validation 105

customizing login forms 75
add an image 81

D
data

event correlation 593, 594
log file format 25
log file growth configuration 25

data compression
based on MIME-type 54
based on user agent type 55
configure data compression policy 57
gzip 54
HTTP 54
limitation 57
POP policy 56

data log file
configuration messages 26

DB2 xx
decode-query stanza entry 66
default password

strength policy values 215
default-webseal ACL policy 344
default.html 69
deletesuccess.html 69
delimiters, user mapping rules

evaluator 191
directory indexing

configuration 35
directory index icons 35

directory names, notation 74
directory-index 35
directory-index stanza entry 35
diricon 35
Disable local junctions 373
disable-ec-cookie 567
disable-local-junctions 373
disable-ssl-v2 stanza entry

junction stanza 372
ssl stanza 42

disable-ssl-v3 stanza entry
junction stanza 372
ssl stanza 42

disable-time-interval policy 209

disable-tls-v1 stanza entry
junction stanza 372
ssl stanza 42

disable-tls-v11 stanza entry
ssl stanza 42

disable-tls-v12 stanza entry
ssl stanza 42

displacement (session) 331, 332
document cache, HTML flushing 621
document caching. See content

caching 36
document model for UMI 188
document-cache-control (POP extended

attribute) 40
domain cookies 378, 495

with SMS 334
domain stanza entry 337
dsess-cluster stanza 320
dsess-enabled stanza entry 319
dsess-last-access-update-interval stanza

entry 325
dsess-sess-id-pool-size stanza entry 326
dynamic

URLs 595
dynamic URL

object space mapping 602
dynamic URLs

access control 595
character encoding and query string

validation 598
disdable 67
dynurl-allow-large-posts 599
dynurl-map 597
dynurl.conf 595
enabling 595
example 601
GET and POST requests 596
handling dynamic data in URL query

string 596
handling invalid characters in URL

query string 67
mapping ACL objects 597
overview 595
placing limitations on POST

requests 599
providing access control 595
request-body-max-read 599
resolving 598
summary and technical notes 600
updating, dynurl update 598

dynurl-allow-large-posts stanza
entry 599

dynurl-map stanza entry 67, 597
dynurl.conf 595

E
e-community

resolve machine names 561
single sign-on 551
single sign-on configuration 559
virtual hosts 568

e-community authentication 551
conditions and requirements 561
configuration summary 560
domain keys 563
e-community cookie 557

Index 683

e-community authentication (continued)
encrypting vouch-for token 562
features 553
master authentication server 552
overview 551
process flow 553
unauthenticated access 566
utf-8 570
vouch-for request and reply 558
vouch-fortoken 559
with virtual hosts 492

e-community cookie 557
resend-webseal-cookies 292

e-community-domain-keys stanza 562,
563

e-community-domain-keys:domain
stanza 493

e-community-domains stanza 493
e-community-name stanza entry 562
e-community-sso-auth stanza entry 562
EAI

external authentication interface 229
eai stanza 238, 239
eai-auth stanza entry 232
eai-auth-error stanza entry 82
eai-auth-level-header 235
eai-auth-level-header stanza entry 240,

243
eai-flags-header 235
eai-flags-header stanza entry 239
eai-pac-header 235
eai-pac-header stanza entry 240
eai-pac-svc-header 235
eai-pac-svc-header stanza entry 240
eai-redir-url-header 235
eai-redir-url-header stanza entry 241,

242
eai-trigger-urls stanza 234
eai-user-id-header 235
eai-user-id-header stanza entry 240
eai-verify-user-identity stanza entry 238
eai-xattrs-header 235
eai-xattrs-header stanza entry 240
EAIAUTHN macro 243
EAS

OAuth 348
trace information 352

ec-cookie-lifetime stanza entry 566
ECSSO 568

extended attributes 568
ecsso-allow-unauth 566
education xxii
enable-failover-cookie-for-domain stanza

entry 280
enable-html-redirect stanza entry 101
enable-local-response-redirect stanza

entry 91
enable-passwd-warn stanza entry 83
enable-redirects stanza 202
enable-secret-token-validation

acnt-mgt stanza 105
enabled (LDAP configuration) 51
encoded URLs 420
encoding, validating data in requests 66
enforce-max-sessions-policy stanza

entry 333

entitlements service
amwcredpolsvc 320
azn_ent_registry_svc 320
credentials 217

ERROR error message 23
error message logs 23

messages in UTF-8 format 23
routing file 23
Tivoli Common Directory 23
Tivoli message format 23
WebSEAL 23

error message page
configuration 84

error page
throttled and offline junctioned

servers 403
error-dir stanza entry 75
errors directory 74
evaluation

ACL and POP 599
evaluator, user mapping rules 191
event correlation

for back-end servers 593
event logs

HTTP 23
logcfg 23

event pool
http 23
http.agent 23
http.clf 23
http.cof 23
http.ref 23

expired password operation 284
explicit ACL policy 10
extended attribute

junction 588
extended attributes

add to token 568
CDSSO 546
credentials 217, 588
document-cache-control (POP

extended attribute) 40
ECSSO 568
entitlements service 217
extract from ecsso token 569
from a cdsso token 547
HTTP-Tag-Value (junction

attribute) 219, 588
reauth (POP extended attribute) 171
tagvalue_user_session_id (credential

attribute) 588
Extensible Markup Language 188
Extensible Style Language 188
external authentication interface 186,

229
authentication strength level 242
configuration 232
credential replacement 237
demonstration program 238
enable and disable 232
external authentication

interface-specified redirection 242
extracting authentication data from

HTTP headers 236
flags header 239
generate credential 236
HTTP header names 234

external authentication interface
(continued)

HTTP header reference 240
initiating the authentication

process 233
login page and macro support 243
overview 229
post-authentication redirection 242
process flow 229
reauthentication 243
request caching 241
session handling 242
trigger URL 234
validating the user name 238
WebSEAL-specified (automatic)

redirection 242
writing custom application 238

external authorization service 121
external authorization service (EAS)

risk-based access 121
rtss-eas stanza 124
runtime security services external

authorization service (EAS) 121,
124

F
failover

cookies 255
environment 267
from one WebSEAL server to

another 254
new master 254

failover authentication
add authentication level 277
adding extended attributes 279
change password operation 284
change-password-auth stanza

entry 284
configuration 274
configuration steps 274
configure cookie lifetime 276
configuring non-sticky failover

solution 283
domain-wide 273
enable domain-wide cookies 280
enabling 275
encrypting/decrypting cookie

data 275
example configuration 269
extracting cookie data 272
failover cookie data and

attributes 270
failover cookie description 268
LMI

SSO Keys management page 275
non-sticky failover concepts 282
non-sticky failover solution 282
overview 267
process flow 269
reissue missing failover cookies 277
session activity timestamp 271, 278
session lifetime timestamp 270, 277
specifying attributes for

extraction 280
SSO Keys management 275

684 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

failover authentication (continued)
utf-8 encoding for failover

cookies 276
failover cookie

adding data and attributes 270
extended attributes 279
extracting data 272
reissue missing failover cookies 277
resend-webseal-cookies 292
session activity timestamp 271
session lifetime timestamp 270, 277

failover environment 307
failover events

no WebSEAL handling 255
failover-add-attributes stanza 283
failover-auth stanza entry 275
failover-cookie-lifetime stanza entry 276
failover-cookies-keyfile 275
failover-include-session-id stanza

entry 283
failover-require-activity-timestamp-

validation stanza entry 281
failover-require-lifetime-timestamp-

validation stanza entry 281
failover-restore-attributes stanza 280,

284
failover-update-cookie stanza entry 278,

279
FATAL error message 23
favicon.ico

404 problem with Mozilla Firefox 87
Federated Identity Manager (TFIM)

support
maintain session state with HTTP

headers 295
session cache entry inactivity (per-user

setting) 246
session cache entry lifetime (per-user

setting) 244, 262
filter

best practices for absolute URLs 584
Content-Length header changes 427
control server-relative URL processing

in requests 436
cookies across multiple -j

junctions 438
default filtering of tag-based static

URLs 420
filter absolute URLs with script

filtering 426
filter schemes 425
filter-nonhtml-as-xhtml 421
HTML BASE HREF tags 422
HTML META refresh tags 422
modify server-relative URLs using

Referer header 435
modify server-relative URLs with

junction cookies 431
modify server-relative URLs with

junction mapping 429
modify URLs from back-end

applications 415
modify URLs in requests 429
modify URLs in responses 417
path types used in URLs 416
preserve-base-href stanza entry 422
preserve-base-href2 stanza entry 422

filter (continued)
process-root-requests stanza

entry 436
rewrite-absolute-with-absolute 427
rules for absolute URLs 419
rules for filtering relative URLs 419
rules for server-relative URLs 419
script filtering (absolute URLs) 426
special HTML characters in

URLs 417
specify new content (MIME)

types 421
specify tags and attributes 422
tag-based URL filter rules 419
tag-based URL filtering 417
unfiltered server-relative links 428
URL modification concepts 415
X-Old-Content-Length 427

filter-content-types stanza 420
text/html 420
text/vnd.wap.wml 420

filter-nonhtml-as-xhtml 421
filter-schemes stanza 425
filter-url stanza 420, 422
Firefox, Mozilla

favicon.ico 404 problem 87
flush caches 39
flush-time stanza entry 24
forced redirection

in load balancing environments 580
to a home page 201

form-based
single sign-on example 535

form-based login 535
form, login

add an image 81
customize 75

format, user mapping rules 192
forms authentication 140

single signon solution 529
forms-auth stanza entry 141
forms-sso-login-pages stanza 532
front-end WebSEAL servers

control the login_success
response 580

replicate 579

G
GET requests 596
global settings

specify 215
global signon (GSO) 523
gmt-time stanza entry 24
gsk-attr-name stanza entry

[ssl] stanza 103
gsk-crl-cache-entry-lifetime stanza

entry 360, 361
gsk-crl-cache-size stanza entry 360, 361
gskcapicmd xx
gskikm.jar xx
GSKit 355

configuration 513
configuration for SMS

connections 329
CRL cache 359
documentation xx

GSKit attributes
SSL connections 513

GSO 523
-b 518
configure GSO cache 525
mechanism illustration 523
overview 523

GSO cache, configure 525
gso-cache-enabled stanza entry 525
gso-cache-entry-idle-timeout stanza

entry 525
gso-cache-entry-lifetime stanza

entry 525
gso-cache-size stanza entry 525
GSO-enabled examples

WebSEAL junctions 525
gso-resource stanza entry 532
gzip 54

H
handle-auth-failure-at-mas 567
handle-pool-size stanza entry 327
header-data stanza entry (header-names

stanza) 226
headers

modify 451
help stanza entry 82
help.html 69
host (LDAP configuration) 51
Host header

best practices for junctions 584
virtual host junctions 480

hostname-junction-cookie stanza
entry 391

HTML
attributes 80
tags 80

HTML document cache, flushing 621
HTML redirection 100

enabling and disabling 101
preserve HTML fragments 101

HTML server response
page locations 74

HTML server response pages 69
account management page

location 74
add an image 81
compatibility with previous versions

of WebSEAL 85
configuration file entries and

values 82
configure account expiration error

message 82
configure password policy

options 83
create new HTML error message

pages 85
customize guidelines 76
enable the time of day error page 84
error page location 75
macro data string format 78
macro resources 76
multi-locale support 86

HTTP
data compression 54
HTTPOnly cookies 43

Index 685

HTTP (continued)
persistent connections 42
transformation scenarios 448

HTTP BA headers
sign-on 514

HTTP common log format 24
http event pool 23
HTTP header 521

Accept-Charset 87
Accept-Language 86, 87
Host 480
HTTP_IV_CREDS 519
HTTP_IV_GROUPS 519
HTTP_IV_REMOTE_ADDRESS 521
HTTP_IV_USER 519
HTTP_IV_USER_L 519
limiting size 522
Location 89
Referer header, modify server-relative

URLs 435
server 108
session state, maintainance 295

HTTP header session
key concepts 295

HTTP headers
identity information supplied 519
insert event correlation 593

HTTP logs 24
buffer flush frequency 24
enable and disable 24
HTTP common log format 24
log file rollover threshold 24
timestamp 24
use event logs 23
utf8 encoding 24

HTTP methods, disable 108
HTTP request

provide a response 457
WebSEAL configuration 41

HTTP server identity
suppress 107, 108

http stanza entry 41, 488
HTTP support

RPC 461
WebSEAL 461

HTTP transformation 445, 447
HTTP transformation rules 443
HTTP transformations 443

Extensible Stylesheet Language
Transformation 444

HTTP request objects 444
HTTP response objects 444
XSLT 444

HTTP_IV_CREDS header 519
HTTP_IV_GROUPS header 519
HTTP_IV_REMOTE_ADDRESS

header 521
HTTP_IV_USER header 519
HTTP_IV_USER_L header 519
HTTP_PD_USER_SESSION_ID 220
http-method-disabled-local stanza

entry 108
http-method-disabled-remote stanza

entry 108
http-port stanza entry 41, 488
HTTP-Tag-Value

extended attribute for junctions 589

HTTP-Tag-Value (continued)
process junction attribute 589
set attribute for junctions 589

HTTP-Tag-Value attribute 221
HTTP-Tag-Value junction attribute 219,

588
http-timeout stanza entry (junctions) 45
http-transformations stanza 448
HTTP/1.1 responses 379
http.agent event pool 23
http.clf event pool 23
http.cof event pool (NCSA) 23
http.ref event pool 23
HTTPOnly cookies 43
HTTPResponse 454

modify cookies 454
modify headers 451
modify response line 453
modify URI 448

HTTPResponseChange 457
https stanza entry 41, 488
https-port stanza entry 41, 488
https-timeout stanza entry (junctions) 45

I
IBM

Software Support xxii
Support Assistant xxii

IBM Security Access Manager
WebSEAL 3

IBM Security Web Gateway Appliance 5
ICAP 606

Configuration 607
Support 605

ICAP and WebSEAL 606
ICAP configuration within

WebSEAL 607
ICAP integration with WebSEAL 605,

606
ICAP Support 605
icons stanza 35
identity, client/user

definition 130
iKeyman xx
illegal-url-substrings stanza 104
inactive-timeout stanza entry

session stanza 264, 278, 290
inactivity timeout stanza entry

session stanza 246
inherited ACL policy 10
input forms

design 167
instance, WebSEAL 575

definition 575
host name 575
in configuration file 31
in pdadmin server list 32
in protected object space 32
IP address for the primary

interface 576
listening port 576
name 575
valid characters in name 575

interface 602
interfaces

properties 488

interfaces (continued)
virtual host junctions 487

interfaces stanza 488
internet content adaptation protocol 605,

606, 607
Internet Protocol (IP)

version 4 support 48
version 6 support 48

intra-connection-timeout stanza entry 43
IP Endpoint Authentication Method

Policy 181
ip-support-level stanza entry 50
ipauth 182
IPv4 48

compatibility support 49
ip-support-level 50
ipv6-support stanza entry 49
overview 48
upgrade 50

IPv6 48
compatibility support 49
ip-support-level 50
ipv6-support stanza entry 49
overview 48
upgrade 50

ipv6-support
compatibility support 49
credential attributes 50
WebSEAL upgrade 50

ipv6-support stanza entry 49
is-master-authn-server stanza entry 564
IV_JCT (junction cookie header) 431

append junction cookie JavaScript (-J
trailer) 433

control junction cookie JavaScript
(-J) 432

junction cookie reset (-J onfocus) 434
iv-creds header 519, 583
iv-groups header 519, 583
iv-remote-address header 521, 583
iv-remote-address-ipv6 header 583
iv-user header 519, 583
iv-user-l header 519, 583
ivadmin_server_performtask()

function 591

J
JavaScript block for HTML 4.01

compliance (inhead)
insert 433

JMT 635
jmt-map 429
jmt.conf 429
JSP

access to login history 339
customize to display login

history 339
junction

advanced configuration 387
configuration 462
create 467
create for an initial server 467
extended attribute 588
static server response pages 75
types 365

686 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

junction cookie, preventing naming
conflicts 391

junction cookies 431
append junction cookie JavaScript (-J

trailer) 433
control junction cookie JavaScript

(-J) 432
junction cookie reset (-J onfocus) 434

junction fairness 52
Junction management

LMI 368
junction mapping table 429
junction stanza 53
junction throttle

messages 403
junction throttling 397, 496

concepts 397
error message page 403
offline operational state 400
online operational state 402
throttled operational state 398
use in WebSEAL features 404

junction-root directory 74
junctioned back-end servers

illustration 16
junctioned server

add 618
junctions

-b filter 517
-b gso 518
-b ignore 516
-b supply 515
adding junctioned server 618
adding multiple back-end replica

servers to a junction 373, 377
append junction cookie JavaScript (-J

trailer) 433
authenticate with BA header (-B, -U,

-W) 389
basic junction commands 370
best practices 583
case-insensitive URLs (-i) 408
certificate authentication 378
client certificate (WebSEAL) (-K) 389
command option reference

(junctions) 465
command option reference (virtual

host junctions) 499
configure basic junction 369
configure local type junction 373
configure mutual junction 371
configure SSL type junction 371
configure TCP type junction 370
control junction cookie JavaScript

(-J) 432
controlling server-relative URL

processing in requests 436
create in Web Portal Manager 367
Distinguished Name (DN) matching

(-D) 388
encode for HTTP headers (-e) 411
enforce permissions 378
ensure unique cookie name attribute

(-I) 440
force new junction (-f) 396
forms single signon (-S) 535
global signon (GSO) 523

junctions (continued)
gso options (-b gso, -T) 525
guidelines to create 377
handle cookies across multiple -j

junctions 438
Host header best practices (-v) 584
HTTP-Tag-Value junction

attribute 219, 588
HTTP/1.0 and 1.1 responses 379
impact of -b options on mutually

authenticated junctions 518
import and export 369
junction cookie reset (-J onfocus) 434
junction cookie, preventing naming

conflicts 391
junction throttling 397, 496
list in Web Portal Manager 367
LTPA (-A, -F, -Z) 527
modify cookie name in -j and

mapping table junctions 439
modify cookie path in -j and mapping

table junctions 438
modify server-relative URLs using

Referer header 435
modify server-relative URLs with

cookies (-j) 431
modify server-relative URLs with

junction mapping 429
modifying URLs from back-end

applications 415
modifying URLs in requests 429
modifying URLs in responses 417
mutually authenticated (-D, -K, -B, -U,

-W) 387
overview 14, 365
pdadmin server task 368, 465
pdadmin server task virtualhost 499
preserve all cookie names (-n) 439
preserve specified cookie names 439
process-root-requests stanza

entry 436
proxy junctions (-H, -P) 390
query_contents 379
query_contents script location

(-q) 383
reference (junctions) 465
reference (virtual host junctions) 499
replica set assignment (standard

junctions) 321
replica set assignment (virtual host

junctions) 322
scalability 15
session cookie to portal server

(-k) 406
single sign-on solutions 413
specify back-end UUID (-u) 393
SSL type 372
stateful 392
stateful junction support (-s, -u) 392
supply client identity in HTTP

headers (-c) 519
supply IP address in HTTP headers

(-r) 521
technical notes 376
transparent path junctions (-x) 373
use WPM 367
virtual host 479

junctions (continued)
virtual host junctions 479
virtual host name (-v) 584
virtual hosts (-v) 410
WebSEAL client certificate (-K) 389
WebSEAL-to-WebSEAL (-C) 390
Windows file systems (-w) 409
worker thread allocation (-l) 53
worker thread allocation (-L) 53

K
Kerberos

credentials 513
Kerberos authentication 153

configuration 153
key xx

management 353
key file information 156
key management

configure CRL checking 359
configure the CRL cache 359
configure WebSEAL key database

stanza entries 355
LMI 354
manage client-side certificates 354
manage server-side certificates 354
overview of WebSEAL stanza

entries 353

L
late-lockout-notification stanza entry 211
lcp_bin 66
lcp_uri 66
LDAP data in HTTP headers 217
LDAP directory server configuration 50

bind-dn 51
bind-pwd 51
enabled 51
host 51
ldap.conf 50
max-search-size 51
port 51
replica 51
ssl-port 51

LDAP server
on z/OS xx

ldap.conf (LDAP configuration) 50
level (authentication) 178
libsslauthn (shared library) 147
limitations

WebSEAL 203
Limitations 154
list

servers 618
listen-flags stanza entry 345
listening port 576
LMI

Advanced Configuration File
Editor 34

Client Certificate Mapping
management page 194

Forms Based Single Sign-on
management page 531

Index 687

LMI (continued)
HTTP Transformation Rules Files

management page 447
Junction management page 368
LTPA Keys management page 354
Manage Reverse Proxy Log Files

management page 25
Manage Reverse Proxy Management

Root page 74
Manage Reverse Proxy Tracing

management page 27
Query Site Contents management

page 381
Reverse Proxy Basic

Configuration 34
Reverse Proxy management page 74
SSL Certificates management

page 354
SSO Keys management page 354
URL Mapping management page 595

load balancing environments 579
control the login_success

response 580
non-sticky 282
replicate front-end WebSEAL

servers 579
sticky 282

local junctions
disable 373

local response redirection 90
contents of a redirected response 92
customize macro field names 96
enable and disable 91
example configuration 98
macro content length 97
overview 90
process flow 91
specify location URI 92
specify macro support 94
specify operation 93
technical notes 99
URI encoding for macros 97

local-response-redirect-uri stanza
entry 92

location header, local response
redirection 91

Location HTTP header
redirect location header format 89

log data
utf8 encoding 24

logaudit stanza entry 24
logcfg stanza entry 23
logflush stanza entry 24
logging stanza 24, 464

server-log-cfg stanza entry 464
login

control step-up login for
unauthenticated users 185

custom login response for old session
cookies 293

direct posting of login data 142
force user login 133
login failure notification (SMS) 337
login failure policy 209
login history (SMS) 337
password strength policy 213
three strikes login policy 209

login attemts
decrease number 212

login failure notification (SMS) 337
login failure policy 209
login form

add an image 81
customize 75

login history (SMS) 337
login stanza entry (login form) 82
login_success.html 69

controlling the login_success
response 580

direct posting of login data 142
login-form-action stanza entry 532
login-page stanza entry 532
login-page-stanza 532
login-redirect-page stanza entry 202
login-success stanza entry 82
login.html 69, 141
logout

pkmslogout 138
pkmslogout-nomas 567
use-filename-for-pkmslogout stanza

entry 138
logout stanza entry 82
logout-remove-cookie stanza entry 294
logout.html 69
logs

HTTP 24
HTTP (event logs) 23

logsize stanza entry 24
LTPA 549

authentication 65, 155
authentication overview 155
control token lifetime 157
cookies 256
disable authentication 157
enable authentication 155
overview 526
single sign-on overview 549
single sign-on technical notes 550
single signon 549
UTF-8 encoding for authentication

cookies 65
LTPA (WebSphere) 526

configure junction 527
configure LTPA cache 528

LTPA cache, configure 528
LTPA Keys

LMI management page 354
LTPA single sign-on

technical notes 528
ltpa-cache stanza 528
ltpa-cache-enabled stanza entry 528
ltpa-cache-entry-idle-timeout stanza

entry 528
ltpa-cache-entry-lifetime stanza

entry 528
ltpa-cache-size stanza entry 528

M
machine names

resolve 541
macro support

HTML server response pages 76

macros
embedding in template 78
encode 79
JavaScript 80
template 80

macros, used in HTML server response
pages

AUTHNLEVEL 76
BACK_NAME 76
BACK_URL 76
BASICAUTHN 76
CERTAUTHN 76
EAIAUTHN 76
ERROR 76
ERROR_CODE 76
ERROR_TEXT 76
EXPIRE_SECS 76
FAILREASON 76
HOSTNAME 76
HTTP_BASE 76
HTTPS_BASE 76
LOCATION 76
METHOD 76
OLDSESSION 76, 293, 294, 331, 332
PROTOCOL 76
REFERER 76
REFERER_ENCODED 76
STEPUP 76
URL 76
URL_ENCODED 76
USERNAME 76, 175

Manage Reverse Proxy Management Root
page 74

management directory 74
management objects 7
MAS (master authentication server) 552
master authentication server (MAS) 552
master-authn-server stanza entry 564
master-http-port stanza entry 564
master-https-port stanza entry 565
max-concurrent-web-sessions policy 330

with switch user 334
max-entries stanza entry 261
max-login-failures policy 209
max-password-repeated-chars policy 213
max-search-size (LDAP

configuration) 51
max-size stanza entry 24
max-webseal-header-size stanza

entry 522
maximum concurrent sessions

policy 330
with switch user 334

messages 23
message ID format 23
messages in UTF-8 format 23
routing file 23
Tivoli Common Directory 23
Tivoli message format 23
WebSEAL log file 23

Microsoft Office 299, 300
session sharing 298

Microsoft Office applications
share sessions 297

Microsoft RPC over HTTP
support 48

MIME-types 24

688 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

min-password-alphas policy 213
min-password-length policy 213
min-password-non-alphas policy 213
model, document 188
module mapping

success validation 199
Mozilla Firefox

favicon.ico 404 problem 87
MPA

authentication limitations 162
create user account 162

MPA authentication 159
mpa stanza entry 162
msg_webseald-instance-name.log 23
multi-locale support 57, 86

Accept-Language HTTP header 86
conditions 87
process flow 87

multi-locale support configuration 61
multi-locale support with utf-8 57
multiplexing proxy agents

(authentication) 159
mutual junction 371
mutually authenticated junctions 387

N
NCSA combined format 23
network-interface stanza entry 488
nexttoken.html 69
non-clustered environments

maintain session state 287
non-sticky failover solution 282
non-sticky load balancing 282
notation

path names 74
NOTICE error message 23
NOTICE_VERBOSE error message 23

O
OAuth

authorization decision support 348
directory 74
EAS 348

OAuth EAS
error resonses 351
overview 348
plug-in 336

oauth-eas stanza
trace-component 352

object space mapping
dynamic URL 602

obligations-levels-mapping stanza
runtime security services external

authorization service (EAS) 122
old session cookies

enable customized responses 294
OLDSESSION macro 293, 294
onfocus (junction cookie reset) 434
online

publications xviii
terminology xviii

onLoad HTTP attribute
in load balancing environments 581

P
p3p 109

access 113
categories 114
configuration 113
custom compact policy 119
default policy 112
disputes 115
full compact policy 118
header preservation 111
non-identifiable 115
policy declaration 110
policy overview 109
purpose 116
recipient 117
remedies 115
retention 118

P3P
configuration troubleshooting 119

passwd_exp.html 69
passwd_rep.html 69
passwd_warn.html 69
passwd-change stanza entry 82
passwd-change-failure stanza entry 82
passwd-change-success stanza entry 82
passwd-expired stanza entry 82
passwd-warn stanza entry 83
passwd-warn-failure stanza entry 83
passwd.html 69
password

invalid examples 215
processing 209
valid examples 215

password change
issue with Active Directory on

Windows 139
password strength policy 213
pkmspasswd 139

password expiration 83, 284
password policy configuration 83
password strength

policy commands 213
policy concepts 213
syntax 213

password strength policy 213
password-spaces policy 213
path names, notation 74
pattern matching (wildcard

characters) 67
PD_PORTAL header 586
PD-H-SESSION-ID (default session cookie

name) 292
PD-S-SESSION-ID (default session cookie

name) 292
pdadmin

command reference 615
help 616

pdadmin policy
commands 332
disable-time-interval 210
global settings 332
max-concurrent-web-sessions 330
max-login-failures 210
max-password-repeated-chars 213
min-password-alphas 213
min-password-length 213
min-password-non-alphas 213

pdadmin policy (continued)
password-spaces 213
per user settings 332

pdadmin server list 32, 369, 465, 499
pdadmin server task

add 466
cache flush all 39
create 465, 466
create (junctions) 368
delete 466
dynurl update 598
jdb export file 369
jdb import file 369
jmt clear 466
jmt load 430
list 466
offline 400, 466
online 402, 466
refresh all_sessions 227
remove 466
show 404, 466
terminate all_sessions 592
terminate session 591
throttle 399, 466
virtualhost 483
virtualhost add 500
virtualhost create 499, 500
virtualhost delete 500
virtualhost list 500
virtualhost offline 401, 500
virtualhost online 402, 500
virtualhost remove 500
virtualhost show 404, 500
virtualhost throttle 399, 500

pdaudit-filter stanza 23
pdaudit.conf configuration file 23
pdweb.http.transformation 458
persistent HTTP connections 42
persistent-con-timeout stanza entry 44
personalization service

example 586
overview 585
WebSEAL configuration 586

ping-time (junctions) 45
pkmscdsso 544
pkmsdisplace 331
pkmslogin.form 99, 100, 142
pkmslogout 138, 294, 331, 571
pkmslogout-nomas 567
pkmspasswd 139
pkmsvouchfor 558, 565
platform for privacy preferences 109
plug-in

OAuth EAS 37
policy

disable-time-interval 210
max-concurrent-web-sessions 330
max-login-failures 210
max-password-repeated-chars 213
min-password-alphas 213
min-password-length 213
min-password-non-alphas 213
password-spaces 213
security 602

policy enforcer 11
polling authorization database

concepts 345

Index 689

polling authorization database (continued)
configure 346

POP 448
attach to an object 184
authentication strength policy

(step-up) 176
concepts 9
configuration 463
create 181
document-cache-control (extended

attribute) 40
introduction 8
IP Endpoint Authentication Method

Policy 181
network-based access restrictions 182
quality of protection 344
reauth extended attribute 171

port (LDAP configuration) 51
portal-map stanza 586
POST method

configure limitations 599
direct posting of login data 142

POST request caching 205
POST requests 596
post-authentication processing 201
preserve-base-href stanza entry 422
preserve-base-href2 stanza entry 422
preserve-cookie-names stanza 439
preserve-p3p-policy stanza entry 111
Primary interface

IP address 576
problem determination 24

configuration data log file 25
statistics utility 26
trace utility 27

problem-determination xxii
process-root-filter stanza 437
process-root-requests stanza entry 436
program inputs 380
program output 381
prompt_as_needed

certificate authentication 146
prompt-for-displacement stanza

entry 331, 332
propagate-cdmf-errors stanza entry 545,

566
protected object 7
protected object policies 9
protected object policy (POP)

external authorization service (EAS)
risk-based access 122
runtime security services external

authorization service (EAS) 122
runtime security services external

authorization service (EAS) 122
protected object space 7

management objects 7
protected object 7
system resource 7
user-defined objects 8
Web objects 7
WebSEAL server-name 32

proxy agent
multeplex overview 159

publications
accessing online xviii
list of for this product xviii

putsuccess.html 69

Q
quality of protection

default level 346
hosts 347
networks 347
POP 344

query_contents 379
custom program 380
install and configure on UNIX 382
install and configure on

Windows 383
installing 381
overview 380
process flow 384
query_contents script location

(-q) 383
secure 385

query_contents.c 381
query_contents.cfg 381
query_contents.exe 381
query_contents.html 69, 381
query_contents.sh 381

R
reauth POP extended attribute 171
reauth-extend-lifetime stanza entry 173
reauth-for-inactive stanza entry 172
reauth-reset-lifetime stanza entry 172
reauthentication

based on security (POP) policy 169
based on session inactivity 169
concepts 170
customize login forms for

reauthentication 175
extend the session cache entry lifetime

value 172
prevent session cache entry

removal 173
reauth POP extended attribute 171
reauth-extend-lifetime stanza

entry 173
reauth-for-inactive stanza entry 172
reauth-reset-lifetime stanza entry 172
remove user's session at login failure

policy limit 174
reset the session cache entry lifetime

value 172
support 169

redirect
configuring location header URL

format 89
redirect stanza entry 82, 202, 242
redirect-using-relative stanza entry 89
redirection, automatic

in load balancing environments 580
to a home page 201

redirection, HTML 100
redirection, local response 90
Referer HTTP header

modify server-relative URLs 435
referer.log 24
referers stanza entry 24

referers-file stanza entry 24
register-authentication-failures stanza

entry 338
registry attribute entitlement service 217

configuration 218
regular expressions

for dynamic URLs 597
for forms single signon 534
list of 534

reissue-missing-failover-cookie stanza
entry 277

relative path names, definition 416
relocated.html 69
Replace HTTP response 445
replica (LDAP configuration) 51
replica-sets stanza entry 321
replicating front-end WebSEAL

servers 579
replication

junction databases 369
Reprocessing requests 447
request caching 205
request header

impact on WebSEAL content
cache 38

request-body-max-read stanza entry 207,
599

request-buffer-control
internal buffer bypass 412

request-max-cache stanza entry 208
request, examining client

authentication data 129
session key 252

request.log 24
requests stanza entry 24
requests-file stanza entry 24
require-mpa stanza entry 297
resend-webseal-cookies stanza entry 292
resource manager 11
response codes 24
response headers

WebSEAL content cache impact 37
response-buffer-control

internal buffer bypass 412
response-by stanza entry 326
ResponseLine/StatusCode only

(HTTPResponse)
modify 453

responses
server, HTML pages 69

Reverse Proxy management page 74
Junction Management 19
LMI

Reverse Proxy management
page 19

log in 19
Management Root 19
Restart

WebSEAL instance 19
WebSEAL instance

management 19
rewrite-absolute-with-absolute stanza

entry 427
risk-based access

runtime security services external
authorization service (EAS)

configuration 122

690 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

risk-based access (continued)
runtime security services external

authorization service (EAS)
(continued)

definition 121
sample configuration 124

root request
process flow 436

routing file 23
format and operation 23
message log roll over 23
message severity levels 23
template location 23

RPC over HTTP 461
rtss-eas stanza

runtime security services external
authorization service (EAS) 122

sample configuration 124
Runtime security services 121
runtime security services external

authorization service (EAS)
configuration 122
definition 121
protected object policy (POP) 122
risk-based access 121
rtss-eas stanza 124
sample configuration 124

S
sample

runtime security services external
authorization service (EAS)

rtss-eas stanza 124
scalability 15

replicated back-end servers 17
replicated front-end servers 16

script filtering (absolute URLs) 426
script-filter stanza entry 426
script-filtering stanza 421, 426
security

authentication token protection 545
policy 602
policy reauthentication 171

Security Access manager
trace mechanism 352

Security Access Manager
configuration guidelines 611
macros 79
overview 3

security model concepts 6
security policy

identifying content types 12
levels of protection 12
planning and implementing 12

securitygroup 165
server administration 19
server certificate DN value

obtaining 329
server clusters

deployment considerations for
clustered environments 253

options for handling failover in
clustered environments 254

server commands
server list 618
server task add 618

server commands (continued)
server task cache flush all 621
server task cluster restart 623

server header (HTTP) 107, 108
server identity (HTTP), suppressing 107,

108
server list command 618
Server Name Indication 357
server response pages

add custom headers 88
server response pages (HTML) 69

account management page
location 74

add an image 81
compatibility with previous versions

of WebSEAL 85
configuration file entries and

values 82
configure account expiration error

message 82
configure password policy

options 83
create new HTML error message

pages 85
customize guidelines 76
enable the time of day error page 84
error page location 75
macro data string format 78
macro resources 76
multi-locale support 86

server side cache
configuration 206
request 205
request process flow 205

server side cache request
concepts 205

server stanza
allow-unsolicited-logins 107

server stanza entry 320
server sync

command 20
server task command

trace 352
server task commands

add 618
cache flush all 621
cluster restart 623

server-log-cfg stanza entry (logging
stanza) 464

server-name (server stanza) 31
server-name stanza entry (server

stanza) 579
server-relative path names,

definition 416
server-side application support 583
server-side request caching 205
serviceability messages 23
session

cache timeout support 168
data types 160

session activity timestamp (failover
cookies) 271

session affinity 282
session cache

concurrent session limits 265
configuration summary 259
configuration, WebSEAL 259

session cache (continued)
configure SSL cache 260
configure WebSEAL cache 260
custom login response for old session

cookies 293
custom login response for removed

sessions 293
inactivity timeout 264
inactivity timeout (per-user

setting) 246
lifetime timeout (global setting) 261
lifetime timeout (per-user

setting) 244, 262
limitation, WebSEAL 266
maximum entries 261
overview and structure 252
session displacement 331, 332
SSL session cache 259
terminate all user sessions 592
terminate single user session 591
WebSEAL session cache 252, 259

session cookies 291
concepts 291
conditions 291
custom login response for old session

cookies 293
custom login response for removed

sessions 293
customize cookie name 292
remove cookies from browsers during

normal logout 294
resend-webseal-cookies 292

session displacement 293, 331, 332
session expiration 244, 246, 261, 262, 264
session ID

supported data types 251
user session ID 587
WebSEAL session ID 251, 587
WebSEAL Session ID 129, 252

session ID data types 251
session inactivity

reauthentication 171
session key

examine client request 129, 252
valid session key data types 289
WebSEAL Session ID 129, 251, 252

session lifetime timestamp (failover
cookies) 270

session management server (SMS)
configuration for WebSEAL 319

session realm 334
session sharing

[acnt-mgt] stanza 300
configuration 335
configure

temporary cache response
page 300

overview 298
temp-cache-response stanza

entry 300
within a session realm 334

Session sharing
[session] stanza 299
configure 300

Microsoft SharePoint server 300
Temporary session cookie

name 299

Index 691

Session sharing (continued)
configure (continued)

Temporary session lifetime 299
temp-session-cookie-name stanza

entry 299
temp-session-max-lifetime stanza

entry 299
Temporary session cache 298

session state
between clients and back-end

servers 586
clustered environments 319
configure SSL session ID cache 260
configure WebSEAL session

cache 260
control session key data type 287
deployment considerations for

clustered environments 253
determine session timeout 290
enable user session ID

management 588
failover cookies 267
HTTP headers, using 295
maintenance in non-clustered

environments 287
Netscape 4.7x limitation 290
non-clustered environments 287
options for handling failover in

clustered environments 254
overview 251
same session key over different

transports 288
session cookies 291
session displacement 331, 332
SSL session ID 287
supported session ID data types 251
terminate all user sessions 592
terminate single user session 591
user session ID management 586
valid session key data types 289
WebSEAL session cache 252

session termination 293, 590
older user session ID format 590
terminate all user sessions 592
terminate single user session 591

session timeout 244, 246, 261, 262, 264,
290, 293

session-activity-timestamp stanza
entry 278

session-cookie-domains stanza 337, 495
session-http-headers stanza 289, 295
session-lifetime-timestamp stanza

entry 277
share sessions

Microsoft Office applications 297
sharing session

across multiple DNS domains 310
show-all-auth-prompts stanza entry 185
single sign-off

from multiple protected web
resources 571

Single sign-off
overview 571
requests 572
responses 572

single sign-on 511
concepts 529

single sign-on (continued)
conclusion 604
cross-domain 537
form-based example 535
proces flow 530
solution across junctions 511

Single sign-on
Windows desktop 153

single sign-on solutions
junctions 413

Single signoff
configure 571

single signon
-b filter 517
-b gso 518
-b ignore 516
-b supply 515
CDSSO 537
concepts 514
configure GSO cache 525
e-community 551
forms authentication 529
global signon (GSO) 523
LTPA 549
LTPA (WebSphere) 526
supply client identity in BA

headers 515
within a session realm 334

single-signoff-uri
WebSEAL configuration 572

single-signoff-uri stanza entry 571
SMS 256, 308

assign standard junctions to a replica
set 321

assign virtual hosts to a replica
set 322

authentication 327
[dsess-cluster] stanza 327

benefits 308
communication timeout

configuration 325
concepts 307
configuration 319
configuration for WebSEAL 319
configuration: enable and disable 319
configuration: replica sets 321
configuration: specify SMS

cluster 320
configuration: specify SMS

location 320
connection timeout for broadcast

events 326
create a WebSEAL junction 338
custom login message for old session

cookies 293
domain cookies 334
example replica set configuration 322
failover environment 307
gather information for WebSEAL 313
handle pool size 327
junction 315
login failure notification 337
login history 337
maximum concurrent sessions

policy 330
maximum pre-allocated session

IDs 326

SMS (continued)
performance configuration 326
process flow 309
replica sets 308
server clusters 308
session realm 334
session realms 308
session sharing 334
single signon within a session

realm 334
SMS response timeout 325
SSL certificate DN configuration 328
SSL configuration 327
ssl-session-cookie-name stanza

entry 336
WebSEAL key database

configuration 328
SMS session identifier 235
Special HTML characters, definition 417
SSL Certificates

LMI management page 354
SSL configuration

WebSEAL to LDAP 576
SSL connectivity 42
SSL junctions

examples 372
mutually authenticated 387
process summary 387

SSL session ID 287
disable 150

ssl stanza
suppress-client-ssl-errors stanza

entry 464
SSL type junctions 372
ssl-id-sessions stanza entry 150, 283, 287
ssl-keyfile stanza entry

dsess-cluster stanza 328
ssl stanza 358

ssl-keyfile-label stanza entry
dsess-cluster stanza 328
ssl stanza 358

ssl-keyfile-pwd stanza entry
ssl stanza 358

ssl-keyfile-stash stanza entry
dsess-cluster stanza 328
ssl stanza 358

ssl-listening-port stanza entry 345
ssl-max-entries 150
ssl-max-entries stanza entry 260
ssl-port (LDAP configuration) 51
ssl-qop-mgmt stanza entry 346
ssl-qop-mgmt-default stanza 346
ssl-qop-mgmt-hosts stanza 347
ssl-qop-mgmt-networks stanza 347
ssl-session-cookie-name stanza

entry 292, 336
ssl-v2-timeout stanza entry 260, 290
ssl-v3-timeout stanza entry 260, 290
ssl-valid-server-dn stanza entry 328
sslauthn (DLL) 147
SSO Keys

LMI management page 354
standard-junction-replica-set stanza

entry 321
stanzas

session-http-headers 295

692 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

stateful junction
example 395

stateful junctions 392, 393
configuration 392

statistics utility 26
step-up authentication (authentication

strength) 176
step-up-at-higher-level stanza entry 186
stepup-login stanza entry 82, 180
stepuplogin.html 69, 180
sticky load balancing 282
string identifiers 192
structure

account 603
group 603

su-admin extended attribute 169
su-admins group 163, 165
su-excluded group 165
Suite B ciphers 103
suppress-backend-server-identity stanza

entry 108
suppress-client-ssl-errors stanza entry (ssl

stanza) 464
suppress-server-identity stanza

entry 107
switch user

configuration 165
exclude users 165
feature support 168
maximum concurrent sessions

policy 334
overview 162
securitygroup 165
su-admin extended attribute 169
su-admins group 163, 165
su-excluded group 165
usage 168
valid authentication methods 167

switch-user stanza entry 82
switchuser.html 69
syntax, reading 616
System environment variables 67
system resource 7
system-environment-variables stanza

env-name stanza entry 67

T
tag-value

credential attributes 218
HTTP-Tag-Value junction

attribute 219, 588
support 169
tagvalue_user_session_id credential

attribute 588
tagvalue_failover_amweb_session_id

stanza entry 283, 284
tagvalue_user_session_id credential

attribute 588
TAM_OP, local response redirection 93
tcp-session-cookie-name stanza

entry 292
technical notes 601
template

embedding macros 78
template.html 69
terminate all user sessions 592

terminate single user session 591
terminology xviii
test certificate 361
TFIM (Federated Identity Manager)

support
maintain session state with HTTP

headers 295
session cache entry inactivity (per-user

setting) 246
session cache entry lifetime (per-user

setting) 244, 262
three strikes login policy 209
throttle

junction 397, 496
timeout settings

cgi-timeout 45
client-connect-timeout 43
HTTP and HTTPS 43
http-timeout (junctions) 45
https-timeout (junctions) 45
intra-connection-timeout 43
persistent-con-timeout 44
ping-time (junctions) 45
SSL session cache 260
WebSEAL session cache 260

timeout stanza entry 325
session stanza 172, 244, 261, 262, 290

timeouts
consideration 463

Tivoli Common Directory 23
Tivoli Directory Integrator xx
Tivoli Directory Server xx
Tivoli message format 23
TLS connectivity 42
token

add extended attributes 568
extended attributes to extract

from 569
token consume

configuration on the receiving
server 560

token create
configuration on the vouch-for

server 560
token create functionality 540
tokenlogin.html 69
too_many_sessions.html 69
too-many-sessions stanza entry 82
trace utility 27
trailer (append junction cookie

JavaScript) 433
training xxii
transformation errors 458
transparent path junction

concepts 374
configuration 375
example 376

transparent path junctions (-x) 373
Transport Layer Security (TLS) 42
trigger stanza entry 234
trigger URL 234
troubleshooting xxii, 54

credential refresh 227
P3P configuration 583

U
UMI

containers and container names 189
XML document model 188

unauthenticated access to resources 131
unauthenticated users

access conditions over SSL 132
authentication process flow 132
control 131
forcing user login 133
using unauthenticated HTTPS 133

unified Web space
illustration 16

Unix
configuration test 383

unknownicon 35
update notification listening

concepts 345
configuration 345

URI encoding for macros 97, 204
URL

about absolute paths 416
about relative paths 416
about server-relative paths 416
control server-relative URL processing

in requests 436
handle cookies across multiple -j

junctions 438
modify server-relative URLs using

Referer header 435
modify server-relative URLs with

junction cookies 431
modify server-relative URLs with

junction mapping 429
modify URLs in requests 429
modify URLs in responses 417
modify URLs to back-end

resources 415
process-root-requests stanza

entry 436
single encoding 61
special HTML characters 417
understanding path types 416

URLs
modify encoded or escaped 420

use-filename-for-pkmslogout stanza
entry 138

use-new-stateful-on-error stanza
entry 395

use-same-session stanza entry 288
Netscape 4.7x limitation 290

use-utf8
cdsso stanza 64
e-community-sso stanza 64
failover stanza 65

use-utf8 stanza entry
cdsso stanza 548
e-community-sso stanza 570

user agent
authentication challenge 134

user identity
match with step-up 185

user mapping rules
delimiters 191
evaluator 191
examples

UMI from entitlement data 193

Index 693

user mapping rules (continued)
Format and constraints 192

user session ID management 586
concepts 587
enable 588
inserting user session ID in HTTP

headers 588
older user session ID format 590
tagvalue_user_session_id 588
terminate all user sessions 592
terminate single user session 591
user session ID string format 590
user-session-ids 588

user session management
support 169

user settings 215
specify 215

user-defined objects 8
user-session-ids stanza entry 226, 588
user-session-ids-include-replica-set stanza

entry 590
USERNAME macro

for reauthentication login forms 175
utf-8 57

authentication impacts 59
cdsso 548
data conversion 59
e-community authentication 570
encoding HTTP headers over

junctions 411
HTML macros 78
junctions 65
log data 24
messages in UTF-8 format 23
overview 57

UTF-8
dependency on user registry

configuration 59
impact on authorization (dynamic

URL) 60
WebSEAL data handling 58

utf8_bin 66
utf8_uri 65
utf8-form-support-enabled 63
utf8-form-support-enabled stanza

entry 66
utf8-qstring-support-enabled 63
utf8-qstring-support-enabled stanza

entry 66
utf8-template-macros-enabled stanza

entry 78
utf8-url-support-enabled 61

V
verify-step-up-user 185
vf-argument stanza entry 563
vf-token-lifetime stanza entry 565
vf-url stanza entry 565
virtual host

junction configuration 483
junctions 479
use with WebSEAL 492

virtual host junction
add a server 506
create 501
limitations 498

virtual host junctions
/pkmslogout 397
basic concepts 480
concepts 479
configure local type junctions 485
configure remote TCP and SSL type

junctions 483
features 480
filter requirements in standard

junctions 479
ignored stanzas 482
interfaces 487
scenario 1: basic virtual host

junction 486
scenario 2: interfaces

configuration 490
scenario 3: advanced virtual host

configuration 496
URL filtering challenges 480
virtual host label 484
with dynamic URLs 494

virtual host junctions (-v) 410
virtual host label 484
virtual hosting 473
virtual hosts

e-community 568
junction throttling 496
notes on domain cookies 496
represented in the object space 482
SSL session IDs not usable 498
use domain cookies 495
use e-community 492
virtual host junction concepts 479

virtual hosts junctions
create 315

vouch-for
reply 558
request 558

vouch-for request and reply 558
vouch-for token

disable-ec-cookie 567

W
WARNING error message 23
Web objects 7
Web Portal manager

create junctions 367
Web Portal Manager 10

list junctions 367
manage junctions 367

web server configuration 31
web server security 103
web space structure 602
Web-based Distributed Authoring and

Versioning 46
web-host-name stanza entry 32, 492, 495
WebDAV 46
WebSEAL

-c junctions 520
about 3
ACL 366
ACL and POP comparisons 410
ACL permissions 343
authentication information

mapping 524
cluster support 22

WebSEAL (continued)
synchronization 21

configuration 321
configuration data log file 25
configuration file 33, 448
configuration for HTTPS requests 41
configuration settings 314
configuration summary 600
configuration test 316
content cache 38, 39
course grained access control 366
data handling using UTF-8 58
data synchronization 20
default certificate key database

pdsrv.kdb 356
default configuration file 121, 124

azn-decision-info stanza 122
aznapi-external-authzn-services

stanza 122
obligations-levels-mapping

stanza 122
rtss-eas stanza 122

fine grained access control 366
functionality on the appliance 5
GSKit attributes for SSL

connections 513
host-instance_name 343
HTTP request configuration 41
HTTP/1.1 responses 379
ICAP configuration 607
ICAP integration 605, 606
instance 575
instance configuration tasks 577
internal buffer bypass 412
IPv6 and IPv4 support 48
issue

unprocessed request 428
junction cookies support

configuration 432
key database file 355

Server Name Indication 357
key database file password 356
limitations 203
login failure policy 212
management of cookies 405
multiple replica sets 321
OAuth 348
OAuth decisions 350
oauth_eas.conf.template 351
oauth-eas stanza 351
overview 4
password processing 209
policy enforcement point (PEP)

runtime security services external
authorization service (EAS) 121

query_contents 366
replicated server 212
request headers from the client 38
response headers 37
risk-based access 121
RPC over HTTP support 461
runtime security services external

authorization service (EAS) 121,
122, 124

server and host name
specification 31

server responses 69

694 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

WebSEAL (continued)
server restart 315
server sync command 20
server-name stanza entry 31
session cache limitation 266
session storage 256
SMS 313
specify instance name 31
standard junctions 374

filtering concepts 374
statistics utility 26
stop and start 167
supress server identity 107
trace utility 27
use certificate mapping module 196
use of external authentication

interface 241
use of failover cookies 284
use of virtual host 492
using SMS

configuration 313
web-host-name stanza entry 32
webseald-default.conf 33
workaround

avoid absolute and server-relative
URL links 429

WebSEAL configuration
add a WebSEAL instance 578
example configuration values 577
for each instance 577
overview 575
planning and settings 575
remove a WebSEAL instance 578
webseald-default.conf 33

WebSEAL instance
deployment 575

WebSEAL junction
create in SMS 338
SMS 315

WebSEAL junctions
additional references 366
GSO-enabled examples 525

WebSEAL junctions, See junctions. 365
WebSEAL juncttion

back-end server 16
WebSEAL replica servers

consistent configuration 254
WebSEAL request log

insert event correlation 594
WebSEAL server log errors 464
WebSEAL session cache

concurrent session limits 265
configuration 260
inactivity timeout 264
inactivity timeout (per-user

setting) 246
lifetime timeout (global setting) 261
lifetime timeout (per-user

setting) 244, 262
maximum entries 261
overview and structure 252

WebSEAL Session ID 129, 252
webseal-cert-keyfile stanza 355
webseal-cert-keyfile stanza entry 355
webseal-cert-keyfile-label 361
webseal-cert-keyfile-label stanza

entry 355, 378, 488

webseal-cert-keyfile-pwd stanza
comment out

pdsrv.kdb 356
webseal-cert-keyfile-pwd stanza

entry 355
webseal-cert-keyfile-sni stanza

entry 355, 357
webseal-cert-keyfile-stash stanza

entry 355
webseal-mpa-servers group 161, 162
WebSEAL, instance

add new 578
remove 578

WebSEAL/host-instance_name 343
webseald-default.conf 33
websealerror.html 69
WebSphere Application Server Network

Deployment xx
WebSphere eXtreme Scale xx
WebSphere LTPA 526
wildcard characters 67
Windows

configuration test 384
examples 409

allows case-insensitive file
name 409

create an alias 409
include trailing extension

dots 409
Windows desktop single sign-on 153
Windows desktop single signon

configuration steps 153
worker thread

consideration 464
worker threads 52

global allocation 53
junction fairness 52
manage 51
per junction allocation 53
WebSEAL 51

worker-thread-hard-limit stanza
entry 53

worker-thread-soft-limit stanza entry 53
worker-threads stanza entry 52, 488
WPM

delete junctions 368
junction management 367
junctioned application 379

X
XHTML 1.0 compliant JavaScript block

(xhtml10)
insert 435

XML
certificate example 190
UMI containers and container

names 189
UMI document model 188
user mapping rules 188

XSL
user mapping rules 188
xsl:template statement 192

XSL transformation rules 445
xsl:template statement 192
xsl:when statement 193

XSLT rules file
construct 197

XSLT templates 447

Index 695

696 IBM Security Web Gateway Appliance Version 7.0: Configuration Guide for Web Reverse Proxy

����

Printed in USA

SC22-5433-01

	Contents
	Figures
	Tables
	About this publication
	Intended audience
	Access to publications and terminology
	Related publications

	Accessibility
	Technical training
	Support information

	Part 1. Administration
	Chapter 1. IBM Security Access Manager for Web WebSEAL overview
	Introduction
	WebSEAL introduction
	IBM Security Web Gateway Appliance
	WebSEAL functionality on the appliance
	Security model
	Security model concepts
	The protected object space
	Access control lists (ACLs) and protected object policies (POPs)
	Access control list (ACL) policies
	Protected object policies (POPs)
	Explicit and inherited policy
	Policy administration: The Web Portal Manager

	Web space protection
	Security policy planning and implementation
	Content types and levels of protection

	WebSEAL authentication
	Standard WebSEAL junctions
	Web space scalability
	Replicated front-end WebSEAL servers
	Junctioned back-end servers
	Replicated back-end servers

	Chapter 2. Server administration
	WebSEAL instance management
	Synchronization of WebSEAL data across multiple servers
	Automating synchronization
	Cluster restart
	Configure WebSEAL for cluster support

	Auditing and logging of resources for WebSEAL
	Error message logging
	WebSEAL server activity auditing
	Traditional auditing mechanism

	Traditional auditing and logging of HTTP events

	Problem determination resources for WebSEAL
	Configuration data log file
	Configuration data log file location
	Notes on configuration data log file growth
	Configuration data log file format
	Messages relating to the configuration data log file

	Statistics
	Trace utility

	Part 2. Configuration
	Chapter 3. Web server configuration
	WebSEAL server and host name specification
	WebSEAL server name in the configuration file
	WebSEAL server name in "pdadmin server list"
	WebSEAL server name in the protected object space
	Specifying the WebSEAL host (machine) name

	WebSEAL configuration file
	Configuration file organization
	Configuration file name and location
	Modifying configuration file settings

	Directory indexing
	Configuring directory indexing
	Configuration of graphical icons for file types

	Content caching
	Content caching concepts
	Configuration of content caching
	Conditions affecting content caching configuration

	Impact of HTTP headers on WebSEAL content caching
	Impact of Response headers on WebSEAL content caching
	Impact of Request headers on WebSEAL content caching
	Other conditions affecting WebSEAL content caching

	Flushing all caches
	Cache control for specific documents

	Communication protocol configuration
	WebSEAL configuration for HTTP requests
	Enabling or disabling HTTP access
	Setting the HTTP access port value

	WebSEAL configuration for HTTPS requests
	Enabling or disabling HTTPS access
	Setting the HTTPS access port value

	Restrictions on connections from specific SSL versions
	Persistent HTTP connections
	WebSEAL configuration for handling HTTPOnly cookies
	Timeout settings for HTTP and HTTPS communication
	Additional WebSEAL server timeout settings
	Support for WebDAV
	Support for Microsoft RPC over HTTP
	Support for chunked transfer coding

	Internet Protocol version 6 (IPv6) support
	IPv4 and IPv6 overview
	Configuring IPv6 and IPv4 support
	IPv6: Compatibility support
	IPv6: Upgrade notes
	IP levels for credential attributes

	LDAP directory server configuration
	Worker thread allocation
	WebSEAL worker thread configuration
	Allocation of worker threads for junctions (junction fairness)
	Junction fairness concepts
	Global allocation of worker threads for junctions
	Per-junction allocation of worker threads for junctions
	Troubleshooting notes

	HTTP data compression
	Compression based on MIME-type
	Compression based on user agent type
	Compression policy in POPs
	Data compression limitation
	Configuring data compression policy

	Multi-locale support with UTF-8
	Multi-locale support concepts
	WebSEAL data handling using UTF-8
	UTF-8 dependency on user registry configuration
	UTF-8 data conversion issues
	UTF-8 impact on authentication
	UTF-8 impact on authorization (dynamic URL)
	URLs must use only one encoding type

	Configuration of multi-locale support
	UTF-8 support for uniform resource locators (URLs)
	UTF-8 support in POST body information (forms)
	UTF-8 support in query strings
	UTF-8 encoding of tokens for cross domain single signon
	UTF-8 encoding of tokens for e-community single signon
	UTF-8 encoding of cookies for failover authentication
	UTF-8 encoding of cookies for LTPA authentication
	UTF-8 encoding in junction requests

	Validation of character encoding in request data
	Supported wildcard pattern matching characters
	Setting system environment variables

	Chapter 4. Web server response configuration
	Static HTML server response pages
	HTML server response page locations
	Management Root
	Account management page location
	Error message page location
	Junction-specific static server response pages

	HTML server response page modification
	Guidelines for customizing HTML response pages
	Macro resources for customizing HTML response pages
	Macro data string format

	Macros embedded in a template
	How Security Access Manager encodes macros
	Use of macros in a template
	HTML tags and attributes
	Use of JavaScript to work with macros

	Adding an image to a custom login form

	Account management page configuration
	Configuration file stanza entries and values
	Configuration of the account expiration error message
	Configuration of the password policy options

	Error message page configuration
	Enabling the time of day error page
	Creating new HTML error message pages
	Compatibility with previous versions of WebSEAL

	Multi-locale support for server responses
	The accept-language HTTP header
	Process flow for multi-locale support
	Conditions affecting multi-locale support on WebSEAL

	Handling the favicon.ico file with Mozilla Firefox
	Adding custom headers to server response pages
	Configuring the location URL format in redirect responses
	Local response redirection
	Local response redirection overview
	Local response redirection process flow
	Enabling and disabling local response redirection
	Contents of a redirected response
	URI for local response redirection
	Operation for local response redirection
	Macro support for local response redirection
	Customizing macro field names
	Encoding of macro contents
	Macro content length considerations

	Local response redirection configuration example
	Technical notes for local response redirection
	Remote response handling with local authentication
	Junction filtering issues for the ACTION URL

	HTML redirection
	Enabling HTML redirection
	Preserving HTML fragments on redirection

	Chapter 5. Web server security configuration
	Configuring WebSEAL to support only Suite B ciphers
	Prevention of vulnerability caused by cross-site scripting
	Prevention of Cross-site Request Forgery (CSRF) attacks
	Secret token validation
	Referrer validation
	Reject unsolicited authentication requests

	Suppression of WebSEAL and back-end server identity
	Suppressing WebSEAL server identity
	Suppressing back-end application server identity

	Disabling HTTP methods
	Platform for Privacy Preferences (P3P)
	Compact policy overview
	Compact policy declaration
	Junction header preservation
	Default compact policy in the P3P header
	Configuring the P3P header
	Specifying a custom P3P compact policy
	P3P configuration troubleshooting

	Chapter 6. Runtime security services external authorization service
	About the runtime security services external authorization service
	Configuring the runtime security services external authorization service in WebSEAL
	Sample configuration data for runtime security services external authorization service

	Part 3. Authentication
	Chapter 7. Authentication overview
	Definition and purpose of authentication
	Information in a user request
	Client identities and credentials
	Authentication process flow
	Authenticated and unauthenticated access to resources
	Request process for authenticated users
	Request process for unauthenticated users
	Access conditions over SSL
	Forcing user login
	Use of unauthenticated HTTPS

	Supported authentication methods
	Authentication challenge based on user agent

	Chapter 8. Authentication methods
	Authentication terminology
	Logout and password change operations
	Logging out: pkmslogout
	Controlling custom response pages for pkmslogout
	Changing passwords: pkmspasswd
	Password change issue with Active Directory on Windows

	Basic authentication
	Enabling and disabling basic authentication
	Setting the realm name

	Forms authentication
	Enabling and disabling forms authentication
	Customizing HTML response forms
	Submitting login form data directly to WebSEAL

	Client-side certificate authentication
	Client-side certificate authentication modes
	Required certificate authentication mode
	Optional certificate authentication mode
	Delayed certificate authentication mode

	Certificate authentication configuration task summary
	Enabling certificate authentication
	Configuration of the certificate authentication mechanism
	EAI certificate authentication
	Configuring EAI certificate authentication

	Certificate login error page
	Certificate login form
	Disabling SSL session IDs for session tracking
	Enabling and configuring the Certificate SSL ID cache
	Setting the timeout for Certificate SSL ID cache
	Error page for incorrect protocol
	Disabling certificate authentication
	Disabling the Certificate SSL ID cache
	Technical notes for certificate authentication

	Kerberos authentication
	Configuring Kerberos authentication
	Limitations

	LTPA authentication
	LTPA authentication overview
	Enabling LTPA authentication
	Key file information
	Specifying the cookie name for clients
	Specifying the cookie name for junctions
	Controlling the lifetime of the LTPA Token
	Disabling LTPA authentication

	Chapter 9. Advanced authentication methods
	Multiplexing proxy agents
	Multiplexing proxy agents overview
	Valid session data types and authentication methods
	Authentication process flow for MPA and multiple clients
	Enabling and disabling MPA authentication
	Creation of a user account for the MPA
	Addition of the MPA account to the webseal-mpa-servers group
	MPA authentication limitations

	Switch user authentication
	Overview of the switch user function
	Configuration of switch user authentication
	Configuring user access
	Configuring the switch user HTML form
	Designing additional input forms
	Stopping and restarting WebSEAL

	Using switch user
	Additional switch user feature support
	Support for session cache timeout
	Support for reauthentication
	Support for user session management
	Support for tag-value
	Support for auditing

	Reauthentication
	Reauthentication concepts
	Reauthentication based on security policy
	Reauthentication POP: creating and applying
	Reauthentication based on session inactivity
	Enabling of reauthentication based on session inactivity
	Resetting of the session cache entry lifetime value
	Extension of the session cache entry lifetime value
	Prevention of session removal when the session lifetime expires
	Removal of a user session at login failure policy limit
	Customization of login forms for reauthentication

	Authentication strength policy (step-up)
	Authentication strength concepts
	Authentication strength configuration task summary
	Establishing an authentication strength policy
	Specifying authentication levels
	Using multiple authentication levels

	Specifying the authentication strength login form
	Creating a protected object policy
	Specifying network-based access restrictions
	Attaching a protected object policy to a protected resource
	Enforcing user identity match across authentication levels
	Controlling the login response for unauthenticated users
	Stepping up authentication at higher levels

	External authentication interface
	Client Certificate User Mapping
	Introduction
	Example Rules
	Certificate User Mapping Rule language
	UMI XML document model
	Containers and XML UMI container names
	XML certificate model

	User mapping rules evaluator
	Format and constraints of rules
	Examples of user mapping rules

	How to manage the CDAS
	Enabling the CDAS functionality
	Valid certificate attributes

	Configuring WebSEAL to use the certificate mapping module
	Constructing the XSLT rules file
	Validating a successful module mapping

	Chapter 10. Post-authentication processing
	Automatic redirection after authentication
	Overview of automatic redirection
	Enabling automatic redirection
	Disabling automatic redirection
	Limitations
	Macro support for automatic redirection
	Encoding of macro contents
	Macro content length considerations

	Server-side request caching
	Server-side request caching concepts
	Process flow for server-side request caching
	Configuration of server-side caching
	Modification of request-body-max-read
	Modification of request-max-cache

	Chapter 11. Password processing
	Login failure policy ("three strikes" login policy)
	Login failure policy concepts
	Setting the login failure policy
	Setting the account disable time interval
	Configuring the account disable notification response
	Login failure policy with replicated WebSEAL servers
	Decreasing the number of possible login attempts

	Password strength policy
	Password strength policy concepts
	Password strength policies
	Syntax for password strength policy commands
	Default password strength policy values
	Valid and not valid password examples
	Specifying user and global settings

	Chapter 12. Credential processing
	Extended attributes for credentials
	Mechanisms for adding registry attributes to a credential
	Configure a registry attribute entitlement service
	Determine the attributes to add to the credential
	Specify the attributes to add to the credential

	Junction handling of extended credential attributes
	HTTP-Tag-Value extended attributes must be attached directly to the junction

	Credential refresh
	Credential refresh concepts
	Credential refresh overview
	Credential refresh rules
	Refresh of cached credential information
	Configuration file syntax and usage
	Default settings for preserve and refresh
	Limitations

	Configure credential refresh
	1. Specifying attributes to preserve or refresh
	2. Enabling user session IDs
	3. Enabling placement of server name into junction header

	Credential refresh usage
	Refreshing credentials for a specified user
	Troubleshooting for credential refresh

	Chapter 13. External authentication interface
	External authentication interface overview
	External authentication interface process flow
	External authentication interface configuration
	Enabling the external authentication interface
	Initiating the authentication process
	Configuration of the external authentication interface trigger URL
	HTTP header names for authentication data
	Extracting authentication data from special HTTP headers
	How to generate the credential
	External authentication interface credential replacement
	Validating the user identity
	How to write an external authentication application
	External authentication interface demonstration program
	External authentication interface - authentication flags

	External authentication interface HTTP header reference
	Use of external authentication interface with existing WebSEAL features
	Request caching with external authentication interface
	Post-authentication redirection with external authentication interface
	WebSEAL-specified (automatic) redirection
	External authentication interface-specified redirection

	Session handling with external authentication interface
	Authentication strength level with external authentication interface
	Reauthentication with external authentication interface
	Login page and macro support with external authentication interface
	Setting a client-specific session cache entry lifetime value
	Setting a client-specific session cache entry inactivity timeout value

	Part 4. Session State
	Chapter 14. Session state overview
	Session state concepts
	Supported session ID data types
	Information retrieved from a client request
	WebSEAL session cache structure
	Deployment considerations for clustered environments
	Consistent configuration on all WebSEAL replica servers
	Client-to-server session affinity at the load balancer
	Failover to a new master
	Failover from one WebSEAL server to another

	Options for handling failover in clustered environments
	Option 1: No WebSEAL handling of failover events
	Option 2: Authentication data included in each request
	Option 3: Failover cookies
	Option 4: The Session Management Server
	Option 5: LTPA cookie

	Chapter 15. Session cache configuration
	Session cache configuration overview
	SSL session ID cache configuration
	Cache entry timeout value
	Maximum concurrent SSL sessions value

	WebSEAL session cache configuration
	Maximum session cache entries value
	Cache entry lifetime timeout value
	Setting a client-specific session cache entry lifetime value
	Cache entry inactivity timeout value
	Concurrent session limits
	Session cache limitation

	Chapter 16. Failover solutions
	Failover authentication concepts
	The failover environment
	Failover cookie
	Failover authentication process flow
	Example failover configuration
	Addition of data to a failover cookie
	Extraction of data from a failover cookie
	Domain-wide failover authentication

	Failover authentication configuration
	Configuring failover authentication
	Protocol for failover cookies
	Generating a key pair to encrypt and decrypt cookie data
	Specifying the failover cookie lifetime
	Specifying UTF-8 encoding on cookie strings
	Adding the authentication strength level
	Reissue of missing failover cookies
	Addition of session lifetime timestamp
	Adding the session activity timestamp
	Addition of an interval for updating the activity timestamp
	Addition of extended attributes
	Attributes for extraction
	Enabling domain-wide failover cookies
	Validation of a lifetime timestamp
	Validation of an activity timestamp

	Failover for non-sticky failover environments
	Non-sticky failover concepts
	Configuring the non-sticky failover solution
	Use of failover cookies with existing WebSEAL features

	Change password operation in a failover environment

	Chapter 17. Session state in non-clustered environments
	Maintain session state in non-clustered environments
	Control on session state information over SSL
	Use of the same session key over different transports
	Valid session key data types
	Effective session timeout value
	Netscape 4.7x limitation for use-same-session

	Session cookies
	Session cookies concepts
	Conditions for using session cookies
	Customization of the session cookie name
	Sending session cookies with each request

	Customized responses for old session cookies
	Session removal and old session cookie concepts
	Triggering a custom login response
	Removing cookies from browsers during normal logout

	Enabling customized responses for old session cookies

	Maintain session state with HTTP headers
	HTTP header session key concepts
	Configuring HTTP headers to maintain session state
	Setup for requiring requests from an MPA

	Share sessions with Microsoft Office applications
	Overview of session sharing with Microsoft Office applications
	Configure the temporary session cache
	Configuring the lifetime of entries in the temporary session cache
	Configuring the name of the temporary session cookie
	Configuring the temporary cache response page

	Configure shared sessions with Microsoft Office applications
	Microsoft SharePoint 2007 server

	Part 5. Session Management Server
	Chapter 18. Session management server (SMS) overview
	The failover environment
	The session management server (SMS)
	Server clusters, replica sets, and session realms
	SMS process flow
	Sharing sessions across multiple DNS domains

	Chapter 19. Quickstart guide for WebSEAL using SMS
	Configuration summary for WebSEAL using SMS
	1. Information gathering
	2. WebSEAL configuration file settings
	3. Import the Security Access Manager CA Certificate
	4. Restart the WebSEAL server
	5. Create junctions for virtual hosts
	6. Junction the session management server
	7. Set the maximum concurrent sessions policy
	8. Test the configuration

	Chapter 20. Configuration for WebSEAL using SMS
	SMS configuration for WebSEAL
	Configuring the session management server (SMS)
	Enabling and disabling SMS for WebSEAL
	Specifying session management server cluster and location
	Retrieving the maximum concurrent sessions policy value

	Replica set configuration
	Configuring WebSEAL to participate in multiple replica sets
	Assigning standard junctions to a replica set
	Virtual hosts assigned to a replica set
	Example replica set configuration

	Adjustment of the last access time update frequency for SMS
	SMS communication timeout configuration
	Configuring SMS response timeout
	Configuring connection timeout for broadcast events

	SMS performance configuration
	Maximum pre-allocated session IDs
	Configuration of the handle pool size

	SMS Authentication
	SSL configuration for WebSEAL and SMS
	Configuring the WebSEAL key database
	Specifying the SSL certificate distinguished name (DN)
	Obtaining the server certificate DN value

	GSKit configuration for SMS connections

	Maximum concurrent sessions policy
	Setting the maximum concurrent sessions policy
	Interactive displacement
	Non-interactive displacement
	Per user and global settings

	Enforcing the maximum concurrent sessions policy
	Switch user and maximum concurrent sessions policy

	Single signon within a session realm
	Session realm and session sharing concepts
	Configuring session sharing
	Assigning replica sets to session realms
	Configuring session cookie names
	Configuring DNS domains

	Configuring login history
	Enabling login failure notification
	Creating a junction to the session management server
	Allowing access to the login history JSP
	Customizing the JSP to display login history

	Part 6. Authorization
	Chapter 21. Configuration for authorization
	WebSEAL-specific ACL policies
	/WebSEAL/host-instance_name
	/WebSEAL/host-instance_name/file
	WebSEAL ACL permissions
	Default /WebSEAL ACL policy
	Valid characters for ACL names
	Quality of protection POP
	Configuration of authorization database updates and polling
	Database update and polling concepts
	Configuration of update notification listening
	Configuration of authorization database polling

	Configuring quality of protection levels
	Configuration of QOP for individual hosts and networks

	Authorization decision information
	Support for OAuth authorization decisions
	High level overview of the OAuth EAS
	Configuring WebSEAL to include OAuth decisions
	Error responses
	Troubleshooting

	Chapter 22. Key management
	Key management overview
	Key management in the Local Management Interface
	Client-side and server-side certificate concepts
	Configuration of the WebSEAL key database file
	WebSEAL key database file
	Key database file password
	WebSEAL test certificate
	Server Name Indication
	Inter-server SSL communication for Security Access Manager

	Certificate revocation in WebSEAL
	Certificate revocation list (CRL)
	Configuration of CRL checking

	Certificate distribution points
	Configuration of the CRL cache
	Set the maximum number of cache entries
	Set the GSKit cache lifetime timeout value
	Enable the CRL cache

	Use of the WebSEAL test certificate for SSL connections

	Part 7. Standard WebSEAL Junctions
	Chapter 23. Standard WebSEAL junctions
	WebSEAL junctions overview
	Junction types
	Applying coarse-grained access control: summary
	Applying fine-grained access control: summary
	Additional references for WebSEAL junctions

	Management of junctions with Web Portal Manager
	Creating a junction using Web Portal Manager
	Listing junctions using Web Portal Manager
	Deleting junctions using Web Portal Manager

	Junction management in the Local Management Interface
	Managing junctions with the pdadmin utility
	Import and export of junction databases

	Standard WebSEAL junction configuration
	The pdadmin server task create command
	Creating TCP type standard junctions
	Creating SSL type standard junctions
	Creating mutual junctions
	SSL-based standard junctions
	Verification of the back-end server certificate
	Examples of SSL junctions
	Disabling SSL protocol versions for junctions

	Adding multiple back-end servers to a standard junction
	Local type standard junction
	Disable local junctions

	Transparent path junctions
	Filtering concepts in standard WebSEAL junctions
	Transparent path junction concepts
	Configuring transparent path junctions
	Example transparent path junction

	Technical notes for using WebSEAL junctions
	Guidelines for creating WebSEAL junctions
	Adding multiple back-end servers to the same junction
	Exceptions to enforcing permissions across junctions
	Certificate authentication across junctions
	Handling domain cookies
	Supported HTTP versions for requests and responses
	Junctioned application with Web Portal Manager

	How to generate a back-end server Web space (query_contents)
	query_contents overview
	Custom query_contents program

	query_contents components
	Installing and configuring query_contents on UNIX-based Web servers
	Testing the configuration (UNIX)

	Installing and configuring query_contents on Windows-based Web servers
	Testing the configuration (Windows)

	General process flow for query_contents
	Securing the query_contents program

	Chapter 24. Advanced junction configuration
	Mutually authenticated SSL junctions
	Mutually authenticated SSL junctions process summary
	Validation of the back-end server certificate
	Matching the distinguished name (DN)
	Authentication with a client certificate
	Authentication with a BA header

	TCP and SSL proxy junctions
	WebSEAL-to-WebSEAL junctions over SSL
	Stateful junctions
	Stateful junction concepts
	Configuration of stateful junctions
	Specifying back-end server UUIDs for stateful junctions
	Stateful junction example

	Handling an unavailable stateful server

	Forcing a new junction
	Use of /pkmslogout with virtual host junctions
	Junction throttling
	Junction throttling concepts
	Placing a junctioned server in a throttled state
	Throttle command usage for standard WebSEAL junctions
	Throttle command usage for virtual host junctions

	Junctioned server in an offline state
	Offline command usage for standard WebSEAL junctions
	Offline command usage for virtual host junctions

	Junctioned server in an online state
	Online command usage for standard WebSEAL junctions
	Online command usage for virtual host junctions

	Junction throttle messages
	Junction throttle error page
	Monitoring of throttled server status and activity

	Use of junction throttling with existing WebSEAL features

	Management of cookies
	Passing of session cookies to junctioned portal servers
	Support for URLs as not case-sensitive
	Junctions to Windows file systems
	Example
	ACLs and POPs must attach to lower-case object names

	Standard junctions to virtual hosts
	UTF-8 encoding for HTTP header data
	Bypassing buffering on a per-resource basis
	Single sign-on solutions across junctions

	Chapter 25. Modification of URLs to junctioned resources
	URL modification concepts
	Path types used in URLs
	Special characters in URLs
	Modification of URLs in responses
	Filtering of tag-based static URLs
	Filter rules for tag-based static URLs
	Default filtering of tag-based static URLs
	Modification of encoded or escaped URLs
	Configuration of filtering for new content (MIME) types
	Tags and attributes for tag-based filtering
	HTML META tags
	HTML BASE HREF tags
	Schemes to ignore in pages using the BASE tag

	Modifying absolute URLs with script filtering
	Configuring the rewrite-absolute-with-absolute option
	Filtering changes the Content-Length header
	Limitation with unfiltered server-relative links
	Problem
	Workaround:

	Modification of URLs in requests
	Modification of server-relative URLs with junction mapping
	Modification of server-relative URLs with junction cookies
	Junction cookie concepts
	Configuration of WebSEAL junctions to support junction cookies

	Control on the junction cookie JavaScript block
	Appending the junction cookie JavaScript block (trailer)
	Inserting the JavaScript block for HTML 4.01 compliance (inhead)
	Resetting the junction cookie for multiple -j junctions (onfocus)
	Inserting an XHTML 1.0 compliant JavaScript block (xhtml10)

	Modification of server-relative URLs using the HTTP Referer header
	Controlling server-relative URL processing in requests
	Process root request concepts
	Configuring root request processing

	Handling cookies from servers across multiple -j junctions
	Cookie handling: -j modifies Set-Cookie path attribute
	Cookie handling: -j modifies Set-Cookie name attribute
	Preservation of cookie names
	Preserving names of all cookies
	Preserving names of specified cookies

	Cookie handling: -I ensures unique Set-Cookie name attribute

	Chapter 26. HTTP transformations
	HTTP transformation rules
	Extensible Stylesheet Language Transformation (XSLT)
	HTTP request objects
	HTTP response objects
	Replacing the HTTP response
	XSL transformation rules
	Reprocessing considerations
	XSLT templates

	Configuration
	Configuration file updates
	Protected Object Policy (POP)

	Example HTTP transformation scenarios
	Scenario 1: Modifying the URI, headers, and cookies (HTTPRequest)
	Scenario 2: Modifying the headers only (HTTPResponse)
	Scenario 3: Modifying the ResponseLine/StatusCode only (HTTPResponse)
	Scenario 4: Modifying cookies only (HTTPResponse)
	Scenario 5: Providing a response to a known HTTP request

	Transformation errors

	Chapter 27. Microsoft RPC over HTTP
	RPC over HTTP support in WebSEAL
	Junction configuration
	POP configuration
	Authentication limitations
	Timeout considerations
	WebSEAL server log errors
	Worker thread consideration

	Chapter 28. Command option summary: standard junctions
	Using pdadmin server task to create junctions
	Server task commands for junctions
	Creation of a junction for an initial server
	Addition of server to an existing junction

	Part 8. Virtual Hosting
	Chapter 29. Virtual host junctions
	Virtual host junction concepts
	Standard WebSEAL junctions
	Challenges of URL filtering
	Virtual hosting
	Virtual host junction solution
	Stanzas and stanza entries ignored by virtual host junctions
	Virtual hosts represented in the object space

	Configuration of a virtual host junction
	Creation of a remote type virtual host junction
	Creation of a local type virtual host junction

	Scenario 1: Remote virtual host junctions
	Definition of interfaces for virtual host junctions
	Default interface specification
	Defining additional interfaces

	Scenario 2: Virtual host junctions with interfaces
	Use of virtual hosts with existing WebSEAL features
	E-community single signon with virtual hosts
	Cross-domain single signon with virtual hosts
	Dynamic URLs with virtual host junctions
	Using domain session cookies for virtual host single sign-on
	Technical notes for using domain cookies with virtual hosts

	Junction throttling

	Scenario 3: Advanced virtual host configuration
	Virtual host junction limitations
	SSL session IDs not usable by virtual hosts

	Chapter 30. Command option summary: Virtual host junctions
	Using pdadmin server task to create virtual host junctions
	Server task commands for virtual host junctions
	Creation of a virtual host junction
	Addition of a server to a virtual host junction

	Part 9. Single Signon Solutions
	Chapter 31. Single signon solutions across junctions
	Single signon using Tivoli Federated Identity Manager
	GSKit configuration for connections with Tivoli Federated Identity Manager
	Use of Kerberos credentials

	Single sign-on using HTTP BA headers
	Single signon (SSO) concepts
	Client identity in HTTP BA headers
	Client identity and generic password
	Limitations of the -b supply option

	Forwarding of original client BA header information
	Removal of client BA header information
	User names and passwords from GSO
	Client identity information across junctions
	Use of –b supply
	Use of –b ignore
	Use of –b gso
	Use of –b filter

	Identity information supplied in HTTP headers
	Client identity in HTTP headers (–c)
	Conditions of use for -c junctions
	Examples of -c junctions

	Client IP addresses in HTTP headers (–r)
	Limiting the size of WebSEAL-generated HTTP headers

	Global signon (GSO)
	Global sign-on overview
	Authentication information mapping
	Configuring a GSO-enabled WebSEAL junction
	Examples of GSO-enabled WebSEAL junctions

	Configuration of the GSO cache

	Single signon to IBM WebSphere (LTPA)
	LTPA overview
	Configuration of an LTPA junction
	Configuration of the LTPA cache
	Technical notes for LTPA single sign-on

	Forms single signon authentication
	Forms single signon concepts
	Forms single signon process flow
	Requirements for application support
	Creation of the configuration file for forms single signon
	The [forms-sso-login-pages] stanza
	The custom login page stanza
	Use of regular expressions
	The argument stanza

	How to enable forms single signon
	Forms single sign-on example

	Chapter 32. Cross-domain single sign-on
	Cross-domain single signon concepts
	Cross-domain single signon overview
	Default and custom authentication tokens
	Extended user attributes and identity mapping
	CDSSO process flow with attribute transfer and user mapping

	Configuration of cross-domain single signon
	CDSSO configuration summary
	Configuring CDSSO token create functionality
	Configuring CDSSO token consume functionality

	CDSSO conditions and requirements
	Resolving machine names

	Enabling and disabling CDSSO authentication
	Encrypting the authentication token data
	Configuring the token time stamp
	Configuring the token label name
	Creating the CDSSO HTML link
	Handling errors from CDMF during token creation
	Protection of the authentication token
	Use of cross-domain single signon with virtual hosts

	Extended attributes for CDSSO
	Extended attributes to add to token
	Extended attributes to extract from a token

	UTF-8 encoding of tokens for cross domain single signon

	Chapter 33. LTPA single signon
	LTPA single sign-on overview
	Configuring LTPA single signon
	Technical notes for LTPA single sign-on

	Chapter 34. E-community single signon
	E-community single signon concepts
	E-community overview
	E-community features and requirements
	E-community process flow
	The e-community cookie
	The vouch-for request and reply
	The vouch-for request
	The vouch-for reply

	The vouch-for token

	Configuration of e-community single sign-on
	E-community configuration summary
	Configuring token create functionality on the vouch-for server
	Configuring token consume functionality on the receiving server

	E-community conditions and requirements
	Resolving machine names in an e-community environment

	Enabling and disabling e-community authentication
	Specifying an e-community name
	Encrypting the vouch-for token
	E-community domain keys

	Configuring the vouch-for token label name
	Specifying the master authentication server (MAS)
	Specifying the vouch-for URL
	Configure token and ec-cookie lifetime values
	Handling errors from CDMF during token creation
	Enabling unauthenticated access
	Limiting the ability to generate vouch-for tokens
	Configuration of the behavior for authentication failure
	Logout using pkmslogout-nomas
	Use of e-community with virtual hosts

	Extended attributes for ECSSO
	Extended attributes to add to token
	Extended attributes to extract from token

	UTF-8 encoding of tokens for e-community single signon

	Chapter 35. Single sign-off
	Overview of the single sign-off functionality
	Configuring single signoff
	Specifications for single sign-off requests and responses

	Part 10. Deployment
	Chapter 36. WebSEAL instance deployment
	WebSEAL instance configuration overview
	WebSEAL instance configuration planning
	Example WebSEAL instance configuration values
	Unique configuration file for each WebSEAL instance

	WebSEAL instance configuration tasks
	Adding a WebSEAL instance
	Removing a WebSEAL instance

	Load balancing environments
	Replicating front-end WebSEAL servers
	Controlling the login_success response

	Chapter 37. Application integration
	Support for back-end server-side applications
	Best practices for standard junction usage
	Complete Host header information with -v
	Standard absolute URL filtering

	Custom personalization service
	Personalization service concepts
	Configuring WebSEAL for a personalization service
	Personalization service example

	User session management for back-end servers
	User session management concepts
	Enabling user session ID management
	Inserting user session data into HTTP headers
	Setting an extended attribute on a junction
	The HTTP-Tag-Value extended attribute for junctions
	Setting the HTTP-Tag-Value junction attribute
	Processing the HTTP-Tag-Value junction attribute

	Terminating user sessions
	User session ID string format
	Compatibility with older user session ID format
	Termination of single user sessions
	Termination of all user sessions

	User event correlation for back-end servers
	Inserting event correlation data into HTTP headers
	Inserting event correlation data into the WebSEAL request log

	Chapter 38. Dynamic URLs
	Access control for dynamic URLs
	Dynamic URL components
	Access control for dynamic URLs: dynurl.conf
	Conversion of POST body dynamic data to query string format
	Mapping ACL and POP objects to dynamic URLs
	Character encoding and query string validation
	Updating WebSEAL for dynamic URLs
	Resolve dynamic URLs in the object space
	ACL and POP Evaluation

	Configuration of limitations on POST requests
	Dynamic URLs summary and technical notes
	Summary
	Technical notes

	Dynamic URL example: The Travel Kingdom
	The application
	The interface
	Web space structure

	The security policy
	Dynamic URL to object space mappings

	Secure clients
	Account and group structure

	Access control
	Conclusion

	Chapter 39. Internet Content Adaptation Protocol (ICAP) Support
	ICAP integration with WebSEAL - Workflow
	Scope of functionality
	Configuration of ICAP support within WebSEAL

	Part 11. Appendixes
	Appendix A. Guidelines for changing configuration files
	General guidelines
	Default values
	Strings
	Defined strings
	File names
	Integers
	Boolean values

	Appendix B. Command reference
	Reading syntax statements
	help
	server list
	server task add
	server task cache flush all
	server task cluster restart
	server task create
	server task delete
	server task dynurl update
	server task help
	server task jmt
	server task list
	server task offline
	server task online
	server task refresh all_sessions
	server task reload
	server task remove
	server task server restart
	server task show
	server task server sync
	server task terminate all_sessions
	server task terminate session
	server task throttle
	server task virtualhost add
	server task virtualhost create
	server task virtualhost delete
	server task virtualhost list
	server task virtualhost offline
	server task virtualhost online
	server task virtualhost remove
	server task virtualhost show
	server task virtualhost throttle

	Notices
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

